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Non-parallel Voice Conversion with Controllable Speaker
Individuality using Variational Autoencoder
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Abstract: This paper investigates a voice conversion (VC) system that can both perform speaker adaptation and con-
trol voice characteristics. To achieve this goal, we formulate the voice conversion task as learning the disentanglement
of speaker-related information and linguistic information by a variant of Variational Autoencoder (VAE), which we
shall call Cycle-consistent Variational Autoencoder (CycleVAE). Neither parallel training utterances, linguistic label
nor time alignment procedure is required to train our system. After training on utterances from many speakers, our
proposed VC system can adapt to arbitrary target voice using only one reference utterance from target speaker. By
interpolating the discovered speaker embedding vector that represent voice characteristics, our proposed VC system
can synthesize new voices without any reference target utterance , which makes it beneficial for many practical appli-
cations. The preliminary subjective evaluation of non-parallel voice conversion task shows that our proposed system
obtains higher naturalness and comparable speaker similarity than the conventional VC using look-up one-hot encoded
speaker vector.
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1. INTRODUCTION

Voice conversion (VC) is a special type of voice transfor-

mation (VT) whose aim is to manipulating speaker character-

istics in the speech signal while preserving linguistic informa-

tion [1]. This technique is beneficial in many practical appli-

cations such as intelligibility enhancement for speech disorder

patients, or enhancing Human-Machine Interface experience.

VC approach can be categorized into 2 groups: rule-based ap-

proaches and statistical approaches.

Rule-based approaches aims to modify acoustic features that

correspond to the speaker individuality such as fundamental

frequency (F0) and formants by some manually derived rules.

However, since different rules must be applied for different

speakers, these approaches are impractical and less preferred

than statistical approach.

On the other hand, statistical approaches use machine learn-

ing technique to modify the acoustic features. These ap-

proaches are more flexible to adapt to new speaker than rule-

based method. The most straight-forward statistical approach
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for VC is to perform mapping from source acoustic features

to target acoustic features. This approach requires a parallel

training data, in which the source and target utterances con-

tain identical linguistic information so that the differences in

speaker voice characteristics could be learned. The conven-

tional method for this approach is using Gaussian Mixture

Model (GMM) to model the joint probability of source and

target acoustic features [2]. However, synthesized speech us-

ing GMM-based method often suffered from over-smoothing

degradation. Therefore, lately, Deep Neural Network (DNN)

has been employed to perform the mapping task. With suf-

ficient training data, DNN-based model outperforms GMM-

based model in both speech naturalness and target-similarity.

Despite the simplicity of mapping approach, parallel train-

ing data is often expensive to obtain. Therefore, a new set of

method that can perform speaker adaptation using non-parallel

data is investigated. The earliest non-parallel VC method was

proposed by Toda et al [2], in which a Eigen GMM-based

model is used to describe speaker characteristic by a set of

base speaker. However, although the speaker adaptation phase

can work with non-parallel data, it requires parallel-data in

the training phase. Later, various methods were proposed that

can use non-parallel data in both training phase and adaptation
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phase. Some of the most popular methods are Restricted Boltz-

mann machine (RBM), Variational Autoencoder (VAE), and

Generative Adversarial Network (GAN). All these three meth-

ods share the same principle of disentangling speaker-related

information and linguistic information from speech waveform.

However, most prior non-parallel VC methods only focus

on categorized speaker adaptation since a target voice is re-

quired as a reference to perform voice conversion. In other

words, controllability of the degree of speaker individuality has

not been much interested. These limitations restricted the use-

fulness of VC system in some situations, such as in a story

teller system, when collecting utterances from a large number

of target voices is unrealistic. In this situation, the VC sys-

tem with the controllable voice characteristics is desirable as

it can freely manipulate the source voice to generate any new

fictitious voice without the recordings from the target speakers.

