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Abstract: GPU memory can be insufficient for Deep Learning workloads with respect to the model and dataset sizes.
Although model parallelism could help, significant modification of the code is needed for every case. An alternative
general solution to this problem is to use out-of-core methods. Recent work proposed data-swapping and CUDA Uni-
fied Memory (UM) methods to break the limitation of GPU memory capacity. However, there is a lack of detailed
analysis, via performance modeling, of the behavior and limitations of those methods. In this paper we analyze the be-
havior in terms of both single layer and the whole model. as well as propose a performance model based on the analysis
to study how out-of-core training behaves and hence empower the co-design process for Deep Learning workloads.
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1. Introduction
As the model size and the scale of datasets for Deep Learn-

ing (DL) become increasingly large, the memory consumption
of training Neural Networks (NNs) increases dramatically. Even
though the latest generation of Nvidia GPUs have up to 16GB
(V100), that Capacity still seems insufficient in a lot of cases.
For example, if we want to use Kronecker-Factored Approximate
Curvature (K-FAC)[1][2] optimizer in with large network, such as
ResNet-200[3], the local batch-size of training can not be larger
than 6 samples, and in ResNet-1001, the local batch-size drops
to 2 samples. This problem also happens in Faster-RCNN[4],
the local batch-size can not go over 2 samples when training on
ResNet-200. Distributed data parallelism can be used if enough
GPUs are available for training. However, the accuracy of train-
ing can be affected since the batch normalization layer doesn’t
work well with small local batch-sizes[5].Since normal imple-
mentations of Batch Normalization (BN) in famous frameworks
like Caffe, PyTorch, Tensorflow are all unsynchronized. This im-
plementation will leads to data only normalized within each GPU
separately. In normal case, the local batch-size usually already
large enough for BN layers to work. But in some case, the local
batch-size will be only 2 or 4 in one GPU, which will suffer a lot
from the sample bias, and further degrade the accuracy. In addi-
tion, one may not be able to train with even one sample when the
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sample is extremely large, such as the case with high resolution
satellite Imagery. Images can be up to 400MB/sample while the
widely used ImageNet[6] dataset has images that are smaller than
100KB/sample (re-sized to 224 × 224).

Although model parallelism could be a solution, significant
modification of the code is needed for every case. Another gen-
eral solution to this memory capacity problem is to use out-of-
core methods. Recent work already proposed data-swapping and
CUDA Unified Memory (UM) methods[7] to break the GPU
memory limitation. However, there is a lack of detailed analy-
sis for the behavior and bottlenecks of those out-of-core meth-
ods. In this paper we analyze the behavior in terms of both single
layer and the whole model as well as proposed a performance
model based on these analysis to estimate the training time of
these methods, hence empower the co-design process for Deep
Learning workloads.

2. Background and Related Work
2.1 vDNN and vDNN++

Virtualized DNN (vDNN)[8] is a runtime memory manager
that virtualizes the memory usage of DNNs in order to enable
training DNNs with both GPU and CPU memory simultaneously
when training huge DNNs that can not fit into GPU memory.
It utilized the cudaMemcpyAsync() API to swap-in/out data be-
tween CPU and GPU memory and used two streams:streammemory

and streamcompute to enable data swapping and layer computing
process simultaneously. However, the performance of vDNN is
not quite good due to its poor data swapping schedule. It syn-
chronizes computation and swap-in/out of data at the end of each
layer, which can cause inefficiencies.

In the improved version vDNN++[9], the schedule was im-
proved, the authors proposed a better schedule that enable the
computation to begin as early as possible.
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2.2 PALEO
PALEO[10] is a performance model for the consumption of re-

sources during Deep Learning model training. It divided execu-
tion time into two parts: compute time and communication time.
Each portions is estimated using information of the user’s envi-
ronment (hardware, framework, algorithms, and communications
strategies). The compute time is calculated by several factors that
include: the input, the type of layers, and the hardware perfor-
mance. On the other hand, the communication time is estimated
by calculating the computational dependencies, the bandwidth of
the hardware and parallel strategies. Given a specified network
model and hardware information, PALEO can estimate the exe-
cution time without actually running the training code. This paper
builds on the method of PALEO to out-of-core methods in order
to estimate the execution time of training model out-of-core.

