TFT—=IN—RYRAT L 122—138
(2000. 7. 26)

ST ZaT R T A ARG T DR SRR ST
Mo, WA

EHENTRRY HFRIFEH

T243-0292 FRFJIREART TEKEF 1030
NIRRT HRIER
TEL:046-291-3063(E &) FAX:046-242-8490(FH% %)

chen@ic.kanagawa-it.ac.jp

T S)
Skl AL I S 1 VA DE AN N2 S E PR R b A

Optimal Computer Resource Allocation for Continues Media Database
Xing Chen and Yasushi Kiyoki
Kanagawa Institute of Technology
Department of Information & Computer Sciences
Kanagawa Institute of Technology
1030 Simo-Ogino, Atsugi-shi
Kanagawa, 243-0292 Japan
Tel: +81-46-291-3063
Fax: +81-46-242-8490
E-mail: chen@ic.kanagawa-it.ac.jp
Abstract X .

In this paper, we apply a stream-oriented database processing scheme for the continues
media data processing. We focus on the presentation operations for the continues media data. In this
kind of processing, database operations are repeatedly executed. For example, in the case that
several music data streams are presented simultaneously, as that, stream-A and stream-B are

presented as the background music, stream-C is presented as the main melody music. It is clear that
when the background music is repeated, the datagase operation for processing the background music
must be repeatedly executed. It is shown in this paper that the overhead of the re-execution can be
reduced by optimal memory resources allocation. Therefore, we introduce an optimal memory
allocation method. A heuristics is utilized in the method. Based on the heuristics, the calculation
complexity of the method is reduced. We also discuss the property of the method and show several

calculation examples to clarify the efficiency of the method.
ke ds 1 a - ; .
ey words Jolobese. | Yesowrce allocetion mulgiwmadio. dade [roce ‘}‘unjq

Optimal Computer Resource Allocation for Continues Media Database

Xing Chen
Department of Information &
Computer Sciences
Kanagawa Institute of Technology
Atsugi, Kanagawa 243-0292 Japan
chen@hasu.cc.tsukuba.ac.jp

Abstract

Yasushi Kiyoki
Faculty of Environmental
Information
Keio University
Fujisawa, Kanagawa 252, Japan
kiyoki@sfe keio.acjp

In this paper, we apply a stream-oriented database processing scheme for the continues media data
processing. We focus on the presentation operations for the continues media data. In this kind of processing,
database operations are repeatedly executed. For example, in the case that several music data streams are
presented simultaneously, as that, stream-A and stream-B are presented as the background music, stream-C is
presented as the main melody music. It is clear that when the background music is repeated, the database
operation for processing the background music must be repeatedly executed. It is shown in this paper that the
overhead of the re-execution can be reduced by optimal memory resources allocation. Therefore, we introduce
an optimal memory allocation method. A heuristics is utilized in the method. Based on the heuristics, the
calculation complexity of the method is reduced. We also discuss the property of the method and show several
calculation examples to clarify the efficiency of the method.

1. Introduction

As the rapidly decreasing costs of storage and
advancements in compression techniques, it is easy to
store continues media data such as video and audio data
in database systems. It is possible to store thousands
hours of video data in a database system. Continues
media data operations, such as data retrieving and
presentation must provided to retrieve and view
continues media data. We have presented methods for
continues data retrieval and presentation [1,2].

The simplest way of presenting a continues media
data stream is to play the stream from the beginning to
the end. In a continues media database system, it is
necessary to provide more efficient methods to
presenting the continues media data stream. That is, to
play several continues media data streams in the order
according to queries. For example, when a stream,
stream-A, is played, another stream, stream-B, will
interrupt it. Then stream-B is played. When the playing
of stream-B is finished, stream-A will be played
continuously. The streams, stream-A and stream-B will
be presented according to a query in the order as:
stream-A, stream-B, and stream-A. Furthermore, it is
required that stream-A and stream-B are played
simultaneously, stream-A is played as the background of
stream-B. When more than one continues media data
streams are presented in a same time, optimal memory
allocation is required because there are no enough

memory resources to store several continues media data
streams in a same time.

Memory allocation is important in database systems.
Many memory allocation methods are proposed for the
relational database system [3,4]. Some new memory
allocation algorithms are proposed for advanced
database systems [5,6].

We have proposed a stream-oriented database
processing scheme for the advanced database processing
[7,8]. This scheme is based on the stream processing
principle [9]. The functional programming concept [10]
and the demand-driven evaluation method [11] are used
in the scheme.

The stream-oriented scheme is suitable for the
continues media data processing according to our
research.. In this paper, we will introduce a method
developed form [12] to improve the processing
efficiency of continues media data.