Moreover, most VC model require retraining when adapting to

an unseen-target speaker. The controllability can also avoid

this problem as the VC model can synthesize waveform with

the desired voice characteristics extracted from the reference

utterance. This controllability is also beneficial in many other

voice transformation fields such as emotional voice conversion,

voice dubbing in movie post-production, creating new voices

for text-to-speech system, speech enhancement, and voice edit-

ing software.

To achieve this goal, we propose a new VC framework based

on a variant of VAE, which we call CycleVAE, that can si-

multaneously disentangle speaker-related information with lin-

guistic information and discover the latent structure of speaker

characteristic. After training on a multi-speaker dataset, a

speaker embedding vector that represents voice characteristics

is obtained. By manipulating the speaker embedding vector,

we can obtained the synthesized waveform with desired voice

characteristics.

The significant of our proposed VC system are:

• Control the characteristics of synthesized voice using non-

parallel training data.

• Can perform speaker adaptation using a minimum of one

utterance from target speaker.

• Can convert waveform from both seen- and unseen-source

speaker to unseen-target speaker and fictitious speaker.

2. Voice Conversion with Variational Autoen-
coder

Proposed by Kingma et al. and Rezende et al. [6], VAE is a

powerful probabilistic model that can uncover the latent struc-

ture of the data. Without much modification, VAE can be easily

apply in VC tasks [7].

Assume that the latent variable Z represent the linguistic

information conveyed in acoustic features X follows normal

distribution N (0,I) that independent with the speaker infor-

mation. The encoder part of VAE estimates the posterior

pθ (Z|X) = N (µ(X),σ(X)). Then the latent variable Z is

sampled from the posterior as z ∼ p(Z|X). However, back-

propagation is impossible if Z is directly sampled from the

posterior pθ (Z|X). Therefore, reparaterization trick is applied

by sampling an independent variable ε from normal distribu-

tion N (0,I) and then performing scale and shift operation. In

summary, the procedure of estimating latent variable Z is as

follows:

µ = fenc µ(X)

σ = fenc σ (X)

ε ∼ N (0,I)

Z = µ +σ ◦ ε

(1)

To reconstruct the input acoustic feature X , beside the linguistic

information in latent variable Z, additional variable y that con-

tains speaker information is introduced. The variable y can be

expressed as a one-hot encoded vector that represents speaker

identity. From variable Z and y, the decoder part of the VAE

then reconstruct the acoustic features X .

X = fdec(Z,Y ) (2)

The encoder and decoder are jointly trained by maximizing the

objective function defined as:

Lob j = DKL(pθ (z|x)||p(z))+Ez∼pθ (z|x)(p(x|z)), (3)

where DKL is the Kullback-Leibler divergence between the es-

timated posterior pθ (z|x,y) and the true prior distribution p(z).

Since p(z) is assumed to follow normal distribution, the DKL

can be expressed in closed form as:

DKL(pθ (z|x)||p(z)) =−1
2 ∑(1+ logσ2 −µ2 +σ2) (4)

The second term in the RHS of Eq. 3 is the reconstruction loss.

Assuming that the acoustic feature X also follows Gaussian

distribution, the term Ez∼pθ (z|x)(p(x|z,y)) can be described by

a simple mean-square difference between reconstructed acous-

tic feature and original acoustic feature.

Ez∼pθ (z|x)(p(x|z)) =−1
2 ∑(X −X)2 (5)

3. Proposed Method

3.1 Infer speaker embedding using back-propagation
In conventional VAE-based VC, speaker identity is repre-

sented as a one-hot vector. However, this type of encoding does
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Fig. 1 Overview of proposed VC system

not include any other information of the speaker’s voice char-

acteristics such as gender or age. To overcome this problem,

we use different interpretation of speaker identity by letting the

model self-derived the most suitable speaker embedding during

training process. Let y is the one-hot vector represent speaker

identity, the speaker embedding vector s is:

s = W · y⊺+B, (6)

where W and B is a learnable kernel and bias in a fully-

connected NN layer. In this interpretation, the one-hot encoded

vector y acts as a switch to select correspond row vector in ma-

trix W. With this interpretation, 2 speakers with alike voice

characteristics may have very similar speaker embedding.

