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With concurrent increase in application complexity and hardware heterogeneity, large multiphysics code
FLASH faces huge challenges to its continued usability on high performance computing platforms. We are
building a novel transpilation framework that relies on high-level intermediate representation to confront
this challenge and enable FLASH to adapt to accelerator-based architecture via performance-oriented
refactoring. Additionally, we use the framework to modernize code by enabling higher level of abstraction
in expressing computations. We evaluate the effectiveness of the tool with respect to speedup obtained
relative to original code performance, and also quantify productivity gains.
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1. Introduction

Scientific computing has been presented with unpreced-
ented opportunities and challenges in the recent years.
With combined growth in model fidelity and numerical
methods, significant growth in scientific insights seems
within reach. But concurrent with that growth is the in-
creasing complexity and heterogeneity in high performance
computing (HPC) platforms. Large multiphysics codes
have taken years to reach the stage of robustness and ma-
turity that was all designed for a much simpler machine
model; that of more or less homogeneous nodes with a
few levels of memory hierarchy and interconnects between
nodes for parallelism. Performance portability deman-
ded maximizing locality and minimizing communication.
Conflicting requirements from diverse solvers required for
higher fidelity modelling strain even this simple machine
model.

Current and future platform will achieve higher perform-
ance through higher degree of parallelism and accelerat-
ors in many different flavours. And each one will have
its own preferred data layout and operation scheduling.
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When multicomponent codes meet platform heterogeneity
the combinatorics of target specific optimization become
intractable. We could list many examples of prominent sci-
entific software that fit this profile. In this work, we focus
primarily on FLASH [11], a highly capable multiphysics
code with a wide user base in several science communities.

The challenge of exploding combinatorics of heterogen-
eous solvers and heterogeneous platforms has been known
for a while and many projects have come into existence
to mitigate it. These projects include domain-specific-
languages (DSL) [1,8,9], tools exploiting template meta-
programming features of C++ to introduce abstractions
[4,14,16], and new parallel languages, e.g. Julia. Of these
the C++ tools have had the most success. However, there
are many codes that have been written in Fortran which
cannot make use of these tools; FLASH is one of them.
Developing replacements for these codes in either C++
or new parallel languages would take several years of ef-
fort. In the meantime their continued viability on available
HPC platforms is critical for many science domains. We
have developed a transpiler framework specifically targeted
at codes such as FLASH.

2. Background and Motivation

Our transpilation framework is relying heavily on Py-
thon. In this section we bring into some background as
well as explain our motivation, and in later sections we
rely on them to propose our solution.
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2.1 Python in HPC

Numerous solutions have been introduced into the Py-
thon ecosystem that aim at mitigating Python’s perform-
ance issues. Below, we briefly introduce 3 widely employed
approaches.

NumPy [23] is a BLAS-compliant numerical library for
Python, which, when used correctly, can achieve very good
performance. NumPy’s approach to higher performance in
Python is very straightforward. NumPy is partially imple-
mented in Python, but it mostly consists of a big collection
of low-level language implementations which are interfaced
with Python through the CPython API. The implement-
ations often contain manually unrolled loops to support
SIMD compiler optimizations, or contain code that is pre-
processed by the C compiler at installation time to gen-
erate the code. Those low-level implementation are very
efficient, but are not useful in cases when they would need
to be tailored for some specific use. NumPy cannot be
used directly to accelerate any algorithm.

Numba [17] is a JIT compiler for Python. It does
not compile Python directly, but instead translates it
into LLVM Intermediate Representation, and delegates the
compilation to the LLVM toolchain. Through an easy-to-
use API, Numba enables JIT compilation of selected parts
of Python code. The compiled code sections have to con-
tain only a restricted subset of Python syntax. Addition-
ally, Numba cannot shed all layers of indirection present
in Python, because it is not capable of complete type ana-
lysis. There are inherent unavoidable problems with un-
availability of reliable type inference in Python, and there-
fore if any elements of Python’s dynamic indirection re-
main after transpilation, they significantly slow down the
execution.

