FeFR—A VAT L 125—49
(2001. 7. 18)

$iRENSBR*-tree: HEELBRE

FENG Yaokai*, Af% IEB *, AGHBARI Zaher, B2 B **

* U jc%jcillm AT MMERELERT
o JUNREZERERE Y X T LMERE 58

R-tree 3B RTT —F A T v 7 AT 5 7difEb T AR TtH Y . 22,
FRTT —F_R—ZZBWTELFIBER TS, L, F79=2 MNIEE/) — Fick
WTHELKIZTRFZ Y7 ENTWVWIRY, Z ORI R-tree TORBIERIFICAREX LB
BEEZDLDOTH D, AL TIEEH LV SOM-based R*-tree(NSBR*-tree) Z £
T8, TOFEE ANTE/ —FOERVEZRBLL, 7027 235FEL75X7T
VIERBILERAD, EBRER TIZZOH LV SOM-based R*-tree BT IE 5 LW ViR
RMEREEF>TWEZ L ETT,

NSBR*-tree: Building and Retrieving
FENG Yaokai, KUBO Masaaki, AGHBARI Zaher, MAKINOUCHI Akifumi

Graduate School of Information Science and Electrical Engineering,
Kyushu University

Abstract

R-trees are a common indexing technique for multi-dimensional data and are
widely used in spatial and multi-dimensional databases. Nearest neighbor search
‘(called NN search) is very popular in multimedia database and spatial database.
According to our investigation, for a given database, the degree of the leaf nodes
clustering the objects is a great factor on the NN searching performance. For R-
trees, the objects are not well-clustered by its leaf nodes. Some packing algorithms
for R-trees have been proposed. However, in these packing algorithms, the distri-
bution of objects in its leaf nodes may not reflect the actual situation of objects
and can not lead to a good clustering. An attempt combining clustering technology
and R-trees (called SOM-based R*-tree) is proposed by K. Oh and Y. Feng et al.,
which tries to decrease the number of objects in R-trees by building R-trees using
the representative feature vectors of clusters instead of objects themselves. In the
present paper, a new structure called NSBR*-tree is proposed. The experimental
result shows that the NSBR*-tree has a much better searching performance.

1 Introduction

In the present paper, we will consider point access method (PAM). In light of the increas-
ing number of computer applications that rely heavily on multimedia data, the database
community has recently focused on the management and retrieval of multimedia data
(e.g.,-documents, images, video, music score, etc,). However, the indexing of multimedia
data is usually a PAM issue because multimedia data are usually discriminated using
their feature vectors, which are mapped into points in multidimensional space.

—375~

R-trees are a common indexing technique for multi-dimensional data and are widely
used in spatial and multi-dimensional databases. Nearest neighbor search (called NN
search) is very popular in multimedia database and spatial database. According to our
investigation, for a given database, the degree of the leaf nodes clustering the objects is
a great factor on the NN searching performance. For R-trees, the overlap among the leaf
nodes is serious and the objects are not well-clustered by its leaf nodes, especially when it
is used to index very skewed distributed data. Three main reasons for this are as follows:

1. The clustering function of R-trees is not strong.

Of course, the objects have been clustered by the leaf nodes after one R-trees is built.
However, R-trees are nondeterministic in allocating the entries onto the nodes i.e., differ-
ent sequences of insertions may build up different trees. Data inserted during the early
growth of the structure may have introduced directory rectangles, which is not suitable to
guarantee a good searching performance in the current situation. In R-tree, a very local
reorganization of the directory rectangles is performed only during a split. Obviously,
this reorganization is rather poor. In R*-tree, in order to improve the reorganization of
the directory rectangles, a new policy called forced reinsertion is introduced. If a node
overflows, it is not split right away. Rather, p entries are removed from the node and
reinserted into the tree. The parameter p may vary. Beckmann et al.[1] suggest it should
be about 30% of the maximal number of entries per page. At the same time, R*-tree also
improve the original splitting algorithm for trying to lessen the overlap between bucket
regions at the same tree level. However, The forced reinsertion and the improvement of
splitting algorithm can not completely solve the problem of reorganizing the directory
rectangles, because the improved algorithms are invoked only when overflow occurs. Still,
the objects can not be clustered very well by the leaf nodes of one R*-tree.

2. The minimum number of entries in each leaf node may degrade the clustering effect
and may worsen the overlap in each level.

