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Query Language Constructs for Uncertain Query Patterns
in Semistructured Data

KEIsHI TAJIMA!

Two main difficulties in specifying queries on semistructured data are structural hetero-
geneity of the data, and the lack of the schema in advance. In the languages proposed in past,
wild cards are used to solve these problems. When we specify queries without the knowledge
of the entire data structure, however, wild cards often match with unexpected data, and it
causes noises in query answers. To solve this problem, we introduce constructs for specifying
query patterns with order of likelihood to match with appropriate data. In this paper, we
design three constructs, a case construct, a construct for smallest matching, and a construct
for minimal matching. By using those constructs, we can specify queries returning only really
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expected answers more easily and with less knowledge on the entire data structure.

1. Introduction

Semistructured data are schema-less, self-
describing data. Many researches have
proposed slightly different data models for
semistructured data, but all the recent pro-
posals represent semistructured data by edge-
labeled directed graphs)~3).

For example, Figure 1 shows an example da-
ta described by the data model proposed in 1).
This data represents a part of a movie database.
The root node at the top of the figure is the en-
try point of the database, and it has references
to all entries of movies and actors. Movie en-
tries have two attributes title and cast, and ac-
tor entries have two attributes name and appear.
Those attributes are represented by the edges
outgoing from the root node of each entry. In
this model, attribute values are also represented

by labels of terminating edges.

Because of the lack of the rigid schema, sub-
graphs representing the same kind of data may
have different structures. For example, the
graphs beneath cast attributes of two movie
entries have different structures. This struc-
tural heterogeneity makes set-oriented opera-
tions on those semantically homogeneous enti-
ties difficult. In addition, we may not know all
those structures when writing queries because
semistructured databases may come up with no
predefined schema. This lack of schema also
makes query writing difficult.

To solve these two problems, most query lan-
guages for semistructured data support path
expressions including wild cards. For example,
in UnQLY, a query “list the titles of all movies
featuring an actor named Pitt” is described by
using wild cards as follows™:

t HEKFEERNETLFH tajimaedb. cs.kobe-u.ac. jp
Dept. of Comp. and Sys. Eng., Kobe University

* The syntax used here is slightly different form the
original one. '
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title | \ cast

’Emma’

leadingActress leadingActor
Fig. 1 An Example of Semistructured Data
select I where
movie=> {title=> [ = {},
cast=>[-=]*name='Pitt's> {}}
where clause in the query describes a graph pat-
tern to find. “_” is an anonymous variable that
matches with any label, and * means the repeat
of any number of times including zero. Thus,
the expression [.=]* as a whole is a wild card
that matches with any path of arbitrary length.
This wild card is used because the structures

beneath cast attributes are heterogeneous, and

the users are uncertain what structures may
appear there. The expression in the where
clause of this query matches with subtrees in
the database that consist of an edge with a la-
bel movie from the root of the database, and two
paths beneath it, one of which is starting with a
title edge followed by some value [, and the oth-
er of which is a path of arbitrary length starting
with a cast edge and ending with a name edge
followed by a string value “Pitt.” The query
returns the set of the values ! for all matching
subtrees in the database.

In some cases, however, such wild cards that
match with paths of arbitrary length happen to
match with unexpected paths, and cause noises
in query answers. For example, when we apply
the query above to the database shown in Fig-
ure 1, the expression cast=>[_=>]*name='Pitt'=
{} matches with an unexpected path shown in
Figure 2, i.e. a path starting with cast edge from
the entry of “Emma” to the entry of “Paltrow,”
going through appear edge to “Seven,” going
through cast and leadingActor edges to the actor
“Pitt,” and ending with the label “Pitt” in that
entry. Therefore, the result of the query above
includes the movie title “Emma” although Pitt
does not appear in the movie “Emma.”

One approach to avoid such unexpected
matchings is to use more complicated regular
expressions so that they eliminate such unex-
pected matchings. For example, the query be-
low solves the problem:

appear

title { \ cast

name
cast

'Emma’; ’Paltrow’ Pitt’

leadingActress leadingActor
Fig. 2 An Unexpected Path

select | where
movie=> {title= | = {},
cast=>["appear=]*name=>
'Pitt'= {}}

["appear=]* in this query is a regular expres-
sion specifying any paths not including the label
appear. The result of this new query does not
include the unwanted title “Emma.”

Specifying appropriate regular expressions
that match only with really needed paths is,
however,quite difficult task. Paths of arbitrary
length may reach to everywhere in the database
graph, and it is difficult to anticipate all “un-
expected” cases. In order to anticipate all of
them, we need to know the entire structure of
the database, but it is not usually the case when
we deal with semistructured data. In addition,
even when we can anticipate all those cases,
query specification excluding all those cases can
be very complicated and not easy to read or
write.

