
Behavioral Agent Simulation using Contextual Action Multiple Policy
Inverse Reinforcement Learning

Nahum Alvarez Itsuki Noda

National Institute of Advanced Industrial Science and Technology (AIST)

Introduction
In this paper, we present a model for agent-based crowd
simulation to emulate observed behavior using a novel
technique we called contextual action multiple policy
inverse reinforcement learning (CAMP-IRL). Crowd
simulation has been subject of study due to its
applications in the fields of disaster evacuation, smart
town planning and business strategic placing. A known
issue in people behavior simulation is that scripted
simulations are often limited in their flexibility, so as a
possible solution we can learn from data obtained in real
scenarios using machine learning techniques and generate
behavior patterns. We implemented a behavioral agent
model into a large-scale crowd simulator. Applying our
CAMP-IRL method to agents allows them to obtain
reaction cues to different behavior patterns obtained from
training data, generating different trajectories depending
of their goals and the environment. Our method also
provides a way to switch dynamically between behaviors
and to navigate through unknown layouts, thus being a
robust way for agents to behave realistically.

The Pedestrian Simulator
Our simulator generates a 2D version of the city where
the pedestrians move across the map as a graph with links
representing streets and nodes crossings. Once the
simulator is running it shows a simulation of the agents
traversing the city, walking until they reach an evacuation
point determined by their configuration. The agents are
represented by colored dots that change their tone
between green when they are walking freely and red
when they have to stop or walk slower.

In the simulator, an agent handler is used to generate the
agents in the virtual environment and contains a module
in charge of the agents' behavior, known as the CAMP-
IRL module. The module contains two separated parts:
one part is run before the simulation, which contains the
CAMP-IRL method itself, and the other part takes
control of the agents' behavior during the simulation. The
next sections will describe in depth each one of the
module's parts.

The CAMP-IRL Learning Process
IRL techniques work on domains that can be modeled by
a Markov Decision Process (MDP) but have hidden
reward functions (the reward function dictates what
reward we can obtain from performing a concrete action
when being in a concrete state). Hence, it is ideal to
model human behavior, which usually is reward driven

using unknown reward functions. However human
behavior is not only directed by only one goal but many,
with different rewards that are managed at the same time,
IRL has potential to learn different behavior patterns, but
need some adaptation as works with single rewards and
well defined actions. Thus we based our method in a
nonparametric Bayesian approach to the problem [1]
extracting a number of clusters from the data, obtaining
different reward and policy functions for each one of
them. Also, we adapted the MDP to be able to work with
contextual actions for the agents, used to avoid an
explosion in the solution space.

We define Contextual Action Multiple Policy MDP

(CAMP-MDP) as an MDP {S, 𝒜, 𝒯, γ , ℛ} using the
standard definition of S as the set of states, the transition

function 𝒯 (s, a, s’) from one state to another by
executing an action, and γ as the discount factor. We also

defined the super set 𝒜 (s) of actions as a function of a
state s, and ℛ (s,a) as a super set of Reward functions

where s is a state from S and a is an action from the set 𝒜
(s). The actions are contextual and the same action for
different states will be likely different. The reason for this
is that in our domain, each map node has a different
number of possible links to take, so when translating
nodes to states and links to actions, each link of the map
would be converted into a different action. In order to
avoid a combinatorial explosion in the solution space, we
convert the actions directly related to links into
contextual actions that represent different links
depending on the node we are currently in. The CAMP-
IRL algorithm is based on the Dirichlet process mixture
model Bayesian IRL, but we adapted it to be able to work
with the CAMP-MDP considering that each state will
have a different action set. A Dirichlet process [2] is used
to classify the trajectories into different groups which we
call profiles, and then the reward is calculated for each
profile using a Bayesian approach to the IRL method.
The algorithm uses the next algorithm and formulas:

1. Initialize the profile set C containing K elements and

the reward set

I. The initial clusters (profiles) and their reward

function are randomized. The reward function

consists in a weight vector containing the weights

of all the map features.