3. Performance Model
3.1 Assumptions

Our performance model is based on the following assumption:

Fig. 1: Structure of Hardware

• We consider the GPU memory as Near Memory and other
memory/storage as Far Memory.

• The connector between the two memories (e.g. PCIe) is bi-
directional.

• Re-computation is not used.
• swap-in/out in is applied using a given strategy and schedule

(will be discussed in following sections)
• Figure 1 shows the abstract structure of hardware used for

the performance model.

3.2 Parameters
Table 1 shows the parameters in our performance model:

3.3 Single Layer Analysis
The goal of our model it to achieve the highest performance

possible, which can be represented as the product of utilization
and the peak performance.

MAX
[
Procutil × Procpeak

]
(At time T j)

According to the little’s law:

Table 1: Summary of parameters
Part Var value
Connection

Conn ConnTh Connection Throughput(buffers/second)
ConnL Connection Latency

Far Memory (We defined memory out of GPU as Far Memory)

FM
FMTh Far Memory Throughput(buffers/second)
FML Far Memory Latency
FMCa Far Memory Capacity

Near Memory (We define memory of GPU as Near Memory)

NM
NMTh Near Memory Throughput(buffers/second)
NML Near Memory Latency
NMCa Near Memory Capacity

Processing

Proc
ProcTh Processing Throughput(buffers/second)
ProcL Processing Latency
ProcPeak Processing Peak Performance
Util Utilization of Processing Unit

Buffers

Buffer Bu f f eri i=1...N, the variables are devided into buffers
Bu f f er sizei Size of each buffer

Time Step
T T j 1...T, time steps during training
swap-in/out

Swap in Swap inTh Throughput for swap-in data
Swap insize number of buffers swapped in

Swap out Swap outTh Throughput for swap-out data
Swap outsize number of buffers swapped out

Concurrency = Latency × Throughput

The utilization in time step T j can be represented as follows:

Procutil = Concurrency(T j)/Concurrency f ull

= Concurrency(T j)/ProcTh × ProcL
(1)

The concurrency at time step T j means the number of buffers
that are available in GPU memory at the current time step, which
means the utilization can be formulated as:

Procutil =Num avil(T j)/ProcTh × ProcL (2)

To get the number of available buffers, we have to know which
buffer are left after processing at previous time step, and what
layers have been swapped in during the same time period. So
Num avil(T j) can be represented as:

Num avil(T j) = Num avil(T j−1) − ProcTh × T + Swap inTh × T

= Num avil(T j−1) + (Swap inTh − ProcTh) × T

(3)

From this equation, given the assumption that we are doing
same processing on each layer,they will take the same time, we
can know that if Swap in is faster than Processing. The value of
Numavil will keep growing until the memory consumption hit the
upper limit of GPU memory.

However, if Num avil(T j−1) < ProcTh, which means the previ-
ous time step, there would not be enough buffers for the GPU to
process. The concurrency will not be Concurrency f ull, it will be
the same as Num avil(T j−1). In other words, what remains after
processing should be Max(Num avil(T j−1)− ProcTh × T, 0), then
we can get:
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Num avil(T j) =Max(Num avil(T j−1) − ProcTh × T, 0)

+ Swap inTh × T
(4)

Which means if processing is faster, the value will always be
Swap inTh.

Assume that we can keep the swap-in data, The Swap inTh can
be calculated by hardware parameters.