From the example above, we got two obser-
vations on query on semistructured data:

(1) In traditional databases, e.g. relation-
al databases, when a schema and the descrip-
tion of needed information are given, a “cor-
rect” query is uniquely determined (except for
its equivalences). On the other hand, when we
query semistructured data associated with no
rigid schema, there is no unique “correct” an-
swer. We can only guess various queries that
seem “appropriate,” some of which return more
correct answers and more noises, and other of
which return less correct answers and less nois-
es. This characteristic is similar to that of the
information retrieval. o

(2) Wild cards that match with arbitrary
number of paths of arbitrary length are es-
sentially dangerous, and not easy to use. We
sometimes certainly need such wild cards, but
such cases are rather rare, and more restrict-
ed usage of wild cards are more often need-
ed. For example, the intention of the expres-
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sion cast=>[_=-]*name=> in the first query is to
skip some heterogeneous structure beneath the
cast attributes, and is not to reach everywhere
in the database graph through other actor en-
tries and movie entries. This kind of usage, i.e.
skipping some small heterogeneous structure, is
indeed the most popular one.

Following these two observations, in this pa-
per, we develop query language constructs in
which various likely query patterns are specified
with order of likelihood and. wild cards match
only with the best matching data. Currently
we have designed three constructs: a case con-
struct, a construct for smallest matching, and a
construct for minimal matching. By using these
constructs, we can specify queries returning on-
ly really expected answers more easily and with
less detailed knowledge on the data structure.

Restricting wild cards to match only with
the most likely data also has impact on the
efficiency of query evaluation. The evaluation
of queries including such wild cards may need
more or less computation than the evaluation of
queries with usual wild cards matching with all
data satisfying the given condition. It depends
on the indexing schemes and query evaluation
techniques. In this paper, however, we do not
discuss this issue any more. That is a. future
issue.

2. 'New Language Constructs

Now in this section, we informally explain the
syntax and the semantics of our new construct-
s by using example queries. In this paper, we
borrow UnQL as the base of our development.
These constructs, however, can equally be de-
veloped on other languages for semistructured
data. Here we omit the detailed explanation
of UnQL for the brevity. Please refer to 1) for
more detail. .

2.1 A Construct for Specifying Likeli-

hood Order

First, as the most basic construct to specify
which patterns are most likely to be the data
expected by the user, we introduce the following
construct:

case condition, ..., condition
| conditionm, ..., condition
| eondition, ..., condition

end .
which is used in where clause. This construct
has a syntax similar to disjunctive condition-
s. Condition lists delimited by | specify alter-

native patterns. Each pattern, which in turn
consists of multiple conditions, has its own s-
cope of variables and can 'introduce new vari-
ables independently. However, outside this case
construct, i.e. at other places in where clause or
in select clause, only the variables introduced
in all the alternative patters can be referred to.
The difference from usual disjunctive conditions
is that each alternative patterns are examined
in left to right order, and only when there is
no data instance that matches with a pattern,
the next alternative is examined. By using this
construct, we can specify the priority order of
graph patterns that are likely to be the expect-
ed data. In this paper, we explain the semantics
of this construct informally by using examples.
For example, we can specify a query like below:

select I, where

movie=> {title=> I; = {}, cast=-t} «DB,
case name=> lp = {} « ¢
| [=]*name= 1, = {} ¢
end, :
lo="Pitt’

This example query is evaluated in the following
way. ,

(1) Three conditions listed in where clause

is evaluated in this order. The first condition,
which is a pattern expression, is evaluated first.
When a pattern expression is evaluated, vari-
ables introduced in that description, [; and ¢ in
this case, are bound to matching data instances.
(In this case, edge labels for I; and subtrees for
t.) For each pair of bindings of I; and ¢, an
environment consisting of these two bindings is
created. -
. (2) Under each environment created in the
previous step, the second condition is evaluat-
ed. First, the pattern name= Il = {} « tis
examined. For each data instance matching to
it, an environment consisting of bindings for [;,
t, and lo, which is only variable common to all
the alternatives in the case construct, is creat-
ed. If there is no data instance matching to the
first pattern, the second alternative is examined
in the same way. :

(3) Under each environment created in the
previous step, the third condition, which is a
boolean formula, is evaluated. When a boolean
formula is evaluated, only environments that let
the formula be true is passed to the next step.

(4) Now all the conditions in the where
clause have been evaluated. Then, under each
environment passed from the previous step, the
select clause is evaluated. The answer is the set
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of the results of those evaluations.

When we issue this query on the example
database shown before, it correctly answers
{'Seven'} because when t is bound to the tree
under cast attribute of “Emma,” the pattern
name=> l; = {} correctly matches with a path
corresponding to the name of that cast, and the
second pattern in the case construct is not used.