Cython [3] is a language derived from Python, and also
a software solution that translates Cython language to C
with certain extensions. Reason is performance, especially
the case of numerical loops [25]. Cython can usually out-
perform NumPy in cases of construction of sparse matrices,
data transformation, repacking, equation solving, among
others [2]. Cython language is very similar to Python in
a sense that a subset of Python is also valid Cython code.
However, Cython extends Python syntax by adding few
C-related constructs. This makes Cython code backwards-
incompatible with Python — once the code is converted to
Cython so as to benefit from its performance boost, it is
no longer valid Python. Cython provides a so-called ‘pure
mode’ via which the original Python code can be left un-
touched, and a separate file with static type information
for that code needs to be created instead [2]. This addi-
tional file is ignored by Python interpreter, but used by
Cython framework, which provides some level of compat-
ibility, however this lowers maintainability of the code be-
cause two files have to be kept in sync manually. Cython
framework, apart from providing application performance
boost, incurs a significant compilation overhead, because
Cython framework delegates the compilation of C code to
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an external compiler (as available in the system) [2], ex-
actly as it is in the case of f2py.

From the above, 3 facts become evident. Python can
efficiently invoke low-level implementations as it is in case
of NumPy. Python is capable of introspection and self-
alteration at the source code level during runtime, as it is
with Numba. And thirdly, as seen in Cython, even if at
runtime level Python is very far from optimal, at a lan-
guage level it is not so far from its high-performing com-
petitors like C.

Leveraging the above, together with Type Hints [32]
mechanism available in modern Python, we came up with
a concept of using Python language without modifying its
syntax in any way to enable Fortran-level runtime perform-
ance on the in Python, and implemented a prototype [6].
At first, we experimented with simple algorithms and For-
tran benchmark applications and achieved Python code
execution performance equivalent to pure Fortran execu-
tion performance. Our prototype outperformed Numba in
selected benchmarks. Additionally, our approach enabled
bi-directional translation between small confined subsets
of Python and Fortran, thus enabling migration of selec-
ted small Fortran-based benchmark applications into Py-
thon while preserving their performance. Later, we modi-
fied our approach and published our framework [5] (called
Transpyle) on GitHub. We also reasoned about how the
approach could be applied to full applications, however
until now we haven’t published any results related to lar-
ger codes. Here comes FLASH. In remaining subsections
we introduce it, as well as explain why it is a good fit for
experiments with our framework.

2.2 FLASH

FLASH is a multiphysics, multicomponent code that
has been in development and use since 1998 [10], and
serves several science communities [13]. The software ar-
chitecture of FLASH [11] relies on inter-operating compon-
ents that have multiple alternative implementations. An
extremely limited configuration domain-specific-language
(DSL) encodes meta-information about various compon-
ents and their alternative implementations, and ways in
which they can be combined with other components. This
language is interpreted by the ”setup” tool written in Py-
thon. Applications are configured by selecting specific im-
plementations of a subset of components following the rules
encoded by the DSL. Alternative implementations may ex-
ist either to provide different numerical methods for differ-
ent physical regimes, or may be targeted to be performant
on specific platform architectures. Note that the config-
uration DSL does not play any role in execution, it is an
intelligent configuration tool that can provide the high de-
gree of composability demands placed on FLASH by its
diverse users.

Being a large code whose lifespan has covered several
generation of largest HPC platforms, performance port-
ability has always been critical for FLASH. Hand tuning
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the entire code base for every platforms has never been an
option, however, targeting distributed memory machine
model and good data locality gave sufficiently good per-
formance as long as platforms remained largely homogen-
eous. Arrival of multicore platforms was managed with
use of OpenMP directives with modest development ef-
forts. However, these options are not sufficient for the
upcoming platforms with increasing heterogeneity. There
is no longer a general machine model that works across
platforms. Devices on systems differ in terms of optimal
data layout, data movement, and memory management.

