TF=IRN—ZAVRAT L 122—4
(2000. 7. 26)

BT — S BORIZ BT BHMO B LT ¥ 2 ¥ a v oXiEhE

MR B
LN 25
E-mail:{lsk kitsure} @tkl.iis.u-tokyo.ac.jp

Abstract

RO T = Y PR - =D 2N DL EHDP SRBIIMY L7 — ¥ 2 RET 52 L 2 Wi+ 2
DT =8k A= L o T Y — 7 2y v M T VR A SN RIER S v, D 0%
T, BEOT— A BT 2FWMVEHD LT o H 22 a v Lo TERENLF— 5T A5 4D
—HUEERDO I L OB OV THENTY1 2, Predeclaration & autoprefetching k44755 —
SBELBIT DRIV F s v a vBOLOIERICENTHL L VI JLPRIT SN D, 1517, Tha
DB, BN ERAO L7 02 Y a VI REREOR S A BIBS S0 Y~ N—OBEHOE L OH
BEZVLIERCERICRES DI LR WEICT 5, 43, FHVERO M V#2720 v um
~DJHEE LT PwA (Predeclaration with Autoprefetching) i2 DWW T2, £ LT 72, S4HY
WEZEIC &) A OFHOMREEFMT 5,

Supporting Read-only Transactions in Wireless Data Broadcast

SangKeun Lee and Masaru Kitsuregawa,
Institute of Industrial Science, The University of Tokyo
E-mail: {Isk,kitsure}@tkl.iis.u-tokyo.ac.jp

Abstract

While wireless data broadcast allows users to retrieve data simultaneously independent of the num-
ber of them, data can only be accessed strictly sequential by users. This paper addresses the issue
of maintaining consistency of data items requested by mobile read-only transactions in wireless
data broadcast. It is demonstrated that the combination of predeclaration with autoprefetching
is highly advantageous for transaction processing in data broadcast. In particular, our approach
allows read-only transactions to process successfully without increasing the broadcast cycle length
or being considerably affected by the rate of updates at the server. We describe PuwA (Predecla-
ration with Autoprefetching) method for read-only transactions processing, and also evaluate the
performance of our method by an analytical study.

1 Introduction

In wireless computing, the stationary server ma-
chines are sometimes provided with a relatively high-
bandwidth channel which supports broadcast delivery
to all mobile clients located inside the geographical re-
gion it covers. This facility provides the infrastructure
for a form of data delivery called push-based delivery.
Push-based delivery is important for a wide range of ap-
plications that involve dissemination of information to
a large number of clients. Dissemination-based appli-
cations include information feeds such as stock quotes
and sport tickets, electronic newsletters, mailing lists,
traffic management systems. In such applications, the
server repetitively broadcast data to a client population
without a specific request. Clients monitor the broad-
cast channel and fetrieve the data items they need as
they arrive on the broadcast channel.

In the wireless broadcast environment, if there is a
mobile client waiting for a data item, the client will get
the data item from the air while it is being broadcast
by the server. Thus, the cost for data dissemination
is independent of client number since a data broadcast
can satisfy multiple clients waiting for the same data
item, resulting in a much more efficient way of using
the bandwidth. It is therefore quite suitable for dissem-
inating substantial amount of information and data to
a large number of mobile clients where bandwidth effi-
clency is a major concern. An important consideration
in data broadcast is to provide consistent data values
to mobile transactions. In data broadcast, transactions
do not need to inform the server or set any locks at
the server before they access data items. They can get
data items from the air while the data items are being
broadcast. Iowever, if updates at the server are done
concurrently, the transactions may observe inconsistent
data values. This paper addresses such a consistency
problem in wireless data broadcast.

Recently, several approaches to consistent data ac-
cess despite updates in wireless data broadcast have
been proposed in the literature [LAC99, PC99a, PCI9b,
SNS*99]. Update-first with order (UFO) algorithm pro-
posed in [LAC99] checks data conflicts among broad-
cast transactions and update transactions instead of
detecting conflicts among mobile transactions and up-
date transactions. By re-broadcasting conflicting data
items, this algorithm ensures that the serialization or-
der of a broadcast transaction is preceded by an con-
flicting update transaction. Since mobile transactions
read data items from broadcast transactions, their seri-
alization orders are always preceded by broadcast trans-
actions. Ilowever, this method is vulnerable to perfor-
mance degradation in the case of heavy updates.

