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Predicting Urban Dynamics with GPS data by
Multi-Order Poisson Regression Model

Yanru Chen1,a) Hayakawa Yuta1 Tsubouchi Kota2 Masamichi Shimosaka1

Abstract: Forecasting people flow in urban regions (urban dynamics) is playing an increasingly important role in
urban planning, emergency management, public services, and commercial activities. In this paper, we propose a
Multi-Order Poisson Regression Model for urban dynamics prediction based on an enriched and generalized feature
representation. In the proposed method, new features are produced by employing a variety of polynomial combinations
of multiple factors which greatly affect people flow (e.g., time-of-the-day, day-of-the-week, weather situation, holiday
information). The results obtained from an experiment with a massive GPS dataset show that the proposed method is
capable of producing models which have higher prediction accuracy compared to the state-of-the-art method.
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1. Introduction
Forecasting population density transition in urban regions, i.e.,

urban dynamics, is playing an increasingly important role in
many real-world aspects, such as urban planning [16], emergency
management [12], public services [13], and commercial activi-
ties.

In conventional urban dynamics studies, it is useful to ana-
lyze urban dynamics by using data from questionnaire-based sur-
veys [7]. However, it usually requires laborious work to conduct
questionnaire-based surveys. Thanks to the rapidly popularized
smart devices, a large amount of GPS data has been accumu-
lated. Therefore, many studies on urban dynamics analysis have
utilized mobility logs with GPS information without additional
survey costs.

Data obtained from GPS logs has its unique spatial-temporal
properties [17]. On account of the properties of GPS logs data
across regions, time and days, approaches based on tensor factor-
ization are frequently used for urban computing [2], [14], [19].
Tensor-factorization approaches have gained remarkable atten-
tion and adopted by many studies to extract urban dynamics
patterns [2], [15]. Moreover, Mixture Modelling, which has
high explanatory power with non-linear distributions, is another
prominent approach for the analytics of human activity patterns
[1], [3], [5], [6], [8]. Shimosaka et al. proposed a nonparametric
Bayesian mixture model to extract the daily pattern of population
transition [10]. However, in respect of urban dynamics forecast-
ing, those approaches based on mixture modelling or factoriza-
tion techniques are not capable of providing accurate prediction,
which is similar to the well-known cold-start problem in recom-
mendation systems [5].
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In contrast to previous work on urban dynamics patterns ex-
traction, many studies based on discriminative approaches have
been recently conducted and reported to achieve accurate predic-
tion results [4], [9], [18]. Shimosaka et al. [9] proposed a predic-
tive model called Bilinear Poisson Regression Model, which can
avoid the cold-start problem by utilizing contextual information
such as weather situation and calendar information.

However, when including multiple contextual information for
richer feature representation, there is no systematic feature de-
sign method for urban dynamics forecasting. In this paper, we
extend the idea of the Bilinear Poisson Regression Model pro-
posed by [9], by using a novel feature encoding approach which
includes polynomial combinations of multiple factors for feature
representation, and finally produce new predictive models for ur-
ban dynamics, which are called Multi-Order Poisson Regression
Models in this paper.

Our contributions of this paper can be summarized as follows:
( 1 ) We propose an enriched and generalized representation of

Multi-Order Poisson Regression Model for urban dynamics
prediction.

( 2 ) We propose a novel approach of feature encoding to produce
new predictive models based on Multi-Order Poisson regres-
sion. Specifically, we employ various polynomial combina-
tions of multiple factors in feature designing, and produce
new predictive models for urban dynamics.

( 3 ) We conducted experiments using a massive dataset of smart-
phone mobility logs with GPS information, and showed
that the proposed method is capable of producing predictive
models which achieve better predicition result compared to
the state-of-the-art method.

( 4 ) Predicition results of the various predictive models produced
by our approach show interesting trends and could serve as
an important benchmark for future work on urban dynamics
prediction models.
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2. Problem Setting
In this paper, the daily transition of the active population within

a target urban region is modelled as urban dynamics. We divide
one day into several time segments, and the active population in a
target area of a certain time segment is defined by the total num-
ber of access logs in that segment. It can be assumed that the
active population of each time segment follows a Poisson distri-
bution.

