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Recurrent Neural Network based linear
embeddings for time evolution of non-linear

dynamics

Shlok Mohta1,a) Kengo Nakajima2,b) Takashi Shimokawabe2,c)

Abstract: In modern dynamical system modeling, finding coordinate transformation for representing highly
non-linear dynamics in terms of approximate linear dynamics has been of crucial importance for enabling
non-linear control, estimation, and prediction. Recently developed interest in Koopman operator theory
has shown that its eigenfunctions can provide such coordinates that intrinsically linearize the global dynam-
ics [11], [6], [2], [14]. But finding and representation of such eigenfunctions have been challenging. The present
work leverages deep learning methods, specifically Recurrent Neural Networks (RNNs) [15] for discovering the
Koopman eigenfunction representations and exploit RNNs ability to model temporal dependencies, to allow
multi-step evolution of the dynamics, as long forecasting for such systems still remains a major challenge [16].
It has been shown by [11], that such embeddings can be found using deep neural networks. Current work
is an incremental work on the network architecture, which is interpretable in terms of Koopman theory and
parsimonious, allowing augmentation to the lacking interpretability to deep learning architectures, while cap-
turing the fewest meaningful eigenfunctions. Some other challenges related to modeling such architectures
are discussed in future work.
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1. Introduction

For any complex dynamical system, non-linearity brings

out the most diverse features of the system evolution

across disciplines of physics, chemistry, biology and ap-

plied sciences. Though such systems can be computationally

evolved, there exists no general framework for their evolu-

tion given to non-linearity. Hence, the projection of such

systems onto a linear frame is of particular interest, as well

robust and powerful algorithms that have been developed for

robust analysis and control. In this regard, Koopman oper-

ator [7] has shown much promise, emerging as a frontier in

the data-driven analysis. The renewed interest in Koopman

operators can be attributed to the advancements in theoret-

ical [12], [8], algorithmic [17], [6] and the recent data-deluge.

Work of [3], [11], [2], [13], have shown that eigenfunctions

of Koopman operator provide intrinsic coordinates for lin-

ear evolution of non-linear dynamical system. Though the

great confidence shown by Koopman embeddings, finding

them has proven to be a major challenge, except for the

simplest of case. Usually, such embeddings are identified us-
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ing black-box optimizations which are often uninterpretable

or intractably complex. The current work is an increment

on the work by [11], which utilizes a deep neural network

architecture for identifying the Koopman embeddings and

the corresponding Koopman operator in a flexible and gen-

eral manner, while keeping the architecture Koopman in-

terpretable and parsimonious. The proposed architecture

utilizes a Recurrent Neural Network on top of the present

deep neural network, to better address the highly sensitive

dependence of such dynamical systems on the initial condi-

tion and augment to the longer forecast of such systems.

Deep Learning methods have proved their excellence as

the current state of the art methods for various tasks such

as image classification, natural language process, among oth-

ers. Inspired by the visual cortex of cats, neural networks,

which form the underlying theoretical basis for most deep

learning methods where hierarchically stacked neurons are

employed to process the input signal. This hierarchical build

of the features enables the efficient representation of complex

functions. However, of concern to this approach is enabling

interpretable, parsimonious and easily transferable models.

Evolution of non-linear dynamical systems can be thought

of as time-series forecasting in the context of applying neu-

ral networks for their evolution as it satisfies the following

basic criteria: 1) output data is dependent on temporal in-

put data(s), 2) input data are endogenous, 3) requires multi-

step prediction, 4) non-linear system is dynamic, meaning
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the model may receive new inputs for further evolution, 5)

the input data may be discontinuous. In this aspect, Re-

current Neural Networks have shown great success in task

pertaining to supervised learning of sequential data. Work

done by [16] has shown the success of RNNs applied to ef-

fectively modeling aerial vehicles.

The focus of present research is while building upon the

architecture by [11], which is interpretable and parsimonious

in terms of Koopman eigenfunctions and eigenvalues, by in-

tegrating the network with a RNN type network for long-

time system evolution, by limiting the error propagating

through the evolution and all the while reducing the amount

of data required for training the network.