A control matrix is used for concurrency checking in
[SNST99], and serialization graph testing method is pro-
posed in [PC99a]. The major problem with these ap-
proaches is that the large overhead is involved in main-
taining control information for concurrency control and
conflict detection. Furthermore, maintaining control
matrix or serialization graph involves complicated pro-
cessing at the server. A simple invalidation-only method

is also presented in [PC99a). In this method, how-
ever, read-only transactions processing is significantly
affected by the rate of updates at the server. To increase
the number of read-only transactions that are success-
fully processed despite updates at the server, multiver-
sion schemes are employed in [PC99b]. However, multi-
version schemes increase the broadcast cycle length, so
they impose a serious performance problem.

In this paper, we investigate a read-only transaction
processing scheme that facilitates predeclaration com-
bined with local caching. In a traditional pull-based
data delivery, predeclaration technique has often been
used to avoid deadlocks in locking protocols [BIIG87].
In the push-based data delivery, however, predeclara-
tion in transaction processing has a very useful prop-
erty that each read-only transaction can be processed
successfully with a bounded worst-case response time.
Only assuming that the server broadcasts transaction-
ally consistent (i.e., serializable) data values in each
broadcast cycle !, the consistency of read-only trans-
actions is easily guaranteed. In particular, predecla-
ration combined with invalidation-based cache consis-
tency maintenance can process read-only transactions
successfully even when their processing is across more
than one broadcast cycle. In this way, read-only trans-
actions are processed successfully without increasing
broadcast cycle length or being considerably affected
by the rate of updates at the server. The strength of
our method is based on the assumption that a mobile
client is equipped with enough local storage capacity
to hold all data items needed to execute its transac-
tion. This assumption is valid due to the fact that even
though there exists no hope to increase battery life, re-
cent advances in the hardware indicate that processing
power, main memory and local storage capacity will be
increased.

The remainder of this paper is organized as follows.
Section 2 introduces basic preliminaries. Sections 3 and
4 describe our PwA method for processing mobile read-
only transactions and an analytical study, respectively.
We conclude in Section 5.

2 Preliminaries

The server periodically broadcasts data items to a
large client population. Iach period of broadcast is
called a broadcast cycle or beycle, while the content of
the broadcast is called a bcast. Each client listens to
the broadcast and fetches data as they arrive. This way
data can be accessed concurrently by any number of
clients without any performance degradation. However,
access to data is strictly sequential, since clients need to
wait for the data of interest to appear on the channel.

Clients access data from the bcast in a read-only
mode, and maintain their local caches. We assume that
the cache at a mobile client is a nonvolatile memory such
as a hard disk. At any given time, it is assumed that

!This kind of assumption was also made in [PC99a,
PCI9b].

there exists a single read-only transaction in a mobile
client. Clients are assumed to have only predictable and
willing disconnections (e.g. go into a doze mode to con-
serve batter power). Clients do not need to continuously
listen to the beast. They tune-in to read specific data
items. To do so, clients must have some prior knowl-
edge of the structure of the bcast that they can utilize
to determine when the item of interest appears on the
channel. In this paper, we assume that the location of
each data item in the broadcast channel remains fixed
and clients have sufficient storage capacity, thus an in-
dex for the data of interest may be maintained locally
at each client (our work is also applicable to the case
where some form of directory information is broadcast
along with data items without loss of generality).