II. An initial policy is generated randomly from each

reward. This policy consists in a vector containing

the optimal action to perform for each node, and it

Copyright 2019 Information Processing Society of Japan.
All Rights Reserved.2-91

7D-04

情報処理学会第81回全国大会

is obtained by calculating the value of performing

the most optimal action a from the available

actions in the state s, following the next function:

2. For each element m in the trajectory set, select a new

class candidate using the following rule:

I. If the trajectory has no assigned class, generate a

new one, and a reward function for it.
II. If it has one, obtain the most populated profile.

III. Assign the trajectory to the new class with

probability

3. For each class k:

I. Create a weight vector candidate

where τ is a scaling factor and is a number

sampled from multinomial distribution (0,1).

II. Update the weight and value vectors with

probability

Being the function g the gradient from the
Langevin algorithm [1].

4. Repeat the process from (2) until convergence. Once

finished, it is possible to use the obtained set of optimal

policies for each profile to calculate the value vector as

follows:

The value represents the expected reward of executing

that policy on a node s.

The inputs of the CAMP-IRL method are the city map
and a file containing the trajectories we want to train. The
map is converted into a CAMP-MDP and the results are
two files: one containing the weight of each map feature
for each one of the discovered profiles, and another
containing the value of each map node for each profile.
These two files will be used by the CAMP-IRL agents to
decide which path to take, and also to select the behavior
profile they should have. This method is performed
before the simulation as a pre-processing task, so even if
it can take a long time depending of the complexity of the
map it does not represent a big impact in the simulation
speed as the decision process of the agents once we have
these files is enough fast to be used in real time.

Behavioral Agents Model
Once the simulation starts, the agent handler creates the
agents using our CAMP-IRL Agent Controller. The
CAMP-IRL agents use three input files that direct their

behavior; the first two files are the weight and value files
from the CAMP-IRL process, and the third one consists
in a goal database containing the locations they "want" to
visit. This file contains an evacuation point to go after
completing the goals.

Whenever an agent enters in a node, it checks if it is a
goal. In case it is not a goal, the agent compares the value
of the nodes connected to the current one and select
randomly one node within the best value range. This
range consists in the nodes that are inside a threshold
from the highest valued node. Once the best node to go is
selected, the agent moves to it.
Since the nodes’ values in the file are related to a profile,
the agent has to choose initially a profile. The selection
of the initial profile is a two stepped process that happens
when the agent enters the map. First, the agent obtains
from the weight file the profiles that has the highest
weight for the features associated to its goals. It does not
only select the highest value, but the values that are
within a threshold from it are also selected. The selected
profiles will form the agent’s profile list. Once completed
this step, the agent chooses the profile from its list with
the highest value in the current node (i.e. the first node
the agent steps in).

If the agent entered in a node containing a goal, then the
agent enters in an state of waiting, representing that the
agent is satisfying its goal. The goal satisfaction time is
given by the training process, who in parallel with the
CAMP-IRL process, executed a linear regression method
to learn from the waiting times present in the trajectories,
giving a set of parameters to estimate such time
depending the features present in the node. Once the goal
is satisfied (meaning this that the goal satisfaction time
has passed since the agent stopped), the agent verify if it
has remaining goals. If all the goals have been satisfied,
the agent evacuates by going directly to the evacuation
point. If there are still unsatisfied goals, the agent
proceeds to select a new profile in the same way that it
chose one initially. However, before selecting one it
updates its profile’s list, as it has fewer goals now, so
some profiles are not useful anymore. After deleting
those profiles related with the satisfied goals, the agent
chooses a profile form its list in the same way that it did
initially.

As a final note, the agent also has a timeout in case it
spends too much time wandering across the map without
reaching any goal. If the timeout finishes, the agent will
select a new profile from the whole set, with the only
condition that it has to be different than the previous one.
This represents the agent deciding that its previous
actions where not advancing it to the goal, and it has to
"explore" the map.

References

[1] Jaedeug Choi and Kee-Eung Kim. 2012. Nonparametric Bayesian
Inverse Reinforcement Learning for Multiple Reward Functions. In
Advances in Neural Information Processing Systems. 305–313.
[2] Radford M Neal. 2000. Markov chain sampling methods for
Dirichlet process mixture models. Journal of computational and
graphical statistics 9, 2 (2000), 249–265.

Copyright 2019 Information Processing Society of Japan.
All Rights Reserved.2-92

情報処理学会第81回全国大会