2. The stream-oriented database processing scheme

In the stream-oriented database-processing scheme,
a stream is an ordered sequence of data ‘which are
arranged according to the order of production. Each
element of a stream corresponds to a page, therefore, the
ordered sequence of pages is manipulated as a stream. In
the scheme, the demand-driven evaluation [11] is used
for processing database operations. Since the execution

and suspension of the computation are controlled by
demands, it is possible in a natural way to control the
computation. The computation of the operation
producing a stream can be controlled, according to the
computation speed of the operation consuming the
stream. Therefore, the demand-driven evaluation shows
outstandingly effective advantages in the following
aspects: which gives better control of parallelism, a
more selective evaluation, and a natural way of handling
large amounts of data within limited resource
environments.

In the stream-oriented scheme, a function produces
its return value as a stream, and an other function
consumes the stream as the actual argument. The
function which produces a stream is referred as producer
function, and the function which consumes the stream is
referred as the consumer function.

In the demand-driven evaluation, when an argument
of a function is encountered during the execution of the
function body, the argument is evaluated by issuing a
demand to its producer-function.

When more than two streams have to be executed
simultaneously, the producer function must begin the

computation before the consumer function needs the
actual argument. In our scheme, a demand is pre-
issued to the producer function before the consumer
function refers to the formal argument. The consumer
function of the stream-type argument propagates a first
demand to the producer function before the argument is
encountered. As a result, the producer function is
activated in advance and begins to produce the first
grain of stream elements. The producer function does
not create every stream element for a single demand.
The function creates only a single grain of stream
elements for a single demand. After the producer
function completes the production of a grain, it suspends
the computation until a subsequent demand arrives.

In the scheme, the "call-by-name" argument
evaluation method [10] is applied in the demand-driven
evaluation. In call-by-name, the formal argument is re-
evaluated whenever the argument is encountered in the
function body. In this evaluation, the actual argument is
removed after a reference to it is completed. When the
argument is needed to be re-evaluated, the operations for
producing the argument have to be re-executed.

Fig. 1 Stream-oriented processing

3. The relationship between memory resources and
the processing of continues media data

In the case that several continues media data streams
are processed simultaneously, for example, music data
streams, stream-A and stream-B are presented as the
background music, stream-C is presented as the main
melody music. The stream-oriented scheme is efficient
to support the processing as shown in Fig. 1. In the
stream-oriented scheme, each operation is decomposed
into a function tree. Nodes of the tree represent
functions and arrows represent streams. In Fig. 1,
stream-A is consumed by function-A, stream-B is
consumed by function-B and stream-C is consumed by
function-C. The produced stream of function-A is
consumed by function-B and the produced stream of

function-B is consumed by function-C.

In Fig. 1, if it is supposed that the background music
stream-A and stream-B are repeated during the playing
of the main melody stream-C, function-A and function-
B are repeatedly executed.

The processing efficiency of the repeated execution
of functions is affected by memory resources. Let’s use
Fig. 1 as an example to explain the relationship between
the number of repeated execution of functions and
memory resources.

Functions consume the streams by caching them in
buffers. In Fig. 1, three buffers bs,,bs,and bs, are

utilized to cache the streams, stream-A, stream-B and
stream-C.

If all the stream elements are cached in the buffers, it

is not necessary to refresh the buffer. If only half of the
total stream elements are cached in the buffer bs3, the

buffer has to be refreshed twice, and function-C has to
be re-executed twice. The number of repeated
executions of a function is affected by the buffer size.

4. The optimal memory allocation method

The following symbols are used in our discussion.

7 : the total number of buffers,
M : memory resources,

bs, : buffer and its size,
opbs, : the optimal buffer size of bs,,
d, : the steam size referenced by function-I

T,,,: the 1/O operation time that is needed to
read/write stream elements from the I/O device into
the buffer of function-i,

T,M: the time needed to transmit one byte from

/O device to the buffer of function-i,

T, : the time needed when an I/O access command
is sent from function-i until the first byte of the
stream is arrived to the buffer of function- 7,

T._,: the stream processing CPU time of function-
i (constant),

T, : the processing of the query.

The memory allocation problem is to minimize the
database processing time 7, in the limited memory

resources:
min(7;, (bs,,bs,,++,bs,). (1)

subject to:

M=) bs,. @

Continues media data can be presented in different
ways according queries, even if they are presented in the
way as shown in Fig. 1. In the following, we discuss one
of the presentation. In the presentation, the stream-A
and stream-B must be presented from the beginning to
the end for every requirement. The following formula

shows the processing time for this kind of processing,.