2. Data-Driven non-linear systems

Before dwelling into the specifics of the present work for

dynamical system evolution, a summary of challenges and

highlights in data-driven modeling is presented. All formu-

lation for this work assumes discrete-time dynamics of the

form,

xt+1 = F (xk)

where x ∈ Rn is the state space and F is the time map

of the dynamics to future state. Discrete systems such as

these are often used to define continuous systems, such that

xk = F (k∆t), where ∆t is the sampling time. Dynamics

described by F are usually non-linear in nature, where x

maybe a high-dimensional vector, but is usually assumed to

unfold in a low-dimensional attractor dictated by persist-

ing coherent structures. Though it must be noted that F is

often not known and only measurements of the system are

available.

Though representing the evolution of x in the state-space

using differential equation allows for a compact and efficient

representation of the system, but more often then not, such

systems dynamics are arbitrarily complex in their construc-

tion and more, can be almost impossible to represent ex-

cept for some particular cases. Here finding such coordinate

transformations which can present the non-linear state-space

embeddings as a linear embedding in a different space would

be particular interest. For a linear system, where F would

be a matrix that advances the system to future steps would

be among the few systems through which a universal so-

lution can be obtained in terms of the eigenfunctions and

eigenvalues of the matrix F , popularly known as spectral

expansion.

2.1 Koopman Operator Theory

In 1931, B. O. Koopman presented an alternate view of

dynamical systems in terms of the evolution of the system

on the observable functions in the Hilbert space. A mathe-

matical framework relating the observables of the system to

the state-space. Observables of the system can be thought of

as all functions y = g(x), on the infinite dimensional Hilbert

space, where x ∈M , M being the state-space. An example

of this would free incompressible fluid flow in a box consti-

Fig. 1 Diagram representing the underlying principle of Koop-
man Operator theory.

tuting a dynamical system, where the smooth velocity fields

satisfying the incompressibility criteria can be thought of as

the state-space of the system. For such a system, pressure,

vorticity, velocity field at a discrete location or the total

kinetic energy of the system can be thought of as the ob-

servables of the dynamical system [1]. Mathematically such

dynamics can be represented as

d

dt
x = f(x),

⇒ Ft(x(t0)) = x(t0 + t)

= x(t0) +

∫ t0+t

t0

f(x(τ))dτ

For discrete-time update:

xk+1 = Ft(xk)

where, x belongs the state-space of the system, f(x) is a vec-

tor field on the state-space and Ft is the flow map operator,

for advancing the state-space to future time-steps.

From the above discussion, given the knowledge of the ob-

servable of the system in the form of time series, what can

be said about the evolution of the state? Let g be a real-

valued observable of the dynamical system. Collection of all

such observables form a linear vector space. The Koopman

operator acts on the observable function as described by the

following equation:

Ktg = goFt

⇒ Ktg(xk) = g(Ft(xk))

= g(xk+1)

For discrete-time updates:

g(xk+1) = Ktg(xk)

Fig.1, diagrammatically represents the underpinnings of

Koopman Operator theory.

Koopman analysis has garnered a lot of attention owing

to the pioneering work of Mezic et al. [14], [13], [12], and

to the data-deluge and incomplete understanding of system

dynamics in various domains. Though the promise showed
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Fig. 2 Diagram of the current proposed architecture based on recurrent units. All the
directional arrows represents the direction of data movement for the forward pass.

by Koopman theory leveraging on the extensive and robust

advances made in linear theory, for control, estimation, and

prediction, is commendable, however, finding the associated

eigenfunctions and eigenvalues still remains a major chal-

lenge for practical application.

The various method, like Extended Dynamic Mode De-

composition and the related variational approach of confor-

mation dynamics [9] do capture the non-linear features of

the dynamics, but there is no guarantee that the measure-

ments span the Koopman invariant sub-space, suffering from

closure issues. Kernel methods likewise can be high dimen-

sional and highly uninterpretable. Hence, many approaches

try to directly represent the eigenfunctions associated with

the Koopman operator. While finding these eigenfunctions,

identifying continuous spectra, characterized by a contin-

uous range of frequencies, is observed for a wide range of

physical systems. This confounds trivial Koopman descrip-

tion as they cannot be approximated using a finite number

of eigenfunctions.

The present architecture augments the accounting of the

dependence of Koopman Operator K(λ) on the varying

eigenvalues λ, by first creating an auxiliary network to model

the parametric dependence of the Koopman Operator on the

frequency, creating a low-rank model of the intrinsic dynam-

ics. If this explicit frequency dependence is left unaccounted

for then deeper models are required to capture the effects of

shifting frequency and eigenvalues.

