
Enriching Graph Information for Pedestrian Behavior Learning

Nahum Alvarez Chenyi Zhuang

National Institute of Advanced Industrial Science and Technology (AIST)

Introduction
Pedestrian behavior simulation is a difficult task to

perform due to the performance requirements and the

necessary information to learn meaningful behavior

patterns. Inverse Reinforcement Learning techniques

help in solving those issues, as they learn from a set of

observed behaviors provided by an expert and can be

processed before the simulation. We developed a

variant that includes contextual actions and multiple

reward functions and adapted it to work with a multi-

agent based pedestrian simulator. The agents in the

simulator are able to navigate the map with no

information other than the learned behavior patterns

and obtain better results than other methods in terms

of goal clear times and trajectory optimization. We

called them "Contextual Action Multiple Policy

Inverse Reinforcement Learning" (CAMP-IRL) agents.

However, we found several instances when only

having the data from expert trajectories was not

enough to obtain the desired knowledge. For example,

under certain conditions, traversing certain areas of

unknown layout to reach concrete goals is difficult for

trained agents, whilst for humans such information

should be trivial to deduct. In order to avoid such

situations, we devised a method to improve the

available graph information contained in the trajectory

database.

Pedestrian Simulation
Our simulator simplifies the city map into a 1-

dimensional network consisting of nodes and links.

The model of the map consists in a custom xml that

describes the map in the form of network where nodes

represent intersections and links represent streets or

paths. A link also has length and width attributes

influencing how long the agents need to walk from a

end to another and how many agents can walk in

parallel, and can be two-way or one-way. Nodes also

can have features, and information describing what

facilities are on that location.

The inputs of our method are the city map in this

model and a file containing the trajectories we want to

train the agents with. This method is performed before

the simulation as a pre-processing task, so even if it
can take a long time depending of the complexity of

the map it does not represent a big impact in the

simulation speed as the decision process of the agents

once we have these files is enough fast to use it in real

time. In our experiments, the CAMP-IRL agents

outperform by far other types of agents that do not

work with multiple policy functions or contextual

actions, but we identified one issue that hindered their

behavior. We observed that some useful information

that should be extracted from the map and the routes

was not being reflected in the learning process; in

some of our experiments, one of the goals was a

scarce feature that only was present in four nodes of

the map; the agents were able to find it, but the

wandered excessively before to do it. The main reason

was that the system switching between different

policies without finding any goal.

After analyzing why this was happening, we found

that this situation was due to the coincidence of two

factors: scarcity of the goal feature in the map and

having only a few and indirect ways to reach those

features. In one example, in order to reach one of its

goals, agents had to cross from one area of the map to

another which could only be reached by crossing three

links between them, but those links were not very

remarkable in terms of learned value for the selected

policies to reach that feature. Thus, agents were

conducted by their policies to go towards the feature,

but when reaching the nearby areas of the map they

could not find the crossing point which was far away.

We plan to solve this issue by improving the learning

process by adding enriched information to the map,

trying to establish semantic relations between nodes of

the map like those crossing points and the featured

nodes using a method we explain in the next section.

Map Enrichment
Before training the pedestrian behaviors, we first

propose a method to improve the available graph

information contained in the trajectory database. The

intuitive idea we have is that by enriching each graph

node information by its neighbors, an agent could

make better decisions when choosing the next node to

move.

In our experiments, the graph we collected from the

trajectory database contains the following information:
(1) there are 13 categories (i.e., hostel, books,
convenience, restaurant, café, dry_cleaning, hospital,

Copyright 2019 Information Processing Society of Japan.
All Rights Reserved.2-93

7D-05

情報処理学会第81回全国大会

supermarket, fast_food, kindergarten, telephone,
cinema and post_office) describing each node; and (2)

the graph structure is stored as an adjacency matrix.

Therefore, the input of this method are a feature

matrix recording the category information

for all the nodes and an adjacency matrix

recording the graph structure. The output of this

method is a new feature matrix , where the

value of depends on how many different filters we

will used in this method.

Having defined the input and output of this method, in

the remainder of this section, we will introduce the

method in detail. Similar to signal processing, our

method consists on three steps: (1) by using discrete

Fourier transform, we first transform the feature

matrix from the graph vertex domain to the graph

spectrum domain that is donated as matrix ; (2) then,

we do filtering on in the graph spectrum domain;

(3) at last, by using inverse discrete Fourier transform,

we transform the filtered feature matrix from the

spectrum back to the vertex domain.

1. Transform in graph vertex domain to in graph

spectrum domain:

To do the graph Fourier transform, we first need to

calculate the eigenvectors and eigenvalues of the

graph Laplacian matrix , where is the

adjacency matrix and is the

degree diagonal matrix. After obtaining the Laplacian

matrix , we obtained its eigen- vectors and values

using the following factorization:

where all the eigenvectors are stored as columns in

matrix , the diagonal matrix records all the

eigenvalues and is the conjugate transpose operator.

Then, the graph Fourier transform is defined as:

.

Since each node has 13 categories in our case, by

regrading as a signal having 13 channels, the

equation above maps the signal from vertex domain

into the spectrum domain, i.e., .

2. Do frequency-based filtering on :

Then, we apply different filters to the obtained .

Without loss of generality, if we define any filter as a

function , the frequency-based filtering process is:

.

Similar to signal process, the input of function are

the eigenvalues stored in , which can be regarded

as graph frequencies. By defining different filters, we

can adjust the final results. Since we do not know
which eigenvalues are important for our final

pedestrian simulation in advance, we constructed a

filter bank to record as many filters as possible. In our

experiments, we utilized heat-kernel based filters [1]

and Meyer filters [2]. Heat-kernel based filters are

low-pass filters (only allowing small eigenvalues to

pass the filter) and Meyer filters cover all the

frequency ranges, which can allow low-pass, band-

pass and high-pass. By comparing these different

filtering strategies, we want to verify whether map

filtering would improve the final pedestrian simulation

performance.

3. Transform in graph spectrum domain back to

graph vertex domain, i.e. the output :

After filtering, we finally transform the information in

spectrum domain back to the vertex domain.

Assuming we used two filtering functions in the

second step, the final output would be calculated as:

where is the matrix concatenating operator along

the second dimension.

Using different filtering functions would lead to

different graph filtering results. To automatically

identify which filters are better than others, is

advisable to perform a cross validation process where

the simulation output feeds the map enrichment

method and a final simulation would automatically do

the selection.

Once the map enrichment process finishes, it

generates a modified map file where the nodes’

features are modified and can be passed to our inverse

reinforcement learning method to generate finally the

behavior patterns and pass them to the CAMP-IRL

agents.

Performance comparison
We compared the performance of the simulator using

a map without processing with the ones obtained using

enriched maps. Our initial experiments showed

positive results with the agents obtaining better times

in reaching goals when using enriched maps. However,

still it is necessary to perform the mentioned cross

validation for the different filtering functions, as the

resulting performance varies greatly depending on it.

And also, different filters have different sets of

hyperparameters so their tuning has to be selected as

well.

References

[1] Nicole Berline, Ezra Getzler, and Michele
Vergne. Heat kernels and Dirac operators. Springer
Science & Business Media, 2003.
[2] Nora Leonardi and Dimitri Van De Ville. Wavelet
frames on graphs defined by fmri functional connectivity.
In Biomedical Imaging: From Nano to Macro, 2011
IEEE International Symposium on, 2136–2139.

Copyright 2019 Information Processing Society of Japan.
All Rights Reserved.2-94

情報処理学会第81回全国大会