This interpretation can be expanded into by adding more

layer and applying non-linear activation such as tanh or sig-

moid. In this case, the speaker embedding s is

s = Wn · ... f (W1 · f (W0 · y⊺+B0)+B1)...+Bn, (7)

where f is a non-linear function. Although this interpreta-

tion is convenient to explain voice characteristics, however, the

speaker embedding is only available for speakers in the train-

ing set. Therefore, to perform voice conversion on new speaker

that non in the training set, an additional classifier is used to

map from acoustic features to speaker embedding vector. After

the classifier is trained, a speaker embedding vector from new

speaker can be estimated using only a few seconds of record-

ing.

3.2 Cycle-consistent loss
In our proposed system, we also introduced some addi-

tional constrained to improve the naturalness of the synthesized

speech and enhance the disentanglement of the latent variable

z and speaker information s.

As the latent variable z is assumed to be independent with

among speaker information, we propose to use the cycle-

consistent loss, which aims to ensure the invariant of z when

changing the speaker information. To achieve this goal, the

speaker identity vector is shuffled before inputting to the de-

coder. Then the estimated mean of latent variable µ of the

synthesized acoustic feature is calculated. To enhance the in-

variant of latent variable, additional penalty on the difference

between µ and µ is introduced, which we call cycle-consistent

loss.

3.3 Modulation loss
To improve the naturalness of the synthesized speech, we

also incorporate the Modulation Spectrum (MS) loss in the pro-

posed model because of its beneficial effect on speech natural-

ness. Similar to [8], the MS of parameter sequence x is defined

as follows:

s(X) =
[
s(1)⊤, · · ·,s(d)⊤, · · ·,s(D)⊤

]
s(d) = [sd(0), · · ·,sd( f ), · · ·,s(Ds)]

sd( f ) = abs(FFT (x(d))

(8)

The modified log-likelihood function for the VAE model

considering the modulation spectrum is defined as follow:

Lms(θ ,ϕ ;xn) =−DKL(qϕ (zn|xn)||p(zn))

+log pθ (xn|zn,yn)+w.log p(s(x)|zn,A(X))
(9)

The final term in Eq. 9 explicitly constrains the model to

increase the log-likelihood of the modulation spectrum con-

ditioned on the given latent variable zn and speaker identity

yn. Furthermore, we also assume that the modulation spec-

trum has a Gaussian distribution with a diagonal covariance

matrix: s(x)∼ N(s(x)|s(x),diag(σs)). Therefore, the final log-

probability term in Eq. 9 can be expressed in the following

closed form:

log p(s(x)|zn,A(X)) =

−1
2 ∑

(
log(2πσ 2

s )+
(s(x)− s(x))2

σ2
s

) (10)

3.4 Network architecture
Figure 1 illustrates an overview of our proposed VC model.

The encoder and decoder network utilize the multi-scale CNN

architecture[9] as shown in Fig. 2.

In addition to the basic VAE framework, the auxiliary gate

variable g is introduced to control amount of the speaker indi-

viduality in the output features. The reason for this controlling

is that some speech segments, such as silence, may not contains

any speaker individuality. By introducing the gate variable, the

model can ignore these segments by outputting the gate vari-

able g = 0. The gate variable is inferred directly on the input

features by a separate network.
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Fig. 2 Multi-scale architecture with dilated residual CNN block

4. EXPERIMENTS

4.1 Dataset
We used the VCTK corpus [10], which contains 44 hours

of recordings from 109 English speakers. We divided the data

into 2 subsets: training set (containing 100 speakers) and test-

ing set. The testing set is made of 2 groups of utterances. One

group contains utterances from 9 held out speakers from the

training set (unseen speakers). The second group contains 2

held out utterances of each speakers from the training set (seen

speakers).

As speech features, we used WORLD vocoder to extract

F0, spectral sequence, and aperiodicity from speech waveform.

