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Introduction  
In this paper, we present a model for agent-based crowd 
simulation to emulate observed behavior using a novel 
technique we called contextual action multiple policy 
inverse reinforcement learning (CAMP-IRL). Crowd 
simulation has been subject of study due to its 
applications in the fields of disaster evacuation, smart 
town planning and business strategic placing. A known 
issue in people behavior simulation is that scripted 
simulations are often limited in their flexibility, so as a 
possible solution we can learn from data obtained in real 
scenarios using machine learning techniques and generate 
behavior patterns. We implemented a behavioral agent 
model into a large-scale crowd simulator. Applying our 
CAMP-IRL method to agents allows them to obtain 
reaction cues to different behavior patterns obtained from 
training data, generating different trajectories depending 
of their goals and the environment. Our method also 
provides a way to switch dynamically between behaviors 
and to navigate through unknown layouts, thus being a 
robust way for agents to behave realistically. 

The Pedestrian Simulator 
Our simulator generates a 2D version of the city where 
the pedestrians move across the map as a graph with links 
representing streets and nodes crossings. Once the 
simulator is running it shows a simulation of the agents 
traversing the city, walking until they reach an evacuation 
point determined by their configuration. The agents are 
represented by colored dots that change their tone 
between green when they are walking freely and red 
when they have to stop or walk slower.  

In the simulator, an agent handler is used to generate the 
agents in the virtual environment and contains a module 
in charge of the agents' behavior, known as the CAMP-
IRL module. The module contains two separated parts: 
one part is run before the simulation, which contains the 
CAMP-IRL method itself, and the other part takes 
control of the agents' behavior during the simulation. The 
next sections will describe in depth each one of the 
module's parts. 

The CAMP-IRL Learning Process 
IRL techniques work on domains that can be modeled by 
a Markov Decision Process (MDP) but have hidden 
reward functions (the reward function dictates what 
reward we can obtain from performing a concrete action 
when being in a concrete state). Hence, it is ideal to 
model human behavior, which usually is reward driven 

using  unknown reward functions. However human 
behavior is not only directed by only one goal but many, 
with different rewards that are managed at the same time, 
IRL has potential to learn different behavior patterns, but 
need some adaptation as works with single rewards and 
well defined actions. Thus we based our method in a 
nonparametric Bayesian approach to the problem [1] 
extracting a number of clusters from the data, obtaining 
different reward and policy functions for each one of 
them. Also, we adapted the MDP to be able to work with 
contextual actions for the agents, used to avoid an 
explosion in the solution space. 

We define Contextual Action Multiple Policy MDP 

(CAMP-MDP) as an MDP {S, 𝒜, 𝒯, γ , ℛ} using the 
standard definition of S as the set of states, the transition 

function 𝒯 (s, a, s’ ) from one state to another by 
executing an action, and γ as the discount factor. We also 

defined the super set 𝒜 (s) of actions as a function of a 
state s, and ℛ (s,a) as a super set of Reward functions 

where s is a state from S and a is an action from the set 𝒜 
(s). The actions are contextual and the same action for 
different states will be likely different. The reason for this 
is that in our domain, each map node has a different 
number of possible links to take, so when translating 
nodes to states and links to actions, each link of the map 
would be converted into a different action. In order to 
avoid a combinatorial explosion in the solution space, we 
convert the actions directly related to links into 
contextual actions that represent different links 
depending on the node we are currently in. The CAMP-
IRL algorithm is based on the Dirichlet process mixture 
model Bayesian IRL, but we adapted it to be able to work 
with the CAMP-MDP considering that each state will 
have a different action set. A Dirichlet process [2] is used 
to classify the trajectories into different groups which we 
call profiles, and then the reward is calculated for each 
profile using a Bayesian approach to the IRL method. 
The algorithm uses the next algorithm and formulas: 

1. Initialize the profile set C containing K elements and 

the reward set  

I. The initial clusters (profiles) and their reward 

function are randomized. The reward function 

consists in a weight vector containing the weights 

of all the map features. 