2.1 Predeclaration and Its Useful-
ness

To disseminate data via broadcasting, the server con-
structs a broadcast program and periodically transmits
data according to the program. In a uniform broadcast
program all data items are broadcast once in a beycle
regardless of their access frequencies. On the contrary, a
nonuniform broadcast program favors data with higher
access frequencies. Hence, in a beycle of a nonuniform
broadcast, while all data items are broadcast, some will
appear more often than those that are less frequently
broadcast. For example, two different bcast organiza-
tions are illustrated in Figure 1, where the server broad-
casts a set of data times {ds, d2,ds,ds,ds,ds,d7} in one
beast according to a broadcast program (d; is the most
frequently accessed item, d» and d3 are less frequently
accessed ones, and d4, ds, d¢ and d7 are least frequently
accessed ones). Program (a) is a uniform broadcast pro-
gram, while (b) is a nonuniform broadcast program.

(b) Nonuniform Broadcast Program

Figure 1: Bcast Organization using Uniform vs.
Nonuniform Broadcast Programs

To first show that the order in which a transaction
reads data affects the response time of the transaction,
consider a client transaction program starting its exe-
cution at the beginning of the beycle in Figure 1.(a):

IF (de < 3) THEN read(d;) ELSE read(ds).

Since both d; and dy precede dg in the bcast and ac-
cess to data is strictly sequential, the transaction has
to read ds first and wait for the next cycle to read the

value of d; or dz. Waiting for the next cycle is also nec-
essary in the case of Figure 1.(b) if the transaction has
to read dy after reading dg. If, however, all data items
that will be accessed by a transaction are predeclared
in advance, a mobile client can hold all necessary data
items within a single bcycle.

Another point, however, is not as obvious that the re-
spouse time of a transaction can be affected by a trans-
action’s local processing delay. This is true even when
the order in which a transaction reads data is consistent
with the order in which data items are broadcast by the
server. The reason is that after reading one data item,
there will be a slight delay before a transaction is ready
to read the next. If the next data the transaction re-
quires is broadcast in the immediately next position in
the current bcast, that data will have already passed by
the time the transaction is ready for it. Thus the trans-
action would have to wait another bcast before that data
came by again. If, however, all data items that will be
accessed by a transaction are predeclared in advance, a
mobile client will have time to get ready to read before
the data its transaction needs reaches itself.

2.2 'Transactional Consistency and
Transaction Length

The server broadcasts the content of a database. A
database consists of a finite set of data items. We as-
sume that the server broadcasts only transactionally
consistent data values in each bcycle, and serializability
[BHGB87] is adopted as a correctness criterion,

While data items are being broadcast, update trans-
actions are executed at the sexver that update the values
of the data items broadcast. In particular, we assume
that the values of data items that are broadcast during
each beycle correspond to the state of the database at
the beginning of the cycle. Thus, a read-only transac-
tion that reads all its data within a single beycle can be
successfully executed without any concurrency control
overhead at all. In reality, however, most transactions
will be started at some point within a bcycle, thus may
have to read data items from different bcasts. In such
a situation, there is no guarantee that the values they
read are transactionally consistent. This is also true to
the case in which the readset of a transaction is prede-
clared in advance.

3 Supporting Read-only

Transactions

In this section, we show that the serializability of mo-
bile read-only transactions can be maintained in the en-
vironment where data are being updated and dissemi-
nated from the server.

3.1 Predeclaration of ReadSet

The basic principle of our method is to employ pre-
declaration of readset in order to minimize the number
of different bcycles from which transactions read data.
We define the predeclared readset of a transaction T,
denoted by Pre_RS(T'), to be a set of data items that
T reads potentially. Note that additional reads may
be included to the predeclared readset due to control
statements such as if-then-else and switch statements in
a transaction program. Each mobile client processes its
read-only transaction, T, in three phases:

1. Preparation phase: it gets Pre_RS(T);

2. Acquisition phase: it acquires all data items be-
longing to Pre_RS(T) from its local cache or the
beast(s); and

3. Delivery phase: it delivers data items to its trans-
action according to the order in which the trans-
action requires data.

The execution of read-only transactions is clearly se-
rializable if it can fetch all data items within a single
beycle. In reality, however, a transaction is expected
to be started at some point within a bcycle, thus its
acquisition phase may be across more than one beycle.
In the following section, handling such a situation is
addressed.