Note that the semantics of the query below is
different from that of the query above:

select I; where

movie=> {title= l; = {}, cast=t} «DB,

case name=>'Pitt'=> {} «— ¢

I [=1*name=>"Pitt'=> {} « ¢t

end
This query returns {'Emma’, 'Seven'} because
the pattern name=>'Pitt’=> {} matches with no
path when ¢ is bound to the tree under cast of
“Emma.” In the same way, the semantics of the
query below is also different:

select I; where

case movie=> {title=> l; = {},
cast=>name=l, = {}}
«—DB
| movie= {title=; = {},
cast=>[=>]*name= I, = {}}
«—DB
end,
l,="Pitt’

. This query returns {} because the first pattern
matches with a path for the entry of “Emma”
and its cast, and the second pattern is not used
at all.

Writing queries like above using case con-
struct requires the knowledge on what struc-
tures are most common in the data. On the
other hand, the approach of writing conditions
explicitly excluding the unneeded cases, such as
["appear]* explained before, requires the knowl-
edge on what exceptional structures cause un-
wanted noises. In some cases, e.g. when there
are many different kind of exceptional pattern-
s, query specifications by the former approach
may be more concise, and in some cases, those
by the latter approach may be more concise.
When we need to specify a query without any
schema, or when we want to specify a query
without reading the entire large schema, we can
get the former kind of knowledge more easily.
We can learn it by browsing relatively smal-
1 portion of the data while in order to learn the

-latter kind of knowledge we need to browse larg-
er portion of the data, or need “trial and error”
with test queries. -However, it is also difficult

to write perfect query only with the former ap-
proach, and therefore, the combination of both
approaches must be the best way. .

2.2 A Construct for Shortest Match-

ing

By using case construct, we can specify a va-
riety of order of likelihood. Some kind of or-
der, however, cannot be specified by case con-
struct with finite number of alternative pattern-
s. One typical example is a case where we give
priority to shorter paths. In such a case, we
need an expression of infinite length like case
=ax>t| > =at| S>> Da=t]...end
Because situations where we want to give pri-
ority to shorter paths is very popular, we intro-
duce a construct below for those cases:

(<) condition, ... condition end
This expression selects only the shortest graph
pattern(s) among those that satisfy the listed
conditions. The part that should be shortest is
designated by || construct in condition specifi-
cations. We explain the semantics of this con-
struct only informally by using an example. For
example, by using this construct, the first query
in Introduction can be rewritten as below:

select I; where

movie=> {title=>I; = {}, cast=>t} «DB,

(<) [[=]*name=>I; = {} « t end,

l,="Pitt’

This query is evaluated in the following way:

(1) The first condition is evaluated, and
environments are created in the same way as
we did for the query in the previous subsection.

(2) For each environment created in the
previous step, the second condition is evaluat-
ed. It collects all graphs matching the pattern,
and select the one(s) in which the path match-
ing to the part enclosed in || is the shortest.
Then environments including bindings of newly
introduced variables are created. If there are
more than one || constructs, the sum of the
length of those parts is compared.

(3) For each environment created in the
previous step, the third condition is examined
in the same way as we did for the previous
query.

This query is better than the previous one us-
ing case construct. The previous query returns
an answer including noises if there is a movie en-
try that has cast attribute with a structure sim-
ilar to the one in the entry of “Seven,” and that
movie is not featuring “Pitt” but some actor ap-
pearing in another movie featuring “Pitt.” The
query above, however, does not include those
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noises in the answer. In this way, although the
case construct can specify wide range of likeli-
hood order, we can often write a better query
by the construct for shortest paths.

Note again that the following two queries
have different semantics from the query above:

select [; where

(<) movie=
{title=> I; = {},
cast= |[-=]*|name=- I, = {}} —DB
end,
I,="Pitt’
which returns {}, and
select I; where
movie=> {title=- I; = {}, cast= t} «DB,
(<) |[=]*]name="Pitt'=> {} « t end
which returns {'"Emma’, 'Seven'}.

The semantics of the construct for shortest
paths can naturally be generalized for smallest
graphs. When || construct is used for a graph
expression, it select only the smallest graph(s)
in size, i.e. in the number of edges in it. For
example consider the query below:

select {name=> [y, title=> [3} where

(<) L= {[=]*name= 1 = {}

[-=>]*title=> I, = {}}] « DB

end
This query finds at arbitrary depth the smallest
trees that include labels name and title. When
the user has almost no knowledge on the struc-
ture of the database, one may try this query
to retrieve pairs of an actor name and a movie
title featuring that actor. This query does not
always succeed, but when this query is issued
on the example database shown before, it for-
tunately returns the correct answer.