T, =T
dl
=T +T,,d+ b_) TS1+T2)
5
3)
_di -
Z:Tc~i+T;r-—i.d!+ E .(T\'z—!—]wié-l)

TH = 7—'(."“!7 +T;r—n ‘dn +|V dn -I.TS'/
bs i

n

The exhaustive computation can be used to find the
optimal memory allocation given by Formula (1) and (2).
The exhaustive computation requires evaluating
Formula (3) for all possible allocations of memory space
to each buffer. This method needs long calculation time
in the case that the memory space M is large. On the
other hand, since the computation for optimal allocation
often relies on the estimated parameters, the exhaustive
calculation may not always give the optimal allocation
result.

In this section, we use a heuristics for the optimal
memory allocation. The basic idea of our method is
shown in the following.

For a query decomposed into » functions, the
optimal buffer sizes are calculated as follows;

1. The buffer size bs, issetas M /n.

2. The buffer size bs, is increased by x as:

bsy=M/n+x, 0<x<M. The other
buffer sizes are set as: ‘

M —bs
bs, =—, 2<i<n.

n-1

Thus, the processing time 7] is the function of
x:

T =T, (x).
3. Drive out the value X, by which the value of

7, is minimal.

—100 —

When the value x, is driven out, the optimal buffer

size bs, is obtained:

opbs, =M /n+x,.

After the optimal size bs, is obtained, the optimal

buffer size bs, is calculated. The same two steps of
above are used. In general, for calculating the optimal
buffer size opbs,, the buffer size bs, is set as:

M~ Z ,0Pbs,
e (z—l)

the other buffer sizes are set as:

M- Z ,0pbs; —bs,

n—i

bs +x, 1G]

bs; = , i+1<7<n (5)

When the value of x; is driven out by which the value

of T, is minimal, the optimal buffer size opbs, is
obtained as:

—=E——tx, ©®

Consider the ceiling function in Formula (3), it is not
needed to set a buffer space larger than the space which
will cause the same number of the re-executions. Thus,
the buffer size is set as:

bs, = d, . o)

l M Z ,0pbs,

PR

In our method, the buffer size bs, is increased by x

+Xx

in order to reduce the value of re-execution factor

"

x is increased as:

bs, P

In the formula, P is an integer number: P =1,2,---.

When P is increased to P+I, we say that bs, is

increased in a step. Combing Formula (8) with Formula
(4), we obtained Formula (9):

] . Consider the ceiling function, the value of

bs, = d,)
___d_u _p
M- Z ,0pbs,
N EN
The maximal value of P is
.
"o M- Z ,0pbs,
() . (10)
3 d
M- Z ,0pbs,

Summarize all the above considerations, we present
our allocation algorithm.

Step-1:

Steps 2, 3 and 4 are repeated to calculated the
optimal buffer sizes. The initial value of 7 is 1 and the
end value of i is »-1; i is increased by 1 after each loop.

Step-2:
The buffer size bs,

and the buffer size bs I i<j<m, is calculated by

is calculated by Formula (9)

Formula (5). The value of opbs, is 0.
Step-3:

The value of 7, in Formula (3) is calculated. The
parameters of the buffer sizes for the calculation are

those obtained from Step-2. The value of T is assigned

1

to the variable 7 as the initial minimal value. The

buffer size bs, is assigned into the variable opbs, as
the initial optimal size.
Step-4

The buffer size bs,

increasing P in Formula (9): P=P+1. The steps 2, 3 and
4 are repeated until P is increased to its maximal value

is increased in a step by

—101—

P

max
Step-5:

The remained memory space is assigned to the
variable opbs, as the optimal buffer size.

n-1
opbs, =M — Zopbsi .
i=1
When the above 5 steps are finished, the optimal buffer
sizes, opbs,,opbs,, -+,0pbs, , are obtained.

5. Discussion and Calculation Examples

Analyzing Formula (3), it is clear that processing
time 7, is longer than that of 7,

i i+l

buffer size bs,, needs memory resources as that of

If increasing the

increasing the buffer size bs;, more benefit on
increasing processing performance will be obtained by
increasing the buffer size bs, rather than that by

increasing the buffer size bs,,,. Fig. 2 shows an

calculation example. In Fig. 2, there are three buffers.
The figure shows the relationship between processing

time TQ and the buffer size bs, by fixing the buffer
sizes of bs, and bs,. It also shows the relationship
between processing time 7, and the buffer size bs,

by fixing the buffer sizes of bs, and bs,. It is clear

that in both cases processing times are reduced to
minimum. However, the processing time is shorter by

increasing buffer size bs, rather than that by increasing

buffer size bs,.