Swap inTh = Min(FMTh,NMTh,ConnTh) (5)

As discussed before, if swap-in faster than processing, the
memory consumption will finally hit the limitation (GPU mem-
ory capacity). The speed of swap-in will be affected by the mem-
ory space left. At time step T j−1 if there is not enough memory
space for swap-in, the number of buffers swapped in at time step
T j will be Capacity − Num avil(T j−1) , while the concurrency
remains the same:

Num avil(T j) = Max(Num avil(T j−1) − ProcTh × T, 0)

+ Min(Swap inTh × T,Capacity − Num avil(T j−1))
(6)

3.4 vDNN-Like Strategy
On the condition that GPU is always doing same processing,

all layers in the model are totally the same, which means process-
ing faster or swapping faster will be similar for each layer in the
model. However, in real models, the layers will never be totally
the same. We take a simple example [8] (vDNN) as swap-in/out
strategy for our model (shown in figure 2), during backward prop-
agation buffer of layerl−1 starts swap-in at the same time as layerl

starts processing. And layerl will run right after both swap-in and
layerl+1 processing finished.

BWl

Data_inl

BWl+1

Data_inl-1

Idle Time

Fig. 2: Time line of swap-in strategy

In this case, different layer have different ProcTh and ProcL

while we can assume the attributes related to swap-in/out stay the
same. If swap-in of layerl takes more time than process layerl+1,
there will be idle time in during the backward, which makes the
training efficiency lower.

we divide backward to several sections, the start time of each
section is the start time of processing (or swap-in, they are same
time point), while the end time is the time that both swap-in and

processing finishes at.

T = Max(Tproc(l),TSwap(l − 1))

= Max(Num bu f f er(l)/ProcTh(l),Num bu f f er(l − 1)/Swap inTh)
(7)

Then we can get the average concurrency of this section:

Concurrency = ProcTh × ProcL × TProc/T (8)

Further we can get the utilization:

Util = TProc/T

=
Num bu f f er(l)/ProcTh(l)

max(Num bu f f er(l)/ProcTh(l),Num bu f f er(l − 1)/Swap inTh)
(9)

3.5 Capacity-based Strategy
Now that swap-in is only affected by the memory capacity of

the GPU, there is no dependency on which layer is being pro-
cessed, we should keep on swapping in as far as we have enough
Memory space for the buffer. This enables us to keep as much as
possible available data for processing at any time step (obviously
any wait will cause a drop in the average swap-in throughput).

On the other hand, in framework that call cuDNN, GPUs can
not do any processing until all buffers for the layer have been
prepared (i.e. swapped in) during backward propagation.

During Forward propagation, only swap-out would happen.
One simple strategy is to swap-out whenever one layer’s forward
step is concluded (including the last layer). This can cause perfor-
mance inefficiency before the backward phase starts. We have to
wait until the last layer is swapped out and then swap-in it again
before we can start the backward phase. (shown in Figure 3)

Figure 4 shows the capacity based swap strategy. We can get a
good estimation of the memory consumption from the parameters
of the layers in the model. This means even before the forward
starting, we can know when to stop the swap-out (from layer 3 in
this example). When the backward phase starts, the data needed
still remains in the GPU memory, so the process can start as soon
as the forward stage ends. When one layer is processed, the data
will be swapped out immediately, in order to make new space
for data to swap-in. In this example, layer 2 can be swapped-in
in a very early stage to avoid some CPU stalling caused by data
dependency.

Now that we have clear strategies for swapping data (i.e. ca-
pacity based swap schedule), we can make a more detailed per-
formance model based on this.

Let the number of layers that can be kept in GPU memory be
Calayers. At the very beginning of the backward stage, the pro-
cessing of the layers will not be impacted by the swap-in. If
swap-in is fast enough, all the layers will be swapped in before
the processing of the first layer. But if swap-in is relatively slow,
the processing may finally catch up with swap-in at a certain time
step Tcatch, which satisfies the equation:
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0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

Swap in

Swap out

Process

wasted time

Foward Backward

swap out after 
precessing

precessing after 
swap in

Fig. 3: Simple vDNN schedule may leads to waste of time when switching from forward to backward, backward of 7 have to wait until
7 swapped in