3.2 Caching and Invalidation Bit
Patterns

In our method, caching technique is employed in the
context of transaction processing, so transaction seman-
tics are not violated as a result of the creation and de-
struction of cached data based on the runtime demands
of clients. In particular, the maintenance of cache con-
sistency is based on invalidation bit patterns broadcast
by the server. In an invalidation bit pattern, each bit
corresponds to a single data item in the database (re-
call that the location of each data item in the broadcast
channel remains fixed) and a bit is set to 1 if its cor-
responding data item has been updated at the server
during the previous bcycle. Bits are set to Os if their
corresponding data items have not been updated at the
server during the previous beycle. Each beast is pre-
ceded by an invalidation bit pattern.

During its acquisition phase, in addition to
Pre_RS(T), a client keeps a set Acg_RS(T') of all data
items that it has acquired from its local cache or the
broadcast channel so far. Clearly, Acqg_RS(T’) is a sub-
set of Pre_RS(T). At the beginning of each bcast,
the client tunes in and reads the invalidation bit pat-
tern broadcast by the server. If any data item d; €
Acqg-RS(T) was updated, that is if a bit correspond-
ing to ds is 1 in the invalidation bit pattern, the client
marks d; as "invalid” and gets d; again from the current
bcast and puts it into local cache. Cache management
in our scheme is therefore an invalidation combined with
a form of autoprefetching [AFZ96b]. Invalidated data
items remain in cache to be autoprefetched later. In

particular, at the next appearance of the invalidated
data item in the bcast, the client fetches its new value
and replaces the old one. .

During its delivery phase, however, the timing when
the client fetches a new value for an invalidated item
again should be slightly modified. This is because a
transaction may not read consistent data if the client
replaces an item belonging to Acg_RS(T’) with a new
value during delivery phase. One way of avoiding this
undesirable situation is that the client does not replace
an invalid item belonging to Acq.RS(T") with a new
value until its current transaction is completed. Since
all data items necessary for the transaction are already
in local cache, however, the delayed period is negligible.

3.3 PwA method for
Read-only Transactions

Processing

In this section, we describe PwA (Predeclaration with
Autoprefetching) method. A mobile client processes
its read-only transaction T; according to the following
PwA method:

1. Preparation phase

(a) The client gets Pre_RS(T;) and assigns an
empty set to Acq_RS(T3).

(b) The client executes Step 2.
2. Acquisition phase

(a) Foreach d; € Pre_RS(T), if it resides in local
cache and is not marked as "invalid”, the client
puts d; into Acq RS(T).

The client tunes in and reads each d; €
Pre RS(T;) — Acqg_RS(T;) from the bcast(s)
according to the order in which they appear on
the air. Whenever each d; is read, it is put into
local cache and added to Acq_RS(T3).

During Step 2-(a) or 2-(b), the client listens to
an invalidation bit pattern, if any, broadcast by
the server. If d; € Acg.RS(T;) is invalidated,
the client excludes d; from Acg_RS(T;). Data
item d; is added to Acg_RS(T;) again when it
is autoprefetched from the bcast.

If Acq RS(T:) is equal to Pre_RS(T3), then
the client executes Step 3.

(b

(c

~

(d

~

3. Delivery phase

(a) The client delivers data items to 7} according
to the order in which T requires them.

(b

~

During Step 3-(a), the client listens to an in-
validation bit pattern, if any, broadcast by the
server. If di € Acqg-RS(Ti) is invalidated,
the client marks d; as "invalid” in local cache.
However, the client does not exclude d; from
Acqg_RS(T3). Also, the client does not fetch d;
from the bcast again until Step 3-(c) is com-
pleted.

(c) If a commit operation is issued from Tj, the
client commits it successfully.

Obviously, PwA method never aborts read-only
transactions without resorting to multiversion schemes
which increase the broadcast cycle length considerably.
Furthermore, PwA method is at minimum vulnerable
to the rate of updates at the server. In particular, in
the absence of unwilling disconnections, all data items
needed for a read-only transaction can be fetched from
at most two different bceasts. This leads to a consider-
able reduction of transaction response time compared
to other schemes.