The stream processing CPU time and the I/O
operation time also affect the optimal buffer sizes. Fig. 3
shows examples about that. Fig. 3(2) shows the case of
CPU sensitive processing. In this case, the optimal

buffer size bs, is 1024 pages. Fig. 3(b) shows the case
of 1/O sensitive processing. In this case, the optimal
buffer size bs, is 512 pages.

Query time

5t
4k
3t
2k
i F
|
0 + > t + Buffer
0 200 400 600 800 1024 1200 size
Parameters:
n=3 Te1=0.10(second)
M=1800 (page) Tc2=0.10(second)
dj =dy =d3 =1024 (page) Tc3=0.0 (second)
1 page=1024 bytes Tst =0.04(second)
Tey =5X107 (second)
Fig. 2: The query processing times
time time
200 10

150

100

[
0 200 400 600 80O 1024 O 200 si2

0 bt
800 1000 1200

Parameters: Parameters:
n=3 n=3
M=1408 (page) M=1408 (page)

dy=dy = =1024 (page)
Tcp =0.10 (second)
Tez =14.5(second)
Te3 =0.0(second)

Tsr =0.04 (second)
Ty =5X107 (second)
1 page=1024 bytes

(a) (b)

dy =dy=ck =1024 (page)
Ty =0.10 (second)

Tep =0.10 {second)

Te3 =0.0 (second)

Tse =0.04 {second)

Ty =5X10° (second)
1 page=1024 bytes

Fig. 3: CPU and I/O sensitive queries

—102 —

6. Conclusion

In the processing of presentation for continues
_media data, the overhead of the repeated execution of
database operations is one of the main factors affecting
the processing performance. The overhead of the
repeated execution of database operations can be
reduced by optimal memory allocation. In this paper, we
applied the stream-oriented scheme to processing the
presentation for continues media data. Based on the
scheme, a method for the optimal memory resources
allocation is presented. In order to simplify the optimal
allocation problem of the database operations, we
introduced a heuristics. The optimal memory resources
allocation method contributes to reducing the overhead
of the re-execution of functions and as the result, the
processing performance is improved.

We have discussed the property of the method and
presented several calculation results. From the results, it
is clarified that the query performance is effectively
improved by utilizing the method.

References

[1] Y. Kiyoki, T. Kitagawa, and T. Hayama, “A
metadatabase system for semantic image search by a
mathematical model of meaning,” Multimedia Data
Management 1998 pp. 191-222.

[2] .Y. Sato and Y. Kiyoki, “A semantic associative
search method for media data with story,”
Proceedings of the 18th IASTED International
Conference on Applied Informatics, pp., Feb., 2000.

[3] Won Kim. “A new way to compute the product and
join of relations,” In Proceedings of the 4 CM-
SIGMOD Conference on Management of Data, pp.
179-187, 1980.

[4] 1. L. Wolf, B. R. Iyer, K. R. Pattipati and J. Turek,
“QOptimal buffer partitioning for the nested block
join algoritm,” In Proceedings of 7th IEEE
International Conference on Data Engineering, pp.
510-519, April 1991.

[5] P. Liu, Y. Kiyoki, and T.Masuda, “A dynamic
resource allocation strategy in the stream-oriented
parallel processing scheme for relational database
operations,” Transactions of Information Processing
Society of Japan, Vol. 29, No. 7, pp. 656-668, 1988.

[6] P. Liu, Y. Kiyoki, and T. Masuda, “Efficient
algorithms for resource allocation in distributed and
parallel query processing environment,” In
Proceedings of 9th IEEE International Conference
on Distributed Computing Systems, pp. 316-323,

1989.

[7] Kiyoki, “A Stream-Oriented Parallel Processing
Scheme for Relational Database Processing,” Proc.
IEEE International Conference on Parallel
Processing, pp.1013-1020, 1986.

[8] Kiyoki, T. Kurosawa, K. Kato and T. Masuda, “The
Software Architecture of a Parallel Processing
System for Advanced Database Applications,” Proc.
7th IEEE International Conference on Data
Engineering, pp. 220-229, 1991.

[91 G. Kahn and D. MacQueen, “Coroutines and
Networks of Parallel Processes”, Proc. IFIP'77, pp.
993-998, 1977.

[10] P. Henderson, Functional Programming:
Application and Implementation, Prentice-Hall,
Englewood Cliffs, 1980.

[11] P. C. Treleaven, D. R. Brownbridge and R. P.
Hopkins, “Data-driven and Demand-driven
Computer Architecture,” ACM Comput. Surv., Vol.
14, No. 1, pp. 93-144, 1982.

[12] X. Chen and Y. Kiyoki, “The Optimal
Memory Allocation by Utilization cf Disk Space for
Stream-Oriented Database Processing,” 15th
IASTED International Conference on Applied
Informatics, pp. 45-50, 1997.

—103 —