For example, the new (e.g. Summit) and future systems
(Aurora, Frontier) are not only expected to have accelerat-
ors, but also, the accelerators are expected to be different
on different machines. In certain situations, where specific
physics dominates the runtime, and lends itself to easy
re-implementation, the obvious solution of writing optim-
ized codes for each type of machine may be viable [24].
However, in vast majority of simulations using FLASH
there are no such hotspots, and therefore, this approach
is neither productive nor feasible for even a fraction of the
code. We need a paradigm shift in the way scientific codes
are designed and developed.

One possible option is to build upon the idea of separ-
ation of concerns, which has been the basis for FLASH
design, wherein, the core structure of the code remains
agnostic of the system architecture. And now, instead of
relying upon locality to deliver good performance as in
the past, we use a tool to generate target platform spe-
cific code. In the next section we describe how FLASH’s
architecture makes it amenable to this approach.

2.3 A Deeper Look Into FLASH

The key to using Transpyle (and transpilation in gen-
eral) with FLASH lies in its separation between concerns
of micro-parallelism and macro-parallelism. The macro-
parallelism is managed at the level of adaptive mesh re-
finement (AMR), which tackles the load distribution and
distributed memory parallelism. The physics solvers in the
code are largely oblivious of this parallelism. The micro-
parallelism, that pertains to shared memory, threading
and vectorization etc. comes into play at the solver level.
The physics solver units operate with the "block” abstrac-
tion; a section of the domain with surrounding halo is op-
erationally indistinguishable from the whole domain. Vast
majority of floating point operations involve a physics op-
erator being applied separately on each such block. Thus
it is best to employ transpilation in the code implementing
the physics operators.

The operators themselves vary greatly in complexity,
and there are two aspects to their complexity; logical and
numerical. We focus on operators that have numerical
complexity and intensity, because that is where perform-
ance bottlenecks are likely to occur. Since an important
idea behind the use of Transpyle is to retain a readable
code to maintain, we simplify the structure of the operat-
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ors by breaking up the loop nests into function calls. The
expectation is that the overhead of very fine grained func-
tion calls can be eliminated by inlining them, which is one
of the simplest features in Transpyle. With this transform-
ation, the implementation begins to resemble a sequence
of function calls interspersed with some logic. This exer-
cise serves two purposes; the logical flow of the calculation
is clarified, and the semantics of calculation are encoded
in smaller chunks more easily digested by any code trans-
formation engine.

FLASH, having a vibrant and performance-conscious
user community, have seen several attempts at adapting
it to GPU-based machines [15,19,24], and now one of the
members of the Exascale Computing Project, it is commit-
ted to adapt to emerging architectures.

2.4 Challenges

To address the challenge of adaptation, several ap-
proaches are available. First, one may chose to migrate
legacy software such as FLASH to a new programming
language, that attempts to solve the issues at the language
level. However, it is hard to predict if a given program-
ming language will enjoy a community large enough to
sustain the project currently implemented in Fortran for
the years to come. Additionally, a new programming lan-
guage may be an option for a new project, but with large
enough codebase full migration of an ongoing one is not
an option.

Second, even in existing languages, there is sometimes
an option to abstract out a lot of functionality by em-
ploying metaprogramming. Among widely-adopted HPC
programming languages, it is possible only in C++4-. Also,
by using templates, user loses control over, and potentially
understanding of, what is going on.

Finally, directives such as OpenMP and OpenACC
promise to enable adaptation of existing software to new
architectures with little effort. However, critical features
such as abstracting out the data layout, and inter-loop op-
timizations is outside of scope of directives. In addition,
achieving high performance on different targets often re-
quires non-trivial directive customization for each target
in a programming style that introduces technical debt.

After extended experimentation on our early prototype
[6] with larger codes and after facing significant challenges
related to engineering effort required to translate large
production-grade Fortran codes to Python, we changed our
(in hindsight, unrealistic) goal of bi-directional transpila-
tion using (al) custom high-level intermediate represent-
ation to translate (bl) whole applications, to (a2) using
extended Python AST as intermediate representation [7]
to translate (b2) only a subset of application code.