Theorem 1. PwA method generates serializable exe-
cution of read-only transactions if the server broad-
casts only serializable data values in each bcycle.
Proof. Let beycle; be the beycle during which a
transaction T} is committed and DS; be the se-
rializable database state that corresponds to the
beycle beycles, i.e., the database state at the begin-

ning of beycle;. We show that the values read by.

T} correspond to the database state DS; by using
a contradiction. Let us assume that the value of
data item dj read by T} differs from the value of d;
at DS;. Then, an invalidation bit pattern should
have been broadcast at the beginning of beycle;
and thus d; should have been invalidated. O

4 Analytical Study

In this section, we analyze the performance of trans-
action processing methods in terms of average response
time. The average response time is measured in the
number of data items. In particular, we study both
PwA and previous methods in both a uniform and a
nonuniform bcast environments.

In the uniform bcast, all D data items are broad-
cast periodically. In the nonuniform bcast, the D data
items are split into n partitions, where each partition
comprises data items with similar access frequencies.
Partitions with larger access frequencies will be broad-
cast more often than those with lower access frequen-
cies. Let partition i be broadcast A; times (1 <1 < n).
Moreover let A; > Aj for 0 < ¢ < j and An = 1. Let
A be LCD(least common multiple) of A; for all 4. In
[AAFT95], the ith partition, P; (1 < i < n), is further
split into ¢; chunks (¢; = A/A;). The data broadcast is
then organized by a broadcast program that interleaves
the chunks of the various partitions. The broadcast pro-
gram can also be viewed as a sequence of equal sized
segments such that P, appears in all segments. Since
P; is broadcast A; times, there are \; segments and
each segment contains Y ., A:|Pi|/A; objects, where
| P;| denotes the number of data items in partition i.

Let |U] and |NU| be the number of objects in a sin-
gle beycle for the uniform bcast and the nonuniform
bcast, respectively. In the uniform bcast, any data
item appears only once in a beycle. Thus, {U] is the
number of data items in the database. For the nonuni-
form bcast, the number of data items in a bcycle is

INU| = 3"7_, Ai|Pi|, where {P;| is the number of data
items in partition ¢. Obviously, |NU| > |U|. Further-
more, let a¥(or aV) and a¥ (or a'V) be the average
response time for accessing a single data item and the
average response time for accessing multiple data items
in a given transaction for the uniform (or nonuniform)

beast, respectively.

4.1 Uniform Bcast

For the uniform bcast, the average response time for
a single data item (the time elapsed from the moment
a client requests for a data item to the point when the
desired one is downloaded by the client) will, on average,
be half the time between successive broadcasts of the
data items, i.e. al = %|U}

Let us first consider the case where there is no up-
dates at the server so the execution of read-only trans-
actions is always committed successfully. With the use
of invalidation (InV) method proposed in [PC99b],
the average response time for a transaction accessing
m data items can be computed as (the client retrieves
data items in a one-at-a-time fashion),

af (InV) = Z|U] 0]
Note that the average response time of InV method
will be reduced to some extent if local caching is em-
ployed. For comparison purpose, we assume that cache
management is an invalidation combined with a form of
autoprefetching. We call such a method JTwA. Let h be
the cache hit ratio of client caching. Then the average
response time can be calculated by,

_ m(l—h)
==

af (IwA) (@)
‘With the use of PwA method, the average response time
is dominated by acquisition phase since both prepara-
tion and delivery phases are short enough to neglect,
ie.
a/ (PwA) < U 3
The inherent drawbacks behind both InV and IwA
methods are that they are prone to starvation of read-
only transactions by updates at the server and they per-
form poorly when the number of data items a transac-
tion requires is increased. That is, the performance of
InV and IwA methods is very sensitive to both up-
date rate and the number of data items necessary for
a transaction. In order to increase the number of read-
only transactions that are successfully processed, broad-
casting multiple versions of data items is proposed in
[PC99b]. Multiversioning (M V') method can effectively
increase the number of read-only transactions that are
successfully committed. To process every read-only
transaction successfully by using multiversioning, how-
ever, the server should maintain enough large number
of old versions per data item. Keeping multiple ver-
sions in the uniform bcast leads to the increased length
of beycle, which is proportional to the number of addi-
tional versions per data item, thereby resulting in the
increased average response time.