We denote the number of time segments in one day as S . In
a target urban region, hs represents the active population of the
s-th time segment, which is a non-negative integer. Therefore,
H = [h1, h2, . . . , hS ] can represent a one-day active population
transition. According to the prior work [9], we assume that each
hs follows a Poisson distribution, and thus the likelihood of hs can
be written as:

p(hs) = Pois(hs|λs) =
λhs

s e−λs

Γ(hs + 1)
(1)

where λs is the mean parameter of the Poisson distribution. With
this problem setting, in order to predict the true active popula-
tion hs, our task turns into formulating and estimating the mean
parameter λs .

3. Single-Order Poisson Regression Models
3.1 Time-only Poisson Regression Model

It is shown by observations that the active population is greatly
affected by time-of-the-day, so we can assume the mean param-
eter λ is regressed by the time factor with weight parameters.
Specifically, λ can be formulated as a function of a time feature
vector t shown as follows:

λ(t) = exp(t⊤W ) (2)

where W is a weight parameter vector, and t is an S -dimensional
vector of which the s-th component corresponds to the s-th time
segment.

Following the prior work [9], this time feature vector t can be
formulated as an indicator function of a normal distribution, in
order to smooth the time effect:

t = {ts|ts = N(s|τ, σ), s = 1, . . . , S }, (3)

where N(τ, σ) is a normal distribution with mean parameter τ
corresponding to the target time segment.

However, this Time-only Poisson Regression model does not
utilize contextual information such as day of the week, weather
situation and holiday information, and thus cannot capture the
effect of external factors on active population. Fig. 1 illustrates
the prediction result by Time-only Poisson Regression Model,
compared with the ground truth transition of a weekday and a
weekend in Shinjuku. It shows that Time-only Poisson Regres-
sion Model provides the same prediction result, regardless of the
significant difference of population transition between the week-
day and weekend.

3.2 Linear Poisson Regression Model
Prior studies show that the active population transition is
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Fig. 1 Time-only Poisson Regression Model
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Fig. 2 Linear Poisson Regression Model

closely related to many external factors such as day of the week,
weather situation and holiday information [9], [11]. To model the
transition in urban dynamics with these external factors, a naive
approach is to simply concatenate all the factors as the feature of
the model:

λ(t,d) = exp([t⊤,d⊤1 ,d
⊤
2 , . . . ,d

⊤
N]W ) (4)

where d = {d1,d2, . . . ,dN} are external factor vectors, and each
of them is encoded by One-Hot encoding method.

However, this model cannot work properly because it is not
capable to handle the interaction effect between factors. For ex-
ample, Fig. 2 shows the prediction results of population transition
of a weekday and a weekend in Shinjuku by Linear Poisson Re-
gression Model. Compared by the ground truth population, we
can see that although this prediction model could capture the de-
crease of the active population in the weekend, it cannot com-
bine time factor and day-of-the-week factor at the same time: In
Fig. 2, the predicted transition also have two commute peaks for
the weekend, which means Linear Poisson Regression Model is
not feasible to capture the coupling effect between time factor and
day-of-the-week factor, which is conforming to the discussion in
prior work [9].

3.3 Bilinear Poisson Regression Model
In order to handle the interaction effect between time factor and
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external factors on active population transition, a Bilinear Poisson
Regression Model is proposed in [9]:

λ(t,d) = exp([d⊤1 ,d
⊤
2 , . . . ,d

⊤
N]Wt) (5)

The weight parameter W here is in matrix representation. And
previous work has shown its advantage in handling the interaction
effect between time factor and external factors.

However, since all the external factors are simply concatenated,
coupling effect within external factors cannot be captured.

3.4 Multilinear Poisson Regression Model
Actually, the interaction effect between all factors on active

population transition can be handled by the following Multilinear
Poisson Regression Model:

λ(t,d) = exp(Vec(t ⊗ d1 ⊗ d2 ⊗ · · · ⊗ dN)⊤W ) (6)

where ⊗ is the Kronecker product operator, and Vec(·) denotes a
vectorization operation to expand the tensor-form feature into a
vector, and W is a weight parameter vector. Theoretically, the
idea of this Multilinear Poisson Regression Model is similar to
the model proposed in [11] which adopted a tensor-form for rep-
resenting weight parameter.

On the one hand, Multilinear Poisson Regression Model is
hopefully to capture the interaction effect between all factors, but
on the other hand, combining all the factors by Kronecker prod-
uct would increase the feature dimension and greatly worsen the
zero-frequency problem. For example, the rainy situation might
be less common in some areas compared to other weather condi-
tions, and a rainy Wednesday would be more uncommon. After
combining weather factor, day-of-the-week factor and time fac-
tor, it would result in some extremely rare situation (e.g., raining
at 13:00 on Wednesday) which might not appear in the training
dataset, and thus the model is not feasible to provide accurate
predictions.