3. Contributions

We propose a compiler-based method of adapting mut-
liphysics framework FLASH to modern architectures while
also enhancing its maintainability.
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Specifically, we present a method that by employing our
transpilation framework Transpyle, coupled with targeted
code refactoring, enables obtaining both (1) more main-
tainable modularized FLASH Fortran codebase and (2)
generated platform-tuned Fortran codebase that is still
readable and can be reasoned about further.

4. Dive Into Transpyle

Relying on our experiences with the early prototypes we
subsequently designed and implemented an open-source
transpilation framework Transpyle [5] with applications
that go beyond the scope of this paper. Here we will focus
on its application to FLASH, however we will maintain
more general perspective wherever it is useful.

4.1 Mapping Between Python and Target Lan-
guages

To translate between Python and any other language,
we need to first define the mapping between Python and
that language. In case of languages tackled so far in our
work, Python, Fortran and C++, we focus on 3 areas in
particular: (1) data types, (2) basic syntactic structures,
(3) selected common idioms, (4) internal API calls, and (5)
external APIs. In all of those cases, we take a pragmatic
approach of looking at the types of codes that we would
like to handle, selecting example benchmarks for transla-
tion correctness, and implementing just the functionality
necessary for them to work. Similar approach is taken by
developers of mypyc [30] where the authors aim at suc-
cessful translation of Python to C for only a single Python
package called mypy [18,29].

In case of data types, the most important are funda-
mental types, and arrays in case of numerics. For basic
syntactic structures, of course the various unary and bin-
ary operations, loops, and other elements encountered in
even the simplest code are essential if the transpiler is not
to give up on the most basic examples. Among those, many
individual instances can be trivially passed through, and
that what makes them basic. Idioms are often an answer
to a question like "how to print to standard output stream”
or "how to initialize an empty array”, therefore transpiler
needs to understand what calling a built-in print function
in Python actually means.

Mapping internal and external APIs in case of Python
requires similar effort because of enormous size of Python
standard library. NumPy is a prominent example of ex-
ternal API, the translation of which is also essential for our
work. Coincidentally, the basic NumPy API bears high re-
semblance to the interface of built-in Fortran arrays, there-
fore implementing the translation or array operations was

4.2 Transpiler with Human-readable Output

On top of the above requirement we impose on ourselves
the requirement of preserving high-level structure of the
code, as well as most of the human-required properties of
it, such as the naming of variables and comments. With
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regards to code formatting, we decided to take the ap-
proach of generating code that is as readable as possible.
However, because what is considered a reasonable indent-
ation and recommended code style changes between pro-
gramming languages, we did not make an effort to pre-
serve original indentation style. Instead, our approach is
to generate code which is objectively readable in a given
programming language.

Most notably, Python has very strict rules about indent-
ation. The indentation itself affects control flow, therefore
if we would generate code while preserving the original
formatting, we might end up with a completely different
software.

Conversely, although we assume that the syntax of the
input code is correct, we do not assume that its format-
ting is ideal. Therefore, we are of the opinion that by not
preserving the original formatting we avoid some problems
while not introducing any new ones, including any possible
negative impact on readability.

Generating readable code is also worth the effort because
of control over the code that end user gets. Le. if the code
generated by our tool would be further hand-tuned by a
developer with deep knowledge of the original algorithm
as well as the language of the generated code, such tun-
ing should not come with additional strain, confusion or
surprises about the shape of the code.

5. Dive Into Transpiling FLASH

FLASH design aligns surprisingly well with the
Transpyle framework. FLASH itself being a framework,
puts restrictions on the input code for physical operators,
in effect forcing it to be relatively clean and well-organized.
We pragmatically utilize this property of FLASH, because
successful application of our transpilation framework is
also partially based on input restrictions.

Also, compiler-based approach is ideal for code with
clear separation of concerns. Abstractions that require
the user to go all the way and specify everything from
data layout through execution policies to operators, can-
not be applied in part — user has to commit fully to using
the framework, moreover if an abstraction would be used
in one part of FLASH, it would have to be used in all of
them, and in all user code as well. Selective transpilation
has no such limitations - just because we rely on certain
transformations in one part of the code, does not require
us to do the same in any other part. This presents us
with a unique opportunity to gradually apply Transpyle
to more parts of FLASH, without need of substantial code
refactoring.