If the average number of updated data items during
a single beycle (ie. [U]) is Ne and the server maintains
large k old versions per data item enough to process all
read-only transactions successfully, the increase for old
versions on the bcast is at least kN.. Thus, the average
response time of a transaction is,

(4)

Note that the average response time of MV method
will be reduced to some extent if local caching is em-
ployed. For comparison purpose, we assume that cache
management is an invalidation combined with a form of
autoprefetching. We call such a method MVwA. Let
h be the cache hit ratio of client caching. Then the
average response time can be calculated by,

ol (MV) = %(|U| + kN)

¥ (MVwA) = Mqui+eny ()
However, using part of the cache space to keep old ver-
sions seems to result in a very small increase in concur-
rency of long running transactions, since the effective
cache size is decreased [PC99b].

In contrast to these multiversion approaches, PwA
approach is more immune to updates at the server and
totally immune to the number of data items a trans-
action accesses at the cost of space complexity on the
client side. In particular, the average response time of a
transaction in PwA method is bounded by 2|{U]| without
respect to the cache hit ratio, i.e.

af (PwA) < 2|U]

m(l —
2

(6)

4.2 Nonuniform Bcast

For the nonuniform bcast, the average response time
for a single data item is optimal when the inter-arrival
time between two consecutive occurrences of a data item
is always the same, i.e., there is no variance in the inter-
arrival time for each data item [VI99]. When the inter-
arrival rate of a data item is fixed, the expected delay
for a request arriving at a random time is one half of
the gap between successive broadcasts of the data item.
For each data item d; € D, thus, the expected delay of
di, w(ds), is J;V—,Ul, where f; is the frequency of d;.

The expecteci average response time for any data re-
quest is calculated by multiplying the probability of
access (denoted by p(di)) with the expected delay of
each data item and summing the results, i.e. oV =
Ed,»epp(di)w(d")' With the use of InV method, as-
suming that there is no updates on the server side,
the average response time for a transaction accessing
m data items can be computed as (the client retrieves
data items in a one-at-a-time fashion),

oV (InV)=m z p(ds)w(di)

dieD

(M

Also, the average response time of JwA method can by
calculated by,

ol (IwV) = m(1 — k) Z p{ds)w(ds)

d;eD

®

With the use of PwA method, the average response time
is dominated by acquisition phase, i.e.
ai" (PwA) < [NU| ©

In [PCY9b], three approaches are proposed to main-
tain old versions of data items in the nonuniform bcast:
clustering, overflow bucket pool and new disks. With
any approach to bcast organization, keeping multiple
versions in the nonuniform bcast, as is the case with
the uniform bcast, leads to the overall increased length
of beycle, which is proportional to the number of accom-
modated old versions per data item, thereby resulting
in the increased average response time.

Although the inter-arrival time between two consec-
utive occurrences of a data item may be different on a -
beast organization carrying old versions of data items,
we assume that there is some optimal bcast organization
in which the inter-arrival time of a data item is same.
If the average number of data items that have updated
during a single beast (i.e. |NU|) is Nc and the server
maintains large k old versions per data item enough to
process all read-only transactions successfully, the in-
crease for accommodating old versions on the bcast is
at least kN.. For each data item d; € D, thus, the ex-
pected delay of d;, wc(di), is %}i&, where f; is the
frequency of d; on the bcast accdmmodating old ver-
sions of data items along with up-to-date data items.
The expected average response time for any data re-
quest is calculated as ol V(MV) = Zd,-eup(di)“’c(di)*
and the average response time for a transaction access-
ing m data items can be computed as,

AV (MVY=m E p(di)we(ds)

d; €D

(10)

Also, the average response time for M VwA method can
be calculated by,

‘a? (MVwA) =m(1 — h) E p(di)we(ds)

d; €D

(11)