2.3 A Construct for Minimal Match-

ing

In just the same way we have introduced a
construct for smallest graphs, we also introduce
a construct for minimal graphs shown below:
~(C) condition, ..., condition end
While (<) construct selects the smallest one(s)
in the sense of the number of edges, (C) con-
struct selects the minimal one(s) in the sense
of supergraph-subgraph relationship. By using
this construct, now we can write the query “list
the titles of all movies featuring Pitt” as follows:

select I; where

movie=> {title=> l; = {}, cast=t;} «DB,

(C) actor= t, — DB,

[[=]*]ta — t; end,

name=>"Pitt'= {} « t,

This query is evaluated in the same way as

queries with (<) construct except that not the
smallest but the minimal graphs are selected.

This query is better than the previous ones.
In this query, the pattern [[.=]*|t; matches
only with the first actor entry on each path be-
neath cast edge. Therefore, as long as there is
not a path from cast edge to some actor en-
try who does not appear in that movie without
going through other actor entries, this query
returns the correct answer.

Unlike the previous examples, the semantics
of the query below is identical to that of the
query above. -

select I; where

(C) actor=t, « DB,
movie=> {title= l; = {},
cast=>{[-=]*|ts} «DB end,
name=>'Pitt'= {} « t;

On the other hand, the query below is not
identical to those above:

select I; where

actor=> t; «— DB,

(C) movie= {title=> l; = {},

cast=>|[_=]*|t2} «DB end,

name='Pitt'= {} « ¢,
This query evaluate the second condition for
each £,, i.e. for each actor entry. Therefore, for
each movie entry, if there is at least one path
from that movie entry to the entry of “Pitt,”
the second condition extract the minimal paths
among them. As a result of it, this query re-
turns {'"Emma’, 'Seven'}.

3. Related Work

The case construct is expressible by Data-
log with stratified negation, GraphLog?®), or by
the traverse construct of UnQL, although not
in concise forms. A graph query language pro-
posed in 5) supports rewrite construct, which
is similar to traverse construct. It can also ex-
press the case construct. 5) also introduces a
construct to find shortest-paths. Although 5)
does not define the semantics of their construct
in detail, it seems that their construct can ex-
press only special cases of those expressible by
our construct. A language proposed in 6) sup-
port node and edge deletion operations. How-
ever, constructs for smallest or minimal match-
ing may or may not be expressible by using
these deletion operations. The comparison of
our language with those languages or some oth-
er languages, such as 7), is not fully examined
yet. The comparison of the expressive power of
our language with that of linear logic, or the
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class of computable functions must also be in-
teresting. All these are future issues.

In the previous research, as another solu-
tion for the problem discussed in Introduc-
tion, we have proposed constructs to distinguish
edges within entities and those across entities
in semistructured data®). We consider entities
in semistructured data are represented by the
rooted subtrees consisting of only exclusive ref-
erences, i.e. edges that are only edges referring
‘to their destination nodes. By this criterion,
the example data in Figure 1 is correctly divid-
ed into two actor entities and two movie enti-
ties. By using the constructs proposed in 8),
the query “list the titles of all movies featuring
“Pitt” is described as follows:

select I; where

movie=>{title=> I; = {},

[ cast | cast=[=]* ]
name=>'Pitt'=> {}}«—DB
[...] ...] is a disjunction expression. label=>
is an expression that matches only with edges
within an entity, in other words, only with ex-
clusive references. On the other hand, label<>
is an expression that matches only with edges
across entities, in other words, only with non-
exclusive references. This query try to find
movie entry that are directly connected to the
entry of “Pitt” through a path including only
one edge acrossing the boarder of entities.

In that research, we use exclusiveness of ref-
erences to distinguish edges within one entity
and edges across entities. This method is, how-
ever, not perfect, of course. Therefore, the fol-
lowing query that uses (<) construct together
with those edge expressions is better than the
query above.

select I; where

(<) movie=>{title= 1, = {},
[ castd> | cast=[=]* ]|
name=>'Pitt'= {}}«DB

Note that || construct must enclose the entire
disjunction expression. If | | construct appeared
only either of these two alternative patterns in
the disjunction, the semantics of this (<) con-
struct would be ambiguous.

4. Conclusion and Future Issues

In this paper, we propose three constructs
for query language for semistructured data: a
case construct, a construct for smallest match-
ing, and a construct for minimal matching. By
using these constructs, we can specify queries
returning only really needed answers with less

knowledge on the entire data structure.
This paper shows only preliminary ideas, and
there are many future issues, such as:
o the decision problem of equivalency or con-
tainment between queries,
o efficient indexing and evaluation schemes
for those constructs, and
e the comparison of the expressive power
with other proposed languages.
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