Fig. 3 illustrates the prediction result of a population transition
of a rainy day and a sunny day in Shinjuku. We can see that, com-
pared with prediction result of the sunny day, the performance
of this model exhibits a dramatic decline during the period from
10:00 to 21:00 in the rainy day, which is probably resulted from
the worsened zero-frequency problem.

4. Multi-Order Poisson Regression Model
In respect of the polynomial terms composed by the indepen-

dent variables {d0,d1,d2, . . . ,dN} (time factor t is denoted as d0)
of the regression model, all the models discussed above only in-
clude terms with the same order. Furthermore, these single-order
regression models indicate a trend that models adopted low-order
terms (e.g., Linear Poisson regression Model) is not feasible to
capture the higher-order coupling effect, while models with high-
order terms (e.g., Multilinear Poisson Regression Model) only fo-
cus on high-order interaction of independent variables (factors),
and thus greatly worsen the zero-frequency problem.

The basic idea of the proposed Multi-Order Poisson Regression
Model is to combine low-order pattern and high-order interaction
effect simultaneously.
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Fig. 3 Multilinear Poisson Regression Model

4.1 The Enriched and Generalized Representation
Analogous to multiple linear regression, all of the Single-

Order Poisson regression models discussed above with indepen-
dent variables {d0,d1,d2, . . . ,dN} can be extended into an en-
riched and generalized representation:

ln λ(t,d)

= W0 +

N∑
i=0

d⊤i W
(i)
1 +

N∑
i=0

N∑
j=i

Vec(di ⊗ d j)⊤W
(i, j)
2

+

N∑
i=0

N∑
j=i

N∑
k= j

Vec(di ⊗ d j ⊗ dk)⊤W (i, j,k)
3 + . . .

(7)

where W0 is a constant, W (i)
1 ,W

(i, j)
2 ,W (i, j,k)

3 are all weight pa-
rameter vectors. Specifically, W1 is composed of weight param-
eter vectors corresponding to the first order terms, while com-
ponents of W2 are weight parameter vectors of the second order
terms, and so forth. Therefore, this generalized model can include
infinite terms of the independent variables with different orders.

Actually, each of the Single-Order Poisson regression models
discussed above (Time-only Poisson Regression Model, Linear
Poisson Regression Model, Bilinear Poisson Regression Model
and Multilinear Poisson Regression Model) can be treated as a
special case of this generalized model, with a certain combina-
tion of terms with the same orders.

In practice, we do not consider all the terms of this general-
ized model due to the concern of computation cost. In this paper,
we explore a number of combinations of different order terms
for feature encoding, from which new predictive models are ob-
tained and are generally called Multi-order Poisson regression
models in our work. The advantage of these method is that the
combination of low-order and high-order terms could capture the
higher-order coupling effect as well as lower-order patterns, and
the zero-frequency problem could thus be resolved, since the be-
havior patterns learned from lower-order terms could be utilized
for compensation by this model.

4.2 Practical Feature Encoding Approach
As mentioned previously, features for Multi-Order Poisson Re-

gression model can be produced by various polynomial combina-
tions of factors (including the time factor and external factors).
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In practice, we first determined several fundamental models and
then create various combinations and derivatives based on these
models.

Fundamental models used in this experiment include the 4
Single-Order Poisson Regression Models mentioned above and
an External-only Poisson Regression Model:
( 1 ) ( Time-only ):

Time-only Poisson Regression Model, defined by Eq. (2)
( 2 ) ( Linear ):

Linear Poisson Regression Model, defined by Eq. (4)
( 3 ) ( Bilinear ):

Bilinear Poisson Regression Model, defined by Eq. (5)
( 4 ) ( Multilinear ):

Multilinear Poisson Regression Model, defined by Eq. (6)
( 5 ) ( External-only ):

External-only Poisson Regression Model only includes ex-
ternal factors, simply concatenated into its feature. Although
this model alone may not achieve satisfying prediction re-
sult, it can be used as a baseline for comparison as well as a
fundamental model for combination. It is defined as follows:

λ(d) = exp([d1,d2, . . . ,dN]⊤W ) (8)

A variety of new Multi-Order Poisson regression Models can
be obtained from the derivatives based on the above fundamental
models, by employing some of the following operations:
• ( Simple Combination ):

Simply combine features from some of the fundamental
models into the feature of the new predictive model. For ex-
ample, combination of Linear and Bilinear model, denoted
as Linear+Bilinear, can be written as follows:

ln λ(t,d)