As stated previously, however, using part of the cache
space to keep old versions is not efficient because the ef-
fective cache size is decreased [PC99b]. In contrast, the
average response time of a transaction in PwA method
is bounded by 2|NU| without respect to the cache hit
ratio, i.e.

oY (PwA) < 2|NU| (12)

4.3 Some Analytical Results

To further substantiate the previous analysis, we
show some analytical results in this section. In partic-
ular, we compare the performance behaviors of several
schemes for two extreme cases: one is for no updates
at the server, and the other is for an update-intensive
(half of the data items in a database are updated dur-
ing a beycle) environment. Since PwA method never
aborts transactions, only invalidation based methods
are considered for comparison purpose in no updates

environment, whereas only multiversion based methods
are considered in an update-intensive one.

In our system model, the server broadcasts 1000 data
items according to a broadcast program. Table 1 shows
server parameter setting for a monuniform broadcast
program, and Table 2 shows client parameter setting,
where the frequency of access of data items within a
single partition is assumed to be uniformly distributed.

[Parameter | Value(s) |
D 1000
n 3
A1, Az, Ag 4,2, 1
[21], [P2], [Ps] | 50, 150, 800

Table 1: Server Parameter Setting for a Nonuniform
Broadcast Program

[Parameter [Value(s) |
m Varying (10-80)
fpys fry, frs 0.7,0.2,0.1
Cache Replacement Policy LRU
h 90 %

Table 2: Client Parameter Setting

Experiment 1: Response Time without Updates.
Since there is no updates at the server, |U|=1000 and
|NU=1300. Figure 2 compares the performance behav-
iors of PwA and invalidation based methods (the y-axis
is in logscale), where the performance behavior lines of
PwA methods correspond to the worsi-case response
time and the performance behavior curves of invalida-
tion based methods correspond to the average response
time. As shown in Figure 2, the worst-case response
time of PwA method, i.e. a single bcycle length, is
longer than the average response time of JwA method
only when a transaction reads small or moderate num-
ber of data items in both a uniform and a nonuniform
bcasts. Even in such a small- or moderate-scale case,
however, the average response time of PwA will show a
very similar performance behavior shape to that of JwA
method. This is because the procedure of PwA method
is almost identical to that of JwA method in a situation
where a transaction can be processed within a single
beycle length with the use of JwA method. Another
point is that, in invalidation based methods, a nonuni-
form bcast outperforms a uniform one by about 50%
reduction of response time. In PwA method, however,
a uniform bcast is always superior to a nonuniform one
with respect to the worst-case response time. This is
mainly due to the inherent property of PwA method
that a client can more quickly acquire all data items
from a bcast with a smaller beycle length.

Experiment 2: Response Time with Intensive
Updates. In this case, we assume that ¥ = 2 and
N.=500. Thus, if a bcast accommodating multiple ver-
sions of data items is organized so that old versions of
data items are appeared once within a bcycle, the bey-
cle lengths in the case of multiversion based methods

are 2000 (uniform bcast) and 2300 (nonuniform bcast),
whereas |U|=1000 and |[NU|=1300 in PwA method. In
a nonuniform bcast, in particular, half of the data items
in each partition are assumed to be updated during a
beycle and the frequencies of access of different versions
for a single data item are uniformly distributed. Figure
3 compares PwA and multiversion based methods in re-
sponse time (y-axis is in logscale). As expected, multi-
version based methods perform poorly as the number of
data items is increased. In contrast, PwA method has a
bounded worst-case performance behavior. In particu-
lar, the worst-case response time of PwA method is only
doubled from a single bcycle length. PwA method in
worst-case performs worse than MV wA method in aver-
age case only when a transaction reads small number of
data items in both a uniform and a nonuniform bcasts.
Even such a small-scale case, however, the average re-
sponse time of PwA will show a performance behavior
comparable to that of MVwA method. This is because,
although the cache hit ratio for MVwA method is as-
sumed to be 90% in this experiment, in reality, the ratio
results in a much smaller value because of intensive up-
dates and decreased effective cache size. With respect
to different bcast organizations, in multiversion based
methods, a nonuniform bcast outperforms a uniform
one by no more than 10% reduction of response time.
In PwA method, however, a uniform bcast is always
superior to a nonuniform one in terms of the worst-case
response time. This is because a uniform bcast has a
smaller beycle length than a nonuniform one.

