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1 Introduction
Protein-protein interactions are physical contact bet-

ween two or more protein molecules. Protein-protein in-
teractions allow proteins to communicate with other pro-
teins and change function of proteins. A protein- pro-
tein interaction network (PPI network) represents protein-
protein interactions as a graph. In a PPI network, vertices
are proteins and edges are protein-protein interactions. It
is said that PPI networks satisfy small world and scale-free
properties[1, 2].

In this paper, we first investigate the scale-free prop-
erties of some PPI networks published in Database of In-
teracting Proteins (DIP) [3]. Next, using the property, we
propose an algorithm that computes the diameters of PPI
networks efficiently.

2 Definition
This section gives definitions on graphs. Let G = (V, E)

be an undirected and unweighted graph, where V is a ver-
tex set and E is an edge set. The degree, denoted by d(v),
of a vertex v is the number of the vertices adjacent to v.
Let P = ⟨v1, v2, . . . , vk⟩ be the sequence of vertices of
G. The sequence P is a path of G if P satisfies both (1)
(vi, vi+1) ∈ E, 1 ≤ i ≤ k and (2) vi , v j, i , j, 1 ≤ i, j ≤ k.
The length of a path is the number of edges of P. The
distance, denoted by distG(vi, v j), between two vertices vi

and v j of G is the length of a shortest path between the
two vertices. The diameter, denoted by diam(G), of G is
the maximum distance in G. That is,

diam(G) = max{distG(vi, v j)) | vi, v j ∈ V}.

3 Scale-free property of protein-protein in-
teraction networks

In this section, we investigate the scale-free properties
of some PPI networks published in DIP. We first explain
the scale-free property of a graph.

Let G = (V, E) be an undirected and unweighted graph,
where n = |V |, and let nk be the number of vertices of
degree k in G. We define P(k) := nk

n . That is, P(k) is the
ratio of degree-k vertices in G. A graph is scale-free if the
degree distribution of the graph almost follow the power
law of negative exponent, and it holds

P(k) ∝ k−γ.

It is known that the log-log graphs of degree distributions
of scale-free networks forms almost a downward-trend str-
aight line.

Now, we describe our results. We investigate the scale-
free property of some PPI networks published in DIP. In
DIP, PPI networks based on experimental results of protein-
protein interaction are published. We investigated the de-
gree distributions of the following 11 PPI networks: Li
2004a, Giot2003a, Gavin2002a, Dmela20170205, Scere
20170205, Ecoli20170205, Celeg20170205, Hsapi201702
05, Hpylo20170205, Mmusc20170205, Rnorv20170205.
Figure 3 shows the degree distribution of one of the 11
PPI networks. As we can see the graph forms almost a
downward-trend straight line. Due to space limitation, in
this report, we omit the distributions of the other PPI net-
works. However, we confirmed that all the distributions
follow the power law of negative exponent.
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Figure 1: Degree distribution of dmela20170205
(Drosophila melanogaster).

4 Computation of diameter algorithm
In this section, we propose an algorithm for computing

the diameter of a graph. A diameter is one of the most fun-
damental parameters of graphs. We first describe a naive
method using Warshall-Floyd’s algorithm. Then, we im-
prove the method using the property of PPI networks.

4.1 Computing diameter using Warshall-Floyd’s al-
gorithm

Warshall-Floyd’s algorithm is a well-known algorithm
that computes the distances of all vertex pairs in O(n3)
time. We first apply Warshall-Floyd’s algorithm, then just
output the maximum distance as the diameter of an input
graph. Warshall-Floyd’s algorithm is well-known, how-
ever, for self-containment, we show a pseudo-code of the
algorithm in Algorithm 1. Here, temp dG[i][ j] represents
a temporary distance between two vertices vi and v j of G.
At the end of the algorithm temp dG[i][ j] takes the dis-
tance between vi and v j of G.