= [t⊤,d⊤1 , . . . ,d
⊤
N ,Vec⊤([d⊤1 , . . . ,d

⊤
N] ⊗ t)]W

(9)

• ( Adding a Constant Feature ):
Add a constant into the combination of features from some
of the fundamental model. For example, adding a con-
stant feature to Linear+Bilinear model, denoted as Lin-
ear+Bilinear+Constant, can be written as follows:

ln λ(t,d)

= [1, t⊤,d⊤1 , . . . ,d
⊤
N ,Vec⊤([d⊤1 , . . . ,d

⊤
N] ⊗ t)]W

(10)

In fact, a model with only a constant feature degenerates into
the simple Poisson Regression Model. Therefore, we expect
that the constant feature would be helpful to capture the ba-
sic rate of the active population transition behavior.

• ( Low-Rank Decomposition ):
The weight parameter vectors of all of the five fundamen-
tal models can be rewritten in matrix representation. Based
on the assumption that the rank of weight parameter matrix
is prone to decrease, we adopt a low-rank decomposition to
achieve rank reduction. Be noted that since the intention
of this operation is to reduce rank and make the parameter
learning more stable, we did not conduct this decomposition
on the models with quasi-diagonal weight matrix.
For example, the Linear+Bilinear+Constant model with

Low-Rank decomposition can be written as follows:

ln λ(t,d) = [1, t⊤,d⊤1 , . . . ,d
⊤
N ,Vec⊤([d⊤1 , . . . ,d

⊤
N] ⊗ t)]W

= [1,d⊤1 , . . . ,d
⊤
N]W [1, t]

(11)

For low rank decomposition, the weight matrix W ∈
R(M+1)×(S+1) shown above can be assumed to be a prod-
uct with two low-rank matrices, U ∈ R(M+1)×K and V ∈
R(S+1)×K . Note that K and M satisfy K ≪ M. And the above
equation turns into:

ln λ(t,d) = [1,d⊤1 , . . . ,d
⊤
N]W [1, t]

= [1,d⊤1 , . . . ,d
⊤
N]UV ⊤[1, t]

(12)

This shrinkage not only makes it more stable for learning the
parameters, but also helpful for understanding the character-
istics of urban dynamics.
In this paper, the model is optimized by maximizing the log
likelihood against training data. Given L days of training
data

D = (h(l,s), t(l,s),d(l,s)),

d(l,s) = [1,d(l,s)⊤
1 , . . . ,d(l,s)⊤

N ],

l = 1, . . . , L, s = 1, . . . , S ,

(13)

then the log likelihood of the data is written as:

ln L(U ,V )

=
∑

l

∑
s

ln Pois(h(l,s)|λ(t,d))

∝
∑

l

∑
s

{h(l,s)d(l,s)UV ⊤[1, t(l,s)] − exp(d(l,s)UV ⊤[1, t(l,s)])}

A regularization term can be added to prevent overfitting
problem, then the objective function is as follows:

Û , V̂ = arg min
U ,V

{− ln L(U ,V ) + Ω(U ,V )} (14)

where Ω(U ,V ) = γ||U ||22 +γ||V ||22 is the regularization term
with a hyper parameter γ (> 0). We use L-BFGS method to
alternatively optimize parameter matrix U and V .

5. Experiment
To order to evaluate the predictive performance of the various

Multi-Order Poisson regression models produced by the proposed
method, we conducted an experiment with a massive dataset with
GPS logs.

5.1 Dataset
The dataset of this experiment is extracted from a large number

of mobility logs obtained from the disaster alert mobile applica-
tion released from Yahoo! JAPAN*1. A mobility log was recorded
only when mobile devices were moving instead of being stable,
which is suitable for analysis of the active population transition.
As for target regions, 300 urban area are selected. The size of
the target areas was set to 900 × 900m2, and we count the num-
ber of access logs as active population within each target region

*1 http://emg.yahoo.co.jp/
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and each time segment of one year (from July 1, 2013 to June 30,
2014).

In this experiment, the width of each time segment is set to 30
minutes, and the fundamental period is 24 hours, starting from
3:00 and ended by 3:00 of the next day. We adopted the same
experiment setting as that of the prior study [9] which proposed
the Bilinear Poisson Regression Model.

5.2 Performance Measurement
The following two criteria were used as performance measure-

ment for comparison of different Multi-Order Regression Mod-
els: mean absolute error (MAE), and rank number (Rank).