3. Network Architecture

The primary goal of this work is to enable longer-time

forecasting of complex dynamical systems while maintain-

ing interpretability and the parsimony of the network. The

present work builds upon the network architecture proposed

by [11]. The architecture proposed is based on finding Koop-

man embeddings and evolving them using learned Koopman

Operator. The architecture is so constructed as to be able

to handle a ubiquitous class of non-linear systems charac-

terized by continuous spectra, as interpretable and compact

representation presents novel challenges This work in some

sense, is constructing local linear embeddings, which also

takes into account the previous state of the system. Rather

than evolving the dynamics in globally linear embeddings,

quasi-global linear embeddings are generated to propagate

the dynamics.

The presented architecture employs a Recurrent Neural

Network layers for the encoder and decoder part of the net-

work as shown in Fig.2. The current objective of the network

is to enable longer-time forecasting and reduce the number of

training data needed to train the architecture while main-

taining the interpretability and parsimony of the network

architecture. In light of the latter objective, the network

was modified such as to incorporate the following high-level

requirements of the architecture:

( 1 ) Intrinsic coordinates assisting reconstruction. Though

the architecture is employed as an RNN, the architec-

ture is still needed to satisfy encoding the observables

y = φx, where φ is the encoder and x = φ−1y, where

φ−1 is the decoder unit of the architecture. Fig.3 rep-

resents this diagrammatically. The loss for this auto-

encoder architecture is calculated as ||x− φ−1(φ(x))||
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Fig. 3 Diagram representing the auto-encoder part of the net-
work. This network is also implemented during the main
network training, accounting for the reconstruction loss.

( 2 ) Linearity. The Koopman Operator evolves the

dynamics linearly on the identified eigenfunctions,

parametrized by the eigenvalues, which are identi-

fied using the identified eigenfunctions. Lineariza-

tion of the dynamics can be achieved by optimiz-

ing ||φ(xk+1) − K(φ(x))|| or in a more general way

||φ(xk+m) − Km(φ(x))||. Fig.4 illustrates the linear-

ity of the operator.

( 3 ) Dynamics evolution. The overarching goal of the whole

network is accurate future state prediction of the dy-

namics. Evolution loss can be defined as ||xk+1 −
φ−1(Kφ(xk))||, which can be more generally specified

as ||xk+m − φ−1(Kmφ(xk))||.
Over here ||·|| specifies the mean-squared error, average over

all the dimensions for all time-steps for a given batch while

training the network. All the kernels are l2 regularized for

avoiding over-fitting. One of the other enabling features of

the current work is how all the previous described losses for

the RNN architecture are computed.

The auxiliary network in the architecture address the con-

tinuous spectra, by parametrizing the eigenvalues of K by

function λ = Λ(y), allowing K to vary. The eigenvalues

λ± = µ ± iω, is used to form a parametrized K(µ, ω) Jor-

dan block of the form:

K(µ, ω) = exp(µ∆t)

[
cos (ω∆t) − sin (ωt)

sin (ωt) cos (ω∆t)

]
The addition of the auxiliary network allows the eigenvalues

to vary in the phase plan allowing a parsimonious represen-

tation of the continuous spectra.

4. Datasets

To demonstrate that the proposed architecture is capable

of system dynamics evolution for multiple time steps, with

requiring less training data for learning and at the same

time maintaining the interpretability and parsimony of the

architecture, several examples systems are considered. The

considered systems are well-studied and incorporate both

discrete and continuous spectra.

4.1 Model with Discrete spectrum

A simple model with a discrete spectrum presents a nice

validation system for the proposed architecture, going past

the complexities associated with a continuous spectrum.

This model has been well studied in the literature [4], with

a single fixed point and a discrete eigenvalue spectrum:

ẋ1 = µx1

ẋ2 = λ(x2 − x21)

The model describes a slow manifold given by x2 = x21 for

stable eigenvalues of λ < µ < 0. Fig.5 represents the model

for the µ = −0.05 and λ = −1. For creating the data set,

the earlier prescribed value of λ and µ are used.

Fig. 5 Diagram representing the dynamics of the discrete case.

