TRl 2 2R 81 [l e E K&

oP-02

Efficient Algorithm for Finding Diameter of Protein-Protein Interaction Networks

Hiroshi Sato¥ Yusuke Sanoi

Daiya Watariz

Taku Ozakid Katsuhisa Yamanakai

Takashi Hirayamaz:

tGraduate School of Science and Engeneering, Iwate University

1 Introduction

Protein-protein interactions are physical contact bet-
ween two or more protein molecules. Protein-protein in-
teractions allow proteins to communicate with other pro-
teins and change function of proteins. A protein- pro-
tein interaction network (PPI network) represents protein-
protein interactions as a graph. In a PPI network, vertices
are proteins and edges are protein-protein interactions. It
is said that PPI networks satisfy small world and scale-free
properties[1, 2].

In this paper, we first investigate the scale-free prop-
erties of some PPI networks published in Database of In-
teracting Proteins (DIP) [3]. Next, using the property, we
propose an algorithm that computes the diameters of PPI
networks efficiently.

2 Definition

This section gives definitions on graphs. Let G = (V, E)
be an undirected and unweighted graph, where V is a ver-
tex set and E is an edge set. The degree, denoted by d(v),
of a vertex v is the number of the vertices adjacent to v.
Let P = (vi,v2,...,v) be the sequence of vertices of
G. The sequence P is a path of G if P satisfies both (1)
Vi,ve) €E, 1 <i<kand Qv #vj,i # j,1 <i,j <k
The length of a path is the number of edges of P. The
distance, denoted by dist;(v;, v;), between two vertices v
and v; of G is the length of a shortest path between the
two vertices. The diameter, denoted by diam(G), of G is
the maximum distance in G. That is,

diam(G) = max{distg(v;,v;)) | vi,v; € V}.

3 Scale-free property of protein-protein in-
teraction networks

In this section, we investigate the scale-free properties
of some PPI networks published in DIP. We first explain
the scale-free property of a graph.

Let G = (V, E) be an undirected and unweighted graph,
where n = |V|, and let n; be the number of vertices of
degree k in G. We define P(k) := ';—k That is, P(k) is the
ratio of degree-k vertices in G. A graph is scale-free if the
degree distribution of the graph almost follow the power
law of negative exponent, and it holds

Pk) o< k7.

It is known that the log-log graphs of degree distributions
of scale-free networks forms almost a downward-trend str-
aight line.
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Now, we describe our results. We investigate the scale-
free property of some PPI networks published in DIP. In
DIP, PPI networks based on experimental results of protein-
protein interaction are published. We investigated the de-
gree distributions of the following 11 PPI networks: Li
2004a, Giot2003a, Gavin2002a, Dmela20170205, Scere
20170205, Ecoli20170205, Celeg20170205, Hsapi201702
05, Hpylo20170205, Mmusc20170205, Rnorv20170205.
Figure 3 shows the degree distribution of one of the 11
PPI networks. As we can see the graph forms almost a
downward-trend straight line. Due to space limitation, in
this report, we omit the distributions of the other PPI net-
works. However, we confirmed that all the distributions
follow the power law of negative exponent.

Figure 1: Degree distribution of dmela20170205
(Drosophila melanogaster).

4 Computation of diameter algorithm

In this section, we propose an algorithm for computing
the diameter of a graph. A diameter is one of the most fun-
damental parameters of graphs. We first describe a naive
method using Warshall-Floyd’s algorithm. Then, we im-
prove the method using the property of PPI networks.

4.1 Computing diameter using Warshall-Floyd’s al-
gorithm

Warshall-Floyd’s algorithm is a well-known algorithm
that computes the distances of all vertex pairs in O(n®)
time. We first apply Warshall-Floyd’s algorithm, then just
output the maximum distance as the diameter of an input
graph. Warshall-Floyd’s algorithm is well-known, how-
ever, for self-containment, we show a pseudo-code of the
algorithm in Algorithm 1. Here, temp_dg[i][ /] represents
a temporary distance between two vertices v; and v; of G.
At the end of the algorithm temp_dg[i][j] takes the dis-
tance between v; and v; of G.
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Algorithm 1: Diam-Warshall-Floyd(G)

Algorithm 2: Proposed Algorithm(G)

