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Introduction  
Pedestrian behavior simulation is a difficult task to 

perform due to the performance requirements and the 

necessary information to learn meaningful behavior 

patterns. Inverse Reinforcement Learning techniques 

help in solving those issues, as they learn from a set of 

observed behaviors provided by an expert and can be 

processed before the simulation. We developed a 

variant that includes contextual actions and multiple 

reward functions and adapted it to work with a multi-

agent based pedestrian simulator. The agents in the 

simulator are able to navigate the map with no 

information other than the learned behavior patterns 

and obtain better results than other methods in terms 

of goal clear times and trajectory optimization. We 

called them "Contextual Action Multiple Policy 

Inverse Reinforcement Learning" (CAMP-IRL) agents.  

However, we found several instances when only 

having the data from expert trajectories was not 

enough to obtain the desired knowledge. For example, 

under certain conditions, traversing certain areas of 

unknown layout to reach concrete goals is difficult for 

trained agents, whilst for humans such information 

should be trivial to deduct. In order to avoid such 

situations, we devised a method to improve the 

available graph information contained in the trajectory 

database.  

Pedestrian Simulation 
Our simulator simplifies the city map into a 1-

dimensional network consisting of nodes and links. 

The model of the map consists in a custom xml that 

describes the map in the form of network where nodes 

represent intersections and links represent streets or 

paths. A link also has length and width attributes 

influencing how long the agents need to walk from a 

end to another and how many agents can walk in 

parallel, and can be two-way or one-way. Nodes also 

can have features, and information describing what 

facilities are on that location.  

The inputs of our method are the city map in this 

model and a file containing the trajectories we want to 

train the agents with. This method is performed before 

the simulation as a pre-processing task, so even if it 
can take a long time depending of the complexity of 

the map it does not represent a big impact in the 

simulation speed as the decision process of the agents 

once we have these files is enough fast to use it in real 

time. In our experiments, the CAMP-IRL agents 

outperform by far other types of agents that do not 

work with multiple policy functions or contextual 

actions, but we identified one issue that hindered their 

behavior. We observed that some useful information 

that should be extracted from the map and the routes 

was not being reflected in the learning process; in 

some of our experiments, one of the goals was a 

scarce feature that only was present in four nodes of 

the map; the agents were able to find it, but the 

wandered excessively before to do it. The main reason 

was that the system switching between different 

policies without finding any goal. 

After analyzing why this was happening, we found 

that this situation was due to the coincidence of two 

factors: scarcity of the goal feature in the map and 

having only a few and indirect ways to reach those 

features. In one example, in order to reach one of its 

goals, agents had to cross from one area of the map to 

another which could only be reached by crossing three 

links between them, but those links were not very 

remarkable in terms of learned value for the selected 

policies to reach that feature. Thus, agents were 

conducted by their policies to go towards the feature, 

but when reaching the nearby areas of the map they 

could not find the crossing point which was far away. 

We plan to solve this issue by improving the learning 

process by adding enriched information to the map, 

trying to establish semantic relations between nodes of 

the map like those crossing points and the featured 

nodes using a method we explain in the next section. 

Map Enrichment 
Before training the pedestrian behaviors, we first 

propose a method to improve the available graph 

information contained in the trajectory database. The 

intuitive idea we have is that by enriching each graph 

node information by its neighbors, an agent could 

make better decisions when choosing the next node to 

move.  

In our experiments, the graph we collected from the 

trajectory database contains the following information: 
(1) there are 13 categories (i.e., hostel, books, 
convenience, restaurant, café, dry_cleaning, hospital, 
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supermarket, fast_food, kindergarten, telephone, 
cinema and post_office) describing each node; and (2) 

the graph structure is stored as an adjacency matrix. 

Therefore, the input of this method are a feature 

matrix  recording the category information 

for all the  nodes and an adjacency matrix  

recording the graph structure. The output of this 

method is a new feature matrix , where the 

value of  depends on how many different filters we 

will used in this method.  

Having defined the input and output of this method, in 

the remainder of this section, we will introduce the 

method in detail. Similar to signal processing, our 

method consists on three steps: (1) by using discrete 

Fourier transform, we first transform the feature 

matrix  from the graph vertex domain to the graph 

spectrum domain that is donated as matrix ; (2) then, 

we do filtering on  in the graph spectrum domain; 

(3) at last, by using inverse discrete Fourier transform, 

we transform the filtered feature matrix from the 

spectrum back to the vertex domain.  

1. Transform  in graph vertex domain to  in graph 

spectrum domain: 

To do the graph Fourier transform, we first need to 

calculate the eigenvectors and eigenvalues of the 

graph Laplacian matrix , where  is the 

adjacency matrix and  is the 

degree diagonal matrix. After obtaining the Laplacian 

matrix , we obtained its eigen- vectors and values 

using the following factorization: 

 
where all the eigenvectors are stored as columns in 

matrix , the diagonal matrix  records all the 

eigenvalues and  is the conjugate transpose operator. 

Then, the graph Fourier transform is defined as: 

. 

Since each node has 13 categories in our case, by 

regrading  as a signal having 13 channels, the 

equation above maps the signal from vertex domain 

into the spectrum domain, i.e., . 

2. Do frequency-based filtering on : 

Then, we apply different filters to the obtained . 

Without loss of generality, if we define any filter as a 

function , the frequency-based filtering process is: 

. 

Similar to signal process, the input of function  are 

the  eigenvalues stored in , which can be regarded 

as graph frequencies. By defining different filters, we 

can adjust the final results. Since we do not know 
which eigenvalues are important for our final 

pedestrian simulation in advance, we constructed a 

filter bank to record as many filters as possible. In our 

experiments, we utilized heat-kernel based filters [1] 

and Meyer filters [2]. Heat-kernel based filters are 

low-pass filters (only allowing small eigenvalues to 

pass the filter) and Meyer filters cover all the 

frequency ranges, which can allow low-pass, band-

pass and high-pass. By comparing these different 

filtering strategies, we want to verify whether map 

filtering would improve the final pedestrian simulation 

performance.    

3. Transform  in graph spectrum domain back to 

graph vertex domain, i.e. the output : 

After filtering, we finally transform the information in 

spectrum domain back to the vertex domain. 

Assuming we used two filtering functions  in the 

second step, the final output would be calculated as: 

 
where  is the matrix concatenating operator along 

the second dimension.  

Using different filtering functions  would lead to 

different graph filtering results. To automatically 

identify which filters are better than others, is 

advisable to perform a cross validation process where 

the simulation output feeds the map enrichment 

method and a final simulation would automatically do 

the selection.  

Once the map enrichment process finishes, it 

generates a modified map file where the nodes’ 

features are modified and can be passed to our inverse 

reinforcement learning method to generate finally the 

behavior patterns and pass them to the CAMP-IRL 

agents. 

Performance comparison 
We compared the performance of the simulator using 

a map without processing with the ones obtained using 

enriched maps. Our initial experiments showed 

positive results with the agents obtaining better times 

in reaching goals when using enriched maps. However, 

still it is necessary to perform the mentioned cross 

validation for the different filtering functions, as the 

resulting performance varies greatly depending on it. 

And also, different filters have different sets of 

hyperparameters so their tuning has to be selected as 

well. 
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