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

7 6 5 4 3

2 1 0

7 6 5 4 3 2 1 0

new Swap in

Swap out

Process

Foward Backward

stop swap out when 
memory is enough 

old Swap in
start swap in when 
have free memory 

2 1 0

Time saved

Fig. 4: Capacity Based schedule can save the time wasted by waiting for swap-out and make swap-in much earlier

Calayers∑
i=1

(Procth(i) × Tproc(i)) = Swap inTh × Tcatch + NMCa

(10)

The value of TCatch can be calculated by:

Tcatch =

∑Calayers

i=1 (Procth(i) × Tproc(i)) − NMCa

Swap inTh
(11)

After TCatch, the situation becomes the same as discussed in
previous section.

In addition, if Tcatch is larger than
∑n

i=1 Tproc(i) (n indicates the
number of layers), it means processing can not catch up with data
transfer, the whole training can keep 100% utilization.

Now we can get the new utilization:

Util =


Num bu f f er(l)/ProcTh(l)

max(Num bu f f er(l)/ProcTh(l),Num bu f f er(l − 1)/Swap inTh)
,

1, T <
∑Calayers

i=1 (Procth(i) × Tproc(i)) − NMCa

Swap inTh
(12)

3.6 OOC-Paleo
Base on the two strategy above, we can involve data transfer

into original Paleo model to calculate the training time when us-
ing out-of-core methods for large deep learning workloads. The
computing time will be calculated by original model and the
swapping time will be calculated by Swap in/outTh and the data
size for each layer to be transferred. Finally we could calculate
the total training time by the specific chosen strategy.

4. Experiments and Case Study
4.1 Hardware Platform

The following experiments are all performed on DGX-1. The
details of the environments are shown in the Table 2.

Table 2: Environment Information
GPU Tesla V100 (Volta)
GPU memory capacity 16 GB
CPU Intel(R) Xeon(R) CPU E5-2698 v4
CPU memory capacity 512 GB
CPU-GPU interconnect PCI-Express gen3 x16
CPU-GPU bandwidth 16 GB/sec
OS Ubuntu 16.04.5 LTS
CUDA CUDA 10.1
cuDNN cuDNN 7.5

4.2 Case Study: IBM optimized Chainer
IBM have an optimized Chainer version that support out-of-
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core method. The strategy they used is vDNN-like one. One can
simply switch on/off the out-of-core by set a flag named OOC,
however, because of the strategy, if you set OOC while the work-
load actually can run within GPU memory, there will be perfor-
mance loss.

But we can make use of this feature to find out the relationship
between swapping time and computing time. We instrument the
code to get the time elapsed from beginning of each layer to the
beginning of next layer as T j − T j−1 in our model (results shown
in Appendix A). And then tested same workload in both switch
on and off OOC flag. Figure 5 shows the results of total running
time under two situation.

Fig. 5: The total running time for 1 iteration under OOC on/off.

According to the results, we find that even with small batch
size, the elapsed time with out-of-core method will be larger than
normal method. As the input size growing, the swapping time
will be much more longer than computing time. Thus we can
conclude that the Swap inTh is the bottleneck of this out-of-core
method.

4.3 Case Study: UM-Chainer
We implemented a out-of-core version of Chainer[11] frame-

work using UM. In this case, we used a swap/prefetch strat-
egy similar to OC-Caffe[7]. In our implementation, we used
cudaMemPre f etchAsync() as data transfer method. because we
don’t swap data out explicitly, the strategy is very similar to Ca-
pacity based strategy.

One of the advantages that using UM rather than data swapping
is this method can almost keep the same performance when work-
loads can be run within GPU memory. In addition, data swap
method will still have Out of Memory (OOM) problem when in-
put size is too big.

However, according to our micro benchmark, we find that the
throughput of UM prefetch is not so good as swapping pinned
memory that used in IBM version.