Additionally, in case of FLASH, it not only separates
concerns into two clear-cut kernel and framework spaces
but the way it does the separation is very favourable for
our approach. The framework space consists of unrestric-
ted Fortran, with many latest Fortran features being em-
ployed, and therefore the syntactic complexity of the code
being relatively high. On the other hand the code in kernel
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space is very strictly regulated, with even variable names
up to their casing being pre-decided. As the transpilation
framework is applied only to the kernel space, we can make
many useful assumptions about the input and operations
on it that would be very hard or impossible to make for
Fortran code in general.

Finally, producing human-readable code gives the user
control over the code, especially in contrast to using C++
templates for example, with which the user loses control of
what is happening with code and cannot easily debug it.
Ability to be able to see what the framework has done, or
what it hasn’t done, is also useful for FLASH developers
because they can experiment with various code changes
and be immediately able to judge in what way such changes
affect the generated architecture-specific code.

Fortran code system simulation configuration

' v '
parse query extract

Python AST system configuration behaviour / performance metadata

insert back optimize kernels
optimized code
generate backend-specific code

Figure 1 Transpiling FLASH: overview.

The workflow of running a FLASH simulation consists of
3 phases: (1) simulation setup (2) compilation and (3) ex-
ecution. For our work, especially the first phase is interest-
ing. The setup phase works akin to configure script present
in many source code releases of open-source software. Be-
cause of modularity of FLASH, user can choose which
physical operators are to be involved in their simulation,
dimensionality, resolution, domain size and many other
parameters can also be adjusted. The setup phase is re-
sponsible for setting up compilation according to all those
settings, and it is through the setup script that the most
insight into the requested settings (and in turn required
transformations) can be achieved. Therefore, also the way
FLASH is implemented also aligns well with compiler-
based approach to optimization, as shown in Figure 1.

5.1 A Future Outlook: Path to Migrate FLASH
to High-performance Python

There are more reasons that can justify the use of
transpilation with Python as IR in this case.

First of all, the scientific community is converging
around Python and Julia for productivity. Especially
NumPy, pandas, and other Python packages in their re-
spective domains see many new users, and scientists from
many new domains are learning those languages and sub-
sequently develop software packages to further enhance
productivity in their field.

Secondly, especially with Python community embracing
Type Hints and therefore accepting that Python should

under certain circumstances provide static type informa-
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tion, Python can continue on the path towards being re-
cognized as a fully-blown HPC scientific language. More
and more packages add support for type hints, and it is
easy to imagine that computing packages for Python could
one day too benefit from almost free speedups that static
type information combined with JIT compilation can offer.

Even now, FLASH developers often prototype new code
in Python before later rewriting it to Fortran. We could
imagine a future in which Python is the language in which
FLASH is written and maintained, and Fortran a language
in which it is executed on various HPC systems.

5.2 FLASH on GPUs

In current experiments, we focus on adapting FLASH to
one new platform: GPU-based accelerated systems. In re-
cent years, there has been a boom of accelerator-based sys-
tems. Most notable GPU-based HPC systems are ABCI,
Piz Daint, Sierra, and Summit [33] — as of June 2019
these 4 systems are in global top 10 according to both
Top 500 [28] and HPCG [27] lists.

Wanting to avoid porting parts of FLASH to another
language, we had 2 options to choose from. Rely on CUDA
Fortran API, or use directives (OpenMP or OpenACC).

Because transpiling numerical Fortran kernels reliably
to CUDA would be an engineering challenge beyond our
current capabilities, we opted for relying on compiler dir-
ectives. Additional benefit of that approach is that Fortran
code with directives is far more readable to Fortran de-
velopers than CUDA code would be, therefore verification
or debugging of the code would be much easier.

There are two realistic directive languages to choose
from: OpenMP and OpenACC. In our assessment, al-
though latest OpenMP standards provide a mechanism
to execute code on GPUs [21,22], the implementations
are lagging behind the standard and performance of
OpenMP-annotated code on GPUs would not be satisfact-
ory. OpenMP for GPUs is simply not ready yet, therefore
we opted for OpenACC.