Copyright     2019 Information Processing Society of Japan.
All Rights Reserved.1-361

5P-02

情報処理学会第81回全国大会



Algorithm 1: Diam-Warshall-Floyd(G)

1 if (vi, v j) ∈ E then
2 temp dG[i][ j] = 1
3 else
4 temp dG[i][ j] = ∞
5 for k ← 1 to n do
6 for j← 1 to n do
7 for i← 1 to n do
8 temp dG[i][ j]←

min(temp dG[i][ j], temp dG[i][k] +
temp dG[k][ j])

9 Output max{temp dG[i][ j] | 1 ≤ i, j ≤ n}

4.2 Proposed algorithm

In this subsection, we improve Algorithm 1 for PPI
networks. If a graph has one or more edge, isolated ver-
tices can be ignored when we compute the diameter of a
graph. To make discussion simple, we assume that an in-
put graph has no isolated vertex.

We introduce some notations. Let G = (V, E) be an
undirected and unweighted graph, and let V1 ⊆ V be a
set of the vertices of degree 1 in V . We denote by V2 =

V \V1 the set of the vertices except V1 and by G2 the graph
induced by V2.

Now, we explain the idea of our algorithm. As we see
in the previous section, PPI networks have scale-free prop-
erty. Scale-free networks have a lot of vertices of small
degrees, especially vertices of degree 1. Our algorithm fo-
cuses on this property. First, we compute diam(G2) using
Algorithm 1. Then, we compute diam(G) from diam(G2)
taking degree-1 vertices into consideration.

We explain the details of our algorithm. The algorithm
first computes diam(G2) using Algorithm 1. We define L1
and L2 as follows:

L1 := {{vi, v j} | vi, v j ∈ V2, distG2 (vi, v j) = diam(G2)}
L2 := {{vi, v j} | vi, v j ∈ V2, distG2 (vi, v j) = diam(G2) − 1}

Then, we can compute diam(G) as follows. If there ex-
ists a pair (vi, v j) ∈ L1 such that both vi and v j are adja-
cent to degree-1 vertices in G, then it holds diam(G) =
diam(G2) + 2. Now, let us consider the case that no such
vertex pair in L1. If there exists a pair (vi, v j) ∈ L1 such
that either vi or v j is adjacent to degree-1 vertex in G, then
it holds diam(G) = diam(G2) + 1. Next, let us consider
the case not the above two cases. If there exists a pair
(vi, v j) ∈ L2 such that both vi and v j are adjacent to degree-
1 vertices in G, then it holds diam(G) = diam(G2)+1. We
assume that all of the above conditions do not hold. Then,
it holds diam(G) = diam(G2). The pseudo-code of our
algorithm is shown in Algorithm 2. The running time is
O(n3), which is the same as Algorithm 1.

Algorithm 2: Proposed Algorithm(G)

1 Construct G2 from G
2 diam(G2)=Diam-Warshall-Floyd(G2)
3 L1 = {{vi, v j} | vi, v j ∈ V2, distG2 (vi, v j) = diam(G2)}
4 L2 = {{vi, v j} | vi, v j ∈ V2, distG2 (vi, v j) =

diam(G2) − 1}
5 if there exists {vi, v j} ∈ L1 such that both vi, v j are

adjacent to vertices in V1 in G then
6 Output diam(G2) + 2
7 else if there exists {vi, v j} ∈ L1 such that either vi or

v j is adjacent to a vertex in V1 in G then
8 Output diam(G2) + 1
9 else if there exist (vi, v j) ∈ L2 such that both vi and

v j are adjacent to vertices in V1 in G then
10 Output diam(G2) + 1
11 else
12 Output diam(G2)

Table 1: Comparison of running time.

Data names Diam-Warshall-Floyd (s) Ours (s)
Giot2003a 21102.67 7376.39
dmela2017 32040.18 10450.92
hpylo2017 29.29 5.31
Gavin2002 140.57 37.78
Li2004a 966.36 77.02
celeg2017 1085.76 86.96
ecole2017 1407.23 354.74
hsapi2017 5697.60 795.06
mmusc2017 468.15 27.87
rnorv2017 9.02 0.37
scere2017 10094.69 4528.50

5 Experimental results
Table 1 shows experimental results. We compared two

algorithms: Algorithm 1 and Algorithm 2. Environment
of experiment is as follows. Programming language: Com-
mon lisp, Compiler: SBCL1.3.1.debian CPU: AMD FX(tm)-
8350 Eight-Core Processor, and Memory: 16GB. From
the experimental results, we can see that our algorithm is
faster than the naive one although the running time of both
algorithms is O(n3).
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