Give the test data and prediction value:
h[l,s], λ̂[l,s], (l = 1 . . . L, s = 1 . . . S ),
The definitions of these two criteria are shown in Table 1

Table 1 Performance Measurement

Criteria Definition

MAE MAE = E(|h[l,s] − λ̂[l,s] |), where E(x) is the expectation of x

Rank

For each target region, a five-fold cross validation(CV)
was conducted for each model, and the average of MAE
over all CVs is obtained for each model. Then all the
models are ranked by average MAE on each target region.

5.3 Models For Comparison
In this part, we will introduce the Multi-Order Models pro-

duced by the proposed method. First, we selected three external
factors along with time factor for feature design. Formulation of
time factor has been introduced in the previous part of this paper.
As for external factors, we selected weather situation, day-of-the-
week and Is-Holiday-Or-Not information as external factors.

Day-of-the-week factor is denoted as a 7-dimentinoal vector
d1 with one-hot encoding. And Is-Holiday-Or-Not factor is a 2-
dimensional vector d2.

Weather data were collected from the Japan Meteorological
Agency’s website*2. The category of the weather was 1 to 4,
{sunny(1), cloudy(2), rainy(3), or rough weather(4)}. Denotes
weather factor as d3 with one-hot encoding, and then d3 is a 4-
dimensional vector.

By employing the feature encoding approach proposed in Sec-
tion 4.2, we produced 28 predictive models and compared their
performance in this experiment. A list of these models with for-
mulation details is shown in Fig. 4.

5.4 Results
Fig. 5 exhibits the distribution of Rank for each model. We

can see that the model LowRank(Linear+Bilinear+Constant),
which is generated by the proposed approach, is ranked first on
246 out of 300 regions, while LowRank(Bilinear) model ranked
4th on 240 out of 300 regions.

Table 2 shows the performance of 28 predictive models. In

*2 http://www.data.jma.go.jp/obd/stats/etrn
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Fig. 4 List of Models for Comparison

Table 2 Performance Comparison

Models MAE Mean Rank Mean

Time-only Plain 166.29 21.9
+ C 167.25 23.3

Linear Plain 134.95 21.7
+ C 134.71 20.8

Bilinear
Plain 118.37 15.8
+ C 116.95 10.4
LR 115.60 4.2

Multilinear
Plain 250.18 25.8
+ C 156.65 24.4
LR 130.87 21.4

External-only Plain 331.78 27.9
+ C 331.58 27.0

Linear+Bilinear
Plain 116.30 7.9
+ C 116.07 6.5
+ C & LR 115.07 1.3

Linear+Multilinear Plain 119.87 17.4
+ C 119.61 16.5

Bilinear+Multilinear
Plain 122.52 19.1
+ C 118.17 14.9
LR 117.64 13.6

Linear+Bilinear+Multilinear Plain 117.26 11.7
+ C 116.97 9.9

Bilinear+Time-only
Plain 116.16 7.5
+ C 115.80 5.1
LR 115.16 2.0

Bilinear+External-only
Plain 117.41 13.0
+ C 117.21 11.7
LR 115.46 3.2

this table, MAE Mean is the average MAE value over all 5
CVs and across all 300 target regions of each model. Similarly,
Rank Mean is the average Rank for each model.

The first column shows the combinations of 5 fundamental
Single-Order models, the second column shows the operation
based on such combinations: “Plain” here means plain model
which is same as shown in the first column, “+C” means com-
bined with a constant feature, “LR” means conducted Low-Rank
decomposition on weight parameter matrix, “+C & LR” means
conducted Low-Rank decomposition based on the model which
has included a constant into its feature.