1

’g‘ 10000
25 a8
& B >

£ oo g
38 1000 B
iv
§ 5
% g 1000,
ga = InV (NU}
35 e TR (NU)
£Z -
LR P ()

110 20 30 40 50 60 70 80
Number of data items for a transaction

Figure 2: Comparison of Response Time (No Up-
dates))

5 Conclusion

In this paper, we have proposed a simple but robust
PwA (Predeclaration with Autoprefetching) method
for processing read-only transactions in wireless data
broadcast. Unlike other schemes, PwA method allows
transactions to commit successfully without increasing
the broadcast cycle length or being considerably af-
fected by the rate of updates at the server. An analyti-
cal study conducted in this paper has demonstrated that

T 10000 el

o j%; ﬂ:-—-@‘*"‘@;ﬂ@é
LE | AT
£y 1 A
o 0000 i
pe i PP
H _—
8% N -V (U]
gy s ~—— MVWA (U)
o .g 100 & PwA (U)
g2 1 —o— MV (NU)
2 1 —%—— MVwA {NU}
= 100+ - - et i e = = DA (NU)

110 20 30 40 50 60 70 80

Number of data items for a transaction

Figure 3: Comparison of Response Time (Intensive
Updates)

the use of PwA method is highly effective for transac-
tion management especially in an intensive-update en-
vironment. Although this work has assumed that the
information about the readset of a transaction is avail-
able at the beginning of transaction processing, we be-
lieve that our idea can be applied to some real database
applications by using preprocessor, such as a compiler,
on a client to analyze its transaction before being sub-
mitted to the client system.

References

[AAF'95] S. Acharya, R. Alonso, M. Franklin, and S.
Zdonik. Broadcast Disks: Data Manage-
ment for Asymmetric Communication En-
vironments. Proceedings of the ACM SIG-
MOD Conference on Management of Data,
pp. 199-210, 1995.

S. Acharya, M. Franklin, and S. Zdonic.
Prefetching from a Broadcast Disk. Proceed-
ings of the 12th International Conference on
Data Engineering, pp. 276-285, 1996.

S. Acharya, M. Franklin, and S. Zdonik.
Disseminating Updates on Broadcast Disks.
Proceedings of the 22nd International Con-
ference on Very Large Data Bases, pp. 354-
365, 1996.

P. A. Bernstein, V. IHadzilacos, and N.
Goodman. Concurrency Control and Recov-
ery in Database Systems. Addison Wesley,
Reading, Massachusetts, 1987.

K. Lam, M. Au, and E. Chan. Broadcast
of Consistent Data to Read-Only Transac-
tions from Mobile Clients. Proceedings of
the 2nd IEEE International Workshop on
Mobile Computer Systems and Applications,
1999.

[PC99%a] E. Pitoura and P. Chrysanthis. Scal-
able Processing of Read-Only Transactions
in Broadcast Push. Proceedings of the

[AFZ96a)

[AFZ96b)

[BIIG87)

[LACY9]

[PC99b]

[SNS*99]

[VHS99]

19tk IBELE International Conference on Dis-
tributed Computing Systems, pp. 432-439,
1999.

E. Pitoura and P. Chrysanthis. Exploiting
Versions for Handling Updates in Broadcast
Disks. Proceedings of the 25th International
Conference on Very Large Data Bases, pp.
114-125, 1999.

J. Shanmugasundaram, A. Nithrakashyap,
R. Sivasankaran, and K. Ramamritham. Ef-
ficient Concurrency Control for Broadcast
Environments. Proceedings of the ACM
SIGMOD Conference on Management of
Data, pp. 85-96, 1999.

N. H. Vaidya and S. Hameed. Scheduling
Data Broadcast in Asymmetric Communi-
cation Environments. Wireless Networks,
Vol. 5, No. 3, pp 171-182, 1999.