Then the spectral sequence is transformed to 60-order mel-

cepstral coefficients (mcc). We used the 2nd to 31th mcc co-

efficients along with interpolated F0 and voice/unvoice flag as

the input features. For the rest of mcc-coefficients and aperi-

odicity, we keep unchanged during conversion process.

The VC model and speaker embedding model are trained

separately. We first train the VC model to obtained the speaker

embedding table. Then we trained the speaker embedding

model to map from speech features to embedding vector. Both

VC model and speaker embedding model are trained on the

same training set.

We compare the proposed model to the baseline multi-

speaker VAE-based VC model that use the fixed one-hot en-

coded speaker vector similar to [7]. However, we keep most of

the model architecture identical to the proposed model. Since

the baseline model cannot work with unseen target speaker, we

only evaluate the baseline model in seen source to seen tar-

get and unseen source to seen target conversion scenarios. To

perform voice conversion, the baseline model uses the one-hot

encoded vector, while the proposed model uses the speaker em-

bedding extracted from an 10-second utterance of the target

speaker.

4.2 Speaker embedding space
After the VC model is trained, we visualize the speaker em-

bedding space by analyzing the speaker embedding using PCA.

Fig. 3 Learned speaker embedding map of VCTK dataset

As shown in Fig. 3, the speakers are well separated by genders,

with all female speakers lie on the left and male speakers lie on

the right. This indicates that the model can learn meaningful

voice characteristics of the speakers.

4.3 Fictitious speaker
We input the speaker embedding vector that is sampled from

the speaker embedding space to obtain the fictitious voices that

are not present in the training data. To evaluate the naturalness

of the fictitious voices, we synthesized 9 utterances from a fe-

male speaker in VCTK dataset (seen speaker - p225) with the

position on speaker embedding space shown in Fig. 4

4.4 Speech Naturalness
We measure the naturalness of converted speech from the

baseline and proposed model using Mean-Opinion Score eval-

uation. Two participants (1 male, 1 female) enrolled in this

preliminary test. The listeners are instructed to concentrate on

the quality of the speech and rate the sample using 5 point-scale

score (1: bad; 2: poor; 3: fair; 4: good; 5: excellent). The result

shown in Fig. 5 indicates that the speech waveform generated

from the proposed model have higher naturalness than those

generated from the baseline model in all conversion scenarios

(seen-source to seen-target and unseen-source to seen-target).
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Fig. 4 Blue: Position of source speaker embedding vector, Red: Posi-

tion of selected target speaker embedding vector for synthesizing

fictitious voices

Fig. 5 Speech Naturalness average score. Higher is better.

Fig. 6 Speech Similarity average score. Higher is better.

The highest MOS of the proposed model is approximate 4.0 in

seen-source to seen-target conversion. Moreover, the generated

speech of fictitious speakers also have very good naturalness

with 3.8 MOS. For unseen target and fictitious target speaker,

the naturalness of synthesized waveform is quite good with all

MOS higher than 3.0.

4.5 Speech Similarity
In this experiment, the speaker similarity between the con-

verted waveform and the target waveform is evaluated. The

listeners are given a reference utterance from target speaker

and several converted utterances from different source speak-

ers. The listeners were instructed to concentrate on the voice

characteristics and ignore any distortion in the stimuli. Then

the listener rates the similarity between the converted utter-

ances with the reference utterance using 5-point scale score (1:

not at all similar; 2: slightly similar; 3: moderately similar; 4:

very similar; 5: extremely similar). Results are shown in Fig.

6. On both seen- and unseen-source to seen-target speaker, the

scores for the proposed model are lower but still comparable

to the baseline model. For seen- and unseen-source to unseen-

target speaker, the propose model achieves better score with

around 2.7 MOS.

5. CONCLUSIONS

We have proposed a flexible VC model to deal with the chal-

lenging task of non-parallel voice conversion with controllable

speaker individuality. The preliminary results show that the

proposed model can synthesized speech with higher natural-

ness than the baseline model. Although the speaker similarity

score of the proposed model is comparable to the conventional

VC, there is still more room for further improvement in the

future.
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