We can conclude from this table that:
• LowRank(Linear+Bilinear+Constant),

LowRank(Bilinear+Time-only), LowRank(Bilinear+External-
only), which are produced by the proposed method, all out-
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
LowRank( Linear + Bilinear + Constant ) 115.07 1.29 246 43 3 3 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LowRank( Bilinear + Time-only ) 115.16 2.01 36 242 14 4 2 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LowRank(Bilinear + External-only ) 115.46 3.22 2 4 252 25 8 7 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LowRank( Bilinear ) 115.60 4.22 4 1 9 240 25 8 8 4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bilinear + Time-only + Constant 115.80 5.14 7 3 14 17 200 34 12 4 4 1 2 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
Linear + Bilinear + Constant 116.07 6.49 0 1 3 4 24 161 71 18 8 3 2 3 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
Bilinear + Time-only 116.16 7.50 0 1 3 6 24 54 63 61 50 29 8 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Linear + Bilinear 116.30 7.94 0 0 0 0 0 4 87 164 30 10 1 0 3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
Bilinear + Constant 116.95 10.38 0 0 0 0 0 0 0 0 100 71 81 29 8 9 1 0 0 0 0 0 1 0 0 0 0 0 0 0
Linear + Bilinear + Multilinear + Constant 116.97 9.86 0 0 0 0 10 18 41 31 50 44 33 30 18 6 3 3 5 3 2 1 0 2 0 0 0 0 0 0
Bilinear + External-only + Constant 117.21 11.74 0 0 0 0 0 1 0 0 9 56 61 99 43 20 8 2 0 0 0 0 0 0 0 1 0 0 0 0
Linear + Bilinear + Multilinear 117.26 11.69 0 0 0 0 0 1 8 11 22 68 41 42 56 25 8 2 4 6 3 1 2 0 0 0 0 0 0 0
Bilinear + External-only 117.41 13.04 0 0 0 0 0 0 0 0 1 4 35 59 105 51 37 5 1 1 0 0 0 1 0 0 0 0 0 0
LowRank( Bilinear + Multilinear ) 117.64 13.56 0 0 1 0 1 2 1 3 23 11 27 21 35 46 73 31 9 5 2 9 0 0 0 0 0 0 0 0
Bilinear + Multilinear + Constant 118.17 14.91 0 0 0 0 0 0 1 0 0 0 1 7 22 104 77 68 3 2 6 6 1 2 0 0 0 0 0 0
Bilinear 118.37 15.81 0 0 0 0 1 2 5 1 1 0 3 8 5 20 58 84 29 83 0 0 0 0 0 0 0 0 0 0
Linear + Multilinear + Constant 119.61 16.47 0 0 0 0 1 0 0 1 0 0 1 0 1 10 24 90 139 29 3 0 1 0 0 0 0 0 0 0
Linear + Multilinear 119.87 17.43 0 0 0 1 0 0 0 0 0 1 0 1 0 0 7 11 108 168 0 2 1 0 0 0 0 0 0 0
Bilinear + Multilinear 122.52 19.13 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 270 5 14 1 7 0 0 0 0 0
LowRank( Multilinear ) 130.87 21.43 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 155 15 39 6 84 0 0 0 0
Linear + Constant 134.71 20.77 0 3 1 0 1 2 0 1 1 1 0 1 1 5 0 0 0 1 1 32 124 79 41 5 0 0 0 0
Linear 134.95 21.65 3 1 0 0 2 1 1 0 0 0 2 0 2 2 3 0 1 0 1 4 33 123 74 46 1 0 0 0
Multilinear + Constant 156.65 24.42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 80 6 211 1 0 0
Time-only 166.29 21.91 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 11 79 48 13 61 76 9 0 0 0
Time-only + Constant 167.25 23.26 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 6 58 40 29 78 79 9 0 0
Multilinear 250.18 25.79 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 2 4 0 282 1 7
External-only + Constant 331.58 27.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 283 9
External-only 331.78 27.95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 284

Distribution of Rank
Model MAE_Mean Rank_Mean

Fig. 5 Distribution of Rank of each model

performed the state-of-the-art model LowRank(Bilinear)
in this experiment.

• Among most of the models compared in this experiment,
adding a constant term in feature encoding could be helpful
to improve prediction performance. This is probably because
models including the constant term could capture the basic
constant behavior of population transition, and thus help to
obtain more accurate prediction results.

• Compared to the original plain model, those models using
Low-rank approximation achieve better performance.

6. Conclusion
In this paper, We propose a Multi-Order Poisson Regression

Model with an enriched and generalized representation for ur-
ban dynamics prediction. We have explored a variety of polyno-
mial combinations of multiple factors for feature designing. Ex-
periments are conducted using a massive dataset of smartphone
mobility logs with GPS information, and the results showed that
the proposed method is capable of producing predictive models
which achieve better prediction result compared to the state-of-
the-art model.

The spatial properties of mobility data could be taken into ac-
count for further study. In this work, we treated each region
as an independent learning task. Multi-task learning techniques
could be employed to improve predicition performance (espe-
cially for regions have low active population intensity), by con-
sidering the spatial correlation among tasks. Furthermore, induc-
tive approaches could be developed to automatically produce the
best-performed combinations based on the enriched and general-
ized representation proposed by this paper.
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