II. An initial policy is generated randomly from each 

reward. This policy consists in a vector containing 

the optimal action to perform for each node, and it 
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is obtained by calculating the value of performing 

the most optimal action a from the available 

actions in the state s, following the next function: 

 
2. For each element m in the trajectory set, select a new 

class candidate  using the following rule: 

I. If the trajectory has no assigned class, generate a 

new one, and a reward function for it. 
II. If it has one, obtain the most populated profile. 

III. Assign the trajectory to the new class with 

probability 

 
3. For each class k: 

I. Create a weight vector candidate 

 
where τ is a scaling factor and  is a number 

sampled from multinomial distribution (0,1). 

II. Update the weight and value vectors with 

probability  

 

Being the function g the gradient from the 
Langevin algorithm [1]. 

4. Repeat the process from (2) until convergence. Once 

finished, it is possible to use the obtained set of optimal 

policies for each profile to calculate the value vector as 

follows: 

 
The value represents the expected reward of executing 

that policy on a node s. 

The inputs of the CAMP-IRL method are the city map 
and a file containing the trajectories we want to train. The 
map is converted into a CAMP-MDP and the results are 
two files: one containing the weight of each map feature 
for each one of the discovered profiles, and another 
containing the value of each map node for each profile. 
These two files will be used by the CAMP-IRL agents to 
decide which path to take, and also to select the behavior 
profile they should have. This method is performed 
before the simulation as a pre-processing task, so even if 
it can take a long time depending of the complexity of the 
map it does not represent a big impact in the simulation 
speed as the decision process of the agents once we have 
these files is enough fast to be used in real time. 

Behavioral Agents Model 
Once the simulation starts, the agent handler creates the 
agents using our CAMP-IRL Agent Controller. The 
CAMP-IRL agents use three input files that direct their 

behavior; the first two files are the weight and value files 
from the CAMP-IRL process, and the third one consists 
in a goal database containing the locations they "want" to 
visit. This file contains an evacuation point to go after 
completing the goals.  

Whenever an agent enters in a node, it checks if it is a 
goal. In case it is not a goal, the agent compares the value 
of the nodes connected to the current one and select 
randomly one node within the best value range. This 
range consists in the nodes that are inside a threshold 
from the highest valued node. Once the best node to go is 
selected, the agent moves to it. 
Since the nodes’ values in the file are related to a profile, 
the agent has to choose initially a profile. The selection 
of the initial profile is a two stepped process that happens 
when the agent enters the map. First, the agent obtains 
from the weight file the profiles that has the highest 
weight for the features associated to its goals. It does not 
only select the highest value, but the values that are 
within a threshold from it are also selected. The selected 
profiles will form the agent’s profile list. Once completed 
this step, the agent chooses the profile from its list with 
the highest value in the current node (i.e. the first node 
the agent steps in). 

If the agent entered in a node containing a goal, then the 
agent enters in an state of waiting, representing that the 
agent is satisfying its goal. The goal satisfaction time is 
given by the training process, who in parallel with the 
CAMP-IRL process, executed a linear regression method 
to learn from the waiting times present in the trajectories, 
giving a set of parameters to estimate such time 
depending the features present in the node. Once the goal 
is satisfied (meaning this that the goal satisfaction time 
has passed  since the agent stopped), the agent verify if it 
has remaining goals. If all the goals have been satisfied, 
the agent evacuates by going directly to the evacuation 
point. If there are still unsatisfied goals, the agent 
proceeds to select a new profile in the same way that it 
chose one initially. However, before selecting one it 
updates its profile’s list, as it has fewer goals now, so 
some profiles are not useful anymore. After deleting 
those profiles related with the satisfied goals, the agent 
chooses a profile form its list in the same way that it did 
initially.  

As a final note, the agent also has a timeout in case it 
spends too much time wandering across the map without 
reaching any goal. If the timeout finishes, the agent will 
select a new profile from the whole set, with the only 
condition that it has to be different than the previous one. 
This represents the agent deciding that its previous 
actions where not advancing it to the goal, and it has to 
"explore" the map. 
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