1 if (V,‘,Vj) € E then

2 | temp.dglil[j]=1

3 else

4 | temp dgli][j] = oo

5 fork — 1tondo

6 for j — 1tondo

7 fori — 1tondo

s temp_dg[il[ ]
min(temp_dg[7][j], temp_dg[i][k] +
temp_dg[£]1[/1)

9 Output max{temp_dg[i][j]1| 1 <1i,j < n}

4.2 Proposed algorithm

In this subsection, we improve Algorithm 1 for PPI
networks. If a graph has one or more edge, isolated ver-
tices can be ignored when we compute the diameter of a
graph. To make discussion simple, we assume that an in-
put graph has no isolated vertex.

We introduce some notations. Let G = (V,E) be an
undirected and unweighted graph, and let V; C V be a
set of the vertices of degree 1 in V. We denote by V, =
V'\ V, the set of the vertices except V| and by G, the graph
induced by V.

Now, we explain the idea of our algorithm. As we see
in the previous section, PPI networks have scale-free prop-
erty. Scale-free networks have a lot of vertices of small
degrees, especially vertices of degree 1. Our algorithm fo-
cuses on this property. First, we compute diam(G,) using
Algorithm 1. Then, we compute diam(G) from diam(G,)
taking degree-1 vertices into consideration.

We explain the details of our algorithm. The algorithm
first computes diam(G») using Algorithm 1. We define L,
and L, as follows:

Li:= {{vi,vj} | vi,v; € Va,distg, (v;,v;) = diam(G,)}
Ly:= {{vi,vj} | vi,v; € Vs, distg, (v, v;) = diam(G,) - 1}

Then, we can compute diam(G) as follows. If there ex-
ists a pair (v;,v;) € L; such that both v; and v; are adja-
cent to degree-1 vertices in G, then it holds diam(G) =
diam(G,) + 2. Now, let us consider the case that no such
vertex pair in Ly. If there exists a pair (v;,v;) € L; such
that either v; or v; is adjacent to degree-1 vertex in G, then
it holds diam(G) = diam(G,) + 1. Next, let us consider
the case not the above two cases. If there exists a pair
(vi,v;) € Ly such that both v; and v; are adjacent to degree-
1 vertices in G, then it holds diam(G) = diam(G,) + 1. We
assume that all of the above conditions do not hold. Then,
it holds diam(G) = diam(G,). The pseudo-code of our
algorithm is shown in Algorithm 2. The running time is
O(n?), which is the same as Algorithm 1.
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Construct G, from G

diam(G,)=Diam-Warshall-Floyd(G,)

Ly = {v;, Vj} | vi, vj € Vz,diSth(Vi, Vj) = dlam(Gz)}

L, = {{V,‘,Vj} | Vi, Vj € Vz,diStcz(Vi,Vj) =

diam(G,) — 1}

5 if there exists {v;,v;} € Ly such that both v;,v; are
adjacent to vertices in V in G then

6 | Output diam(G,) +2

7 else if there exists {v;,v;} € Ly such that either v; or
vj is adjacent to a vertex in Vy in G then

8 | Outputdiam(G,) + 1

9 else if there exist (v;,v;) € L, such that both v; and
v; are adjacent to vertices in Vi in G then

10 | Outputdiam(G,) + 1

11 else

_ W N =

12 | Output diam(G,)
Table 1: Comparison of running time.
Data names | Diam-Warshall-Floyd (s) Ours (s)
Giot2003a 21102.67 | 7376.39
dmela2017 32040.18 | 10450.92
hpylo2017 29.29 5.31
Gavin2002 140.57 37.78
Li2004a 966.36 77.02
celeg2017 1085.76 86.96
ecole2017 1407.23 354.74
hsapi2017 5697.60 795.06
mmusc2017 468.15 27.87
rnorv2017 9.02 0.37
scere2017 10094.69 | 4528.50

5 Experimental results

Table 1 shows experimental results. We compared two
algorithms: Algorithm 1 and Algorithm 2. Environment
of experiment is as follows. Programming language: Com-
mon lisp, Compiler: SBCL1.3.1.debian CPU: AMD FX(tm)-
8350 Eight-Core Processor, and Memory: 16GB. From
the experimental results, we can see that our algorithm is
faster than the naive one although the running time of both
algorithms is o).
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