The result of training performance (images/s) of different
batch-size is shown in Figure7. As the batch-size grows, eventu-
ally the out-of-core effects starts to appear between [32,64]. The
performance begin to decreasing after the memory footprint ex-
ceeds the GPU memory. As discussed in last section, the data
moving time should already be larger than computing time when
out-of-core happened, but the performance doesn’t drop sud-
denly, it is because in Capacity based strategy, there would be

Fig. 6: Transfer time under different buffer size, although prefetch
will be faster than normal memory copy, the latency is relatively
big. Pinned memory copy is faster than prefetch, yet for very
large buffer size, their speed is almost the same.

a stage that Util can still keep 100% at the beginning of back-
ward. However, as the input size growing, the duration will be-
come shorter and shorter. And finally the performance converges
to a constant value, the performance becomes limited by the data
swapping throughput.

Fig. 7: Test results of UM-Chainer, UM version is implemented
by directly using Unified Memory, UM-prefetch/prefetch+ is ver-
sion that applied prefetch strategies.

On the other hand, although we have applied Memory Prefetch
in this case, the speed up is only by about 35%, the main bottle-
neck for out-of-core training may not be the swap-in/out strategy
but the swapping throughput.

4.4 OOC-Paleo simulation
Further more, we can use our OOC-Paleo to simulation the

performance as we enlarger the throughput, when the total time
stopped decrease, I will find what exactly throughput we need for
the out-of-core methods.

Take VGG16[12] as an example, we gradually add the through-
put of data transfer and Figure 8 shows the result of experiment.

This result also shows that the throughput now is the bottle-
neck for out-of-core methods, since the total time will decrease
apparently once the throughput become larger.

5. Discussion
From these two case studies, we can find that:1.The data trans-

fer is not faster enough even when the buffer is not very large,
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Fig. 8: The Result of Simulation, as throughput growing, the nor-
malized time gradually converged to 1.

2.Even though you have a good enough strategy, the speed will
still slow down a lot due to the data transfer is slow. Then the
capacity will not be so important as latency and throughput of the
data transfer. We can not change the latency since it is decided
by the rule of physics, yet we could buy more throughput. It is
true that we can simply buy larger memory GPU to avoid out-
of-core situation, but it also takes much more money than adding
connection throughput.

On the other hand, other than buying more throughput, we can
also choose to use memory that have lower throughout. Accord-
ing to our analysis, data transfer will be affected by several fac-
tors,in equation 5, usually the ConnTh will be the lowest (usually
the connection would be PCI), which means it is not necessary
to use high throughput memory, which can save money for the
whole system.

6. Conclusion
In this paper we did a detailed analysis about the behavior

of out-of-core performance in terms of both single layer and
the whole model. In addition, we proposed OOC-Paleo, a per-
formance model for estimate the running time of out-of-core
method. In our case study, we also implemented UM-Chainer
framework to enable Chainer training with Unified Memory for
workload that exceeded GPU memory limitation. According to
out case study, the main bottle neck of out-of-core method is
not the data transfer strategy but the throughput of data transfer.
In addition, our study also shows that when considering system
for out-of-core workloads, we can move budget from memory to
throughput in order to get a better performance.

7. Future work
In paper SuperNeurons[13], they discussed a method to reduce

memory footprint, which is called recomputing. With recomput-
ing method, we can just discard some of the layers’ data(neither
keep in NM nor in FM), when it is needed, just do Forward again
to get them. This add to the computing complex while reduced
the memory footprint, in other word, less data to swap-in. It’s a
good trade off in the out-of-core case since the overhead of swap-
in will usually become very big as the buffer size/batch-size grow.
However, the method makes the performance model even more
complex and the schedule become hard to predict. In future work

we would like to add re-computation method to our performance
model.
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Appendix
Layer wise results in section 4.2

Fig. A·1: The layer wise processing time for ResNet50 with different batchsize during backward. Even though with only batchsize 2,
the OOC version still take more time than normal version in most of the layer. In addition, data transfer time of some layer grows
dramatically as batchsize growing.

c© 2019 Information Processing Society of Japan 7

IPSJ SIG Technical Report Vol.2019-HPC-170 No.10
2019/7/24