6. Transpilation Process

inline,
optimized
parse annotate, Fortran

' transform code

Fortran
code

Figure 2 Overview of the transpilation process.

The end-to-end transpilation process might at first
glance look very similar to the process taken by any trans-
piler, or compiler for that matter. Framework takes source
code in source language, converts it into an intermediate
representation, applies transformations on the intermedi-
ate representation, and finally outputs code in the target
language, as seen in Figure 2.
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In case of our approach, the important distinction is that
all languages involved in the process, including the inter-
mediate representation language, are high-level languages.

The framework takes source code in source language,
and feeds it to the parser that generalizes the syntax into
an abstract syntax tree which supports direct expression
of universal high-level constructs. In our approach, we
take Python syntax together with basic NumPy API as
the set of those universal high-level constructs. In prin-
ciple, however, any language powerful enough to express
the space of high-level syntax, while also including data
types, coupled with well-defined APIs for numerical array
operations could be used as the intermediate representa-
tion. We chose Python because of many reasons: its ability
to parse/unparse itself, the high level AST format used in-
ternally by CPython, availability of numerical primitives,
and finally ease of use and adoption of Python in science,
as well as many other reasons.

After transformation of source syntax into the gener-
alized one, the framework is able to apply various high-
level syntactic transformation in a predictable manner.
By definition, such transformations are not defined at low
level, and are in fact closer to the concept of refactoring.

As an upside of operating at higher level, the framework
facilitates the ease of definition of custom transformations
as well as selection of targets for transformations. The
conditions for transforming as well as the transformations
themselves are also written in the high-level language Py-
thon, and therefore can also be dynamic so that trans-
formation can depend on additional contextual data that
would be unavailable to the static compiler/transpiler.

After transformations on the generalized syntax are
complete, syntax is unparsed into source code in the tar-
get language. It is a key requirement for the process of
transpilation to be realized in such a way that it does
not take too long, and that the readability of the code is
preserved as much as possible. Output of the framework
should be still very well readable for a person.

7. Implementation Choices

The framework does not aim to support any specific kind
of Fortran code or Fortran standard, rather, we aim at sup-
porting certain carefully selected parts of Fortran syntax
and very carefully selected subset of intrinsic functions.
Notably, we neither support syntax obsoleted by new lan-
guage standards, which many compilers support because
of compatibility requirements, nor vendor language exten-
sions, which again many compilers support because they
are implemented by those vendors.

The same arguments apply to other supported lan-
guages. We chose to support translation only between
a selected subset of syntactic features of each program-
ming language. We did this for a pragmatic reason of
being able to test our ideas without need to implement all
possible features. The subset we have chosen fits the re-
quirements of typical computational kernels we have been
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working with. Since our framework is open-source, addi-
tion of missing useful constructs is possible in the future.

Secondly, in current implementation, types of all vari-
ables have to be explicitly annotated when coding in Py-
thon. Otherwise the framework will not work. We made
this pragmatic choice to avoid the need to implement type
inference, a feature which can be added later. Moreover,
since the focus of this work is translation from Fortran,
types of all variables are already present in the source code.

Thirdly, there are many libraries on which scientific soft-
ware depends. We chose to support only few libraries in
our initial implementation, and even for those, vast ma-
jority of library API is left unhandled. Later, to achieve
more generality, we could implement a feature to trans-
late while wrapping calls to the dependent libraries. This
will enable us to effectively dragging libraries between lan-
guages. However, since in our current work we focus on
source-to-source translation between the same source and
target language, all of the library calls can be taken as-is
and as long as we can make sure that they do not collide
with each other or with idioms defined for Python.

8. Evaluation

For the evaluation of our approach, we chose several ap-
plications available through FLASH framework. All of the
chosen applications are scientifically meaningful and are
used by scientists to solve real domain problems. Through
choosing several real-world applications we demonstrate
both the utility and generality of our approach.