4.2 Non-linear Pendulum

One of the most studied models of chaotic systems, non-

linear pendulum exhibits continuous eigenvalue spectrum,

with increasing energy:

ẍ = − sin(x) ⇒

{
ẋ1 = x2

ẋ2 = − sin(x1)

Parsimonious representation of non-linear pendulum has

been challenging due to the continuous spectra, attributed

to the increase in the Hamiltonian energy due to an elon-

gation of the oscillation period. The initial points for the

various trajectories for the training dataset were selected so

as that the total potential energy of the system, described

by 1
2x

2
2 − cosx1 is less than 0.99.

Fig. 6 Diagram representing dynamics of the nonlinear pendu-
lum.
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Fig. 4 Diagram representing the linearity reserving part of the network, accounting for the
linearization loss in the represented in Fig. 8 a).

4.3 Lorenz System

A simplified model of atmospheric convection, first de-

veloped and studied by Edward Lorenz [10], is notable for

having rich non-linearity embedded in a seemingly simple

system, for certain parameter values and initial conditions.

The model which is a system of three differential equation

can be described as follows:

ẋ1 = σ(x2 − x1),

ẋ2 = x1(ρ− x3)− x2,

ẋ3 = x1x2 − βx3.

The system describes a two-dimensional fluid flow, which

is being uniformly heated from below and cooled from above.

The parameters x1 corresponds to the rate of convection and

x2 and x3 corresponds to the horizontal and vertical tem-

perature variations respectively. The constants σ, ρ and β

corresponds to Prandtl’s number, Rayleigh number and a

constant related to the layer respectively. Such an equation

arises in the modeling of various physical phenomena such

as planetary atmospheres, models of lasers, dynamos, etc.

Fig. 7 Diagram representing the dynamics of Lorenz system.

5. Preliminary results

This work is still in its infancy, the current progress is lim-

ited. The progress until this point is the construction of the

primary network architecture as depicted in Fig. 2, com-

posed of stack of LSTM [5] and densely connected layers.

Fig. 8 represents the various loss on training and validation

set of the nonlinear pendulum dataset.

6. Future Work

As the current research is still in its infancy, a considerable

amount of work needs to be done to see the desired results

from the constructed pipeline for achieving longer forecast-

ing of nonlinear system evolution while reducing the amount

of data needed to train the model architecture. Future work

for current research can be summarized as follows:

( 1 ) Porting the network architecture created to supercom-

puters to experiment with various higher-parameters, as

to obtain best parameter settings which gives the best

train to validation loss ratio.

( 2 ) Comparison of the proposed architecture for dynamics

forecasting error with methods such as Extended Dy-

namic Model Decomposition and related variational ap-

proach of conformation dynamics (VAC), kernel meth-

ods, amongst others, while also considering the training

data for each of them.

( 3 ) One of the major addition to improving the forecasting

ability of the network is to append a model for enhanced

initial state initializer for the LSTM layers employed in

the current architecture. Work by [16] has shown im-

proved performance for their architecture by augment-

ing the initial state initialization.

Above mentioned is a list of work which is planned to be

executed for the current research. As for further enhancing

the prediction, control, and forecasting of such non-linear

systems, the following directions are of particular interest

for the community:

( 1 ) Bifurcation parameter estimation. Being able to quan-

tify the bifurcation parameters associated with the sys-

tem is of crucial importance in control of a non-linear

system, example fluid flows. The current architecture is

defined for only a fixed set of bifurcation parameter and

would give erroneous results if the parameters change

during the system evolution.

( 2 ) Automatic detection of required eigenfunctions. The

current approach requires a trial and error based ap-

proach for identifying the number of eigenfunctions re-

quired to give the best possible fit to the system at hand.

Making this process automatic is of crucial interest, to

make it truly ubiquitous for dynamics evolution.
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Fig. 8 Plot representing various loss during the training of dynamics of the non-linear pen-
dulum. a) represents the linearization loss, b) represents the reconstruction loss,
c) represents the total loss for the network and d) represents the trainig metric for
the network.

( 3 ) Systems with higher complexity. It is of crucial im-

portance to apply these models to a system of high

complexity such as turbulent flows, epidemiology, neu-

rosciences, amongst others.

All of these future directions can be facilitated with more

advanced network architecture, infusing the best of physics

and applied mathematics.
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