8.1 Simulations

To study the effect of transpilation on the performance
of FLASH code, we chose two different simulations — (1)
The Sod problem [26] and (2) the carbon detonation in
Type Ia Supernovae [31].

The Sod problem simulates the propagation of a shock in
a fluid medium where fluid is initially at rest. The initial
conditions also specify presence of a vertical shock (par-
allel to Y axis) in the middle of the rectangular domain.
The density and pressure jumps across the shock result in
all three types of non-linear, hydrodynamic waves (shock,
contact, and rarefaction). This simulation demonstrates
the FLASH solver’s ability to capture sharp gradient and
discontinuities across the shock.

The second simulation, referred to here as Cellular,
simulates the carbon detonations highlighting the cellular
structure of the detonation front which are characteristic
in Type IA supernovae. More details of this simulation can
be found in [31]. The most relevant feature of this simula-
tion from our perspective is a parameter that defines nuc-
lear reactions simulation complexity, onwards referred to
as species. The higher the species count, the more complex
the reactions simulated.

We experiment with up to several different base imple-
mentations for each simulation, and for each of these, we
perform computations in more than one concrete setup.
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8.2 Environment Setup

We run the simulations on Summit supercomputer [33].
It consists of 4608 nodes, however in our current exper-
iments we are utilizing up to around 800 nodes at any
given time. Each node is equipped with 2 IBM POWER9
CPUs and 6 Nvidia Tesla V100 GPUs, over 600 GB of
memory, 800 GB of NVRAM (allocatable as burst buf-
fer or extended memory) and Nvidia NVLink connection
between CPUs and GPUs. The nodes are connected by a
dual-rail Mellanox EDR InfiniBand interconnect in a non-
blocking fat-tree topology.

In our experiments we use a development version of
FLASH [20]. Other software we rely on includes: GNU
compiler suite version 6.4.0, PGI compiler version 18.10,
CUDA version 10.0.130, MPI implementation MPICH ver-
sion 3.3, HDF5 library version 1.10.5, openblas version
0.3.5, hypre library 2.15.1 and superlu version 5.2.1. We
also rely on Python 2.7.16 and Python 3.5.6.

8.3 Sod Simulation

For the Sod problem, because of the way the shock wave
propagates, we can set up the scaling experiment by in-
creasing the resolution of the domain across the shock wave
front. After aligning one of the mesh axes with the shock
wave front, we can expect a very regular mesh refinement
pattern repeating itself across the whole domain. There-
fore, even with unpredictable nature of AMR algorithms,
we are able to scale the problem in a very predictable man-
ner which enables us to run a weak scaling experiment.

We perform two series of runs of the Sod simulation - in
2 dimensions (Figure 3) as well as 3 dimensions (Figure 4).
In this experiment we a baseline implementation that uses
only CPUs.

128
64 ]
32

16

Time (seconds)

1
8 16 32 64 128 256 512 1k 2k 4k 8k 16k

MPI ranks
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Figure 3 Weak scaling of Sod simulation in 2 dimensions on
Summit supercomputer.

42 ranks fit on a single node, therefore the 2D series is
executed on from 1 to around 400 nodes. We observe that
the simulation does not scale very well. The runtime at lar-
ger scale is dominated by checkpointing, however even the
physics reach about 50% parallel efficiency at 4000 ranks
when compared to 8 ranks.
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Figure 4 Weak scaling of Sod simulation in 3 dimensions.

From computational perspective, Sod is not a heavy sim-
ulation as only one kernel (hydrodynamics) is involved and
it is not a particularly complex kernel. However, in 3 di-
mensions the simulation is dominated by the physics com-
putations, and we observe that it scales much better in
such scenario. Still at about 32000 ranks there is a ob-
servable slowdown which cannot be attributed only to the
checkpointing overhead.

8.4 Cellular Simulation

The Cellular simulation is computationally much more
complex than Sod. Because it aims at aiding the explana-
tion of where and how are (were) the isotopes heavier than
iron made, and merger of supernovae and neutron stars is
a candidate for origin of those elements, there are sev-
eral physics involved. Kernels involved in the simulation
are (1) hydro, (2) gravity, (3) nuclear burn and (4) EOS
(equation of state). For this simulation, we have several
baseline implementations available.
8.4.1 Core Implementation

First, we establish the baseline performance of 2D Cel-
lular simulation on CPU (Figure 5) using implementation
available in FLASH.
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Figure 5 Weak scaling of Cellular simulation in 2 dimensions on
Summit supercomputer.
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The 3D Cellular simulation, although also available, re-
mains to be profiled. We expect that impact of check-
pointing to be less than in case of 2D simulation, because
of higher compute load.

8.4.2 Manual GPU-based Implementation

There is an ongoing effort by the an independent team
[15,24] to port the Type IA supernovae double detona-
tion simulation to GPUs. Work has been done on analysis
of performance, including scaling, for that implementation
as well [12]. Here we summarize and discuss those results.
There were 4 series of runs, two of them on CPU-only
implementation (Figure 6 and Figure 7) and 2 on GPU-
enabled version of the code (Figure 8 and Figure 9).

Time (seconds)

05 =
8 16 32 64 128 256 512 1k 2k 4k 8k 16k 33k
MPI Ranks

=@=—=Hydro === Gravity Burn (min) ==®==Burn (max) ==@==Evolution

Figure 6 Scaling of the double-detonation simulation with 13
species on CPU [12].
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Figure 7 Scaling of the double-detonation simulation with 150
species on CPU [12].

Non-monotonic time to solution change with increas-
ing number of ranks until order of few thousands of
ranks comes from the fact that burn kernel runtime varies
between ranks. In favourable conditions the load is dis-
tributed more equally while in other cases long runtime
on some ranks dominates the simulation. Load balancing

might be necessary.
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Scaling issues at scale beyond few thousand ranks come
from reduction-based implementation of the Gravity ker-
nel, which simply fails to scale at this point.
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Figure 8 Scaling of the double-detonation simulation with 150
species on GPU [12].
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Figure 9 Scaling of the double-detonation simulation with 231
species on GPU [12].

The Burn kernel was ported to CUDA, whereas EOS
module relies on OpenACC. The runtime of Burn is im-
proved, however the load balancing issue is still present.
Moreover, since the Gravity kernel is not improved, its

scaling issues again dominate the runs at largest scales.

8.5 Transpiled Simulations

The transpyle framework works during the setup phase,
where it can access configuration parameters. Depending
on the involved kernels and their configuration, it auto-
matically alters the code towards most efficient execution.
Parameters under consideration include: internal struc-
ture of the kernels (operations, data dependencies, local-
ity); relationships between the kernels (as above); system
architecture (is it multi-core, many-core, GPU, or hetero-
geneous?); as well as simulation configuration (blocks per

rank, grid size, other parameters).
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The experiments on transpiled code will also be ran on
Summit supercomputer, however currently performance of
the experimental implementation is unsatisfactory, there-
fore we do not have any good results to report.

9. Conclusion and Future Work

We presented intermediate results of our ongoing ef-
fort towards performance portability and modernization
of multipysics Fortran framework FLASH via transpilation
with Python as high-level intermediate representation.

As shown in the evaluation section, we are currently
analysing baseline performance of various configurations
of FLASH and working on the performance of automatic-
ally generated GPU-enabled FLASH kernels.

The next steps are as follows: hot-spots in respective
kernels will be transpiled, with nuclear burn kernel being
of particular interest as it will be offloaded to GPU via
automatically inserted OpenACC prgamas.

Most conservative goal is for GPU-enabled Cellular sim-

ulation to outperform the CPU-only version. The com-

putational complexity of the Burn kernel, and at larger
scales the Gravity kernel limit performance improvements.
We expect most improvements for compute-intensive and
point-wise Burn kernel. 3D simulations are more favour-
able than 2D, and increasing chemical complexity (number
of species) is favourable as well.

With regard to possible extensions of the work, as the
new EOS implementation is being prototyped in Python,
translation to Fortran instead of reimplementation is being
considered.
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