Of course, the minimum number of entries in each node can guarantee a minimum
space utilizing. However, this limitation may degrade the clustering effect of R-tree leaf
nodes. This is because in real application, there usually exist many small clusters each of
which there are only a few (or only one) objects in and these clusters are distant to the
others. If the cardinality of one small cluster is less than the minimum number limitation
of entries in one leaf node, this cluster has to be merged with other distant cluster(s) to
create one leaf node. In this case, the merging may lead to great enlargements of the
rectangles of leaf nodes and may lead to a great enlargement of the overlap among leaf
nodes.

3. The forced reinsertion.do not always lead to a better clustering.

See Fig. 1. The objects outside the dotted circle, 30% of the present objects in this
overflowed leaf node, will be forced reinserted into the tree. Obviously, this reinsertion
does not always lead to a better clustering. '

In this paper, we propose an improved R*-tree. Clustering technology is introduced
to cluster the objects in advance. Clusters with different sizes based on the distribution
of the given database are obtained and these clusters directly form the leaf nodes. No
limitation exists on the number of entries in each leaf node. Thus, reinsertion and split
of leaf nodes are unnecessary.

—376—

MBR of one overflowed leafnode

center of the MBR and the dotted circle

Figure 1: The choosing of reinserted objects in one leaf node

2 Related Work

2.1 Clustering Technology

Besides statistical techniques, artificial neural networks have proven as a successful tool
in the cluster analysis. Zavrel [2] compared artificial neural networks with conventional
techniques in the cluster analysis and found that neural networks generate significantly
better results. Therefore, in our approach we employ SOM (Self-Organizing Map), a
self-organizing neural network, for the discovery of clusters. ‘

SOM is an unsupervised self-organizing neural network that is widely used to visualize
and interpret large high-dimensional datasets [3, 4].

As a kind of neural network, SOM usually provides mapping from multi-dimensional
points (feature vectors) onto points in a two-dimensional space. In this mapping, each
feature vector is mapped onto one two-dimensional point with a code book vector (denoted
CBV vector), which is nearest to the feature vector. In this way, many feature vectors
nearly located each other may be mapped onto a same two-dimensional point. This means
that the original multi-dimensional points are clustered.

2.2 R-trees

An R-trees used in a-'multimedia area is a hierarchy of nested d-dimensional MBRs (mini-
mum bounding rectangles). MBR is a hyper-rectangle that minimally bounds the objects
in the corresponding subtree. Each index node of the R-tree contains an array of entries,
each of which consists of a pointer and an MBR. The pointer refers to one child node of
this index node and the MBR is one of the child nodes referred to by the pointer. Each
leaf node of the R-tree contains an array of entries, each of which consists of feature vector
and its object identifier.

Based on a careful study of the original R-tree’s behavior under different data dis-
tributions, Beckmann et al [1]. identified several weaknesses of the original algorithms
in R-tree and propose R*-tree, an invariant of R-tree. In particular, they confirmed the
observation of Roussopoulos and Leifker [5] that the insertion phase is critical for good
search performance. It is also observed that the searching performance will be improved if
some objects are reinserted after R-tree has been built, because reinsertion will re-organize
the directory rectangles to make them much more suit the present data distribution. The
design of the R*-tree therefore introduces a policy called forced reinsertion; If a node
overflows, it is not split right away. Rather, p entries are removed from the node and
reinserted into the tree. The parameter p may vary. Beckmann et al. suggest it should

—377—

be about 30% of the maximal number of entries per page. The splitting algorithm is
also improved to decrease the overlap in each level. However, all the improvement occurs
only when overflowed. And, the searching performance will also be improved if some
objects are reinserted after R*-tree has been built. This means that R*-tree can not also
guarantee good clustering in each level.

2.3 Packed R-trees

Some packing algorithms on R-trees are proposed in [5, 6, 7]. by Roussopoulos, Kamel
and Faloutsos, Scott T. Leutenegger et al. The general algorithms of the three packed
algorithms are the same as follows:

1. Preprocess the data file so that all the objects (or rectangles) are ordered in consec-
utive groups of b objects, where b is the number of objects in each leaf node. Note
that the last group may contain fewer than b objects (or rectangles).

2. Load all the groups of objects (or rectangles) into pages and output the (MBR,
page-number) for each leaf level page into a temporary file. The page-numbers are
used as the child pointers in the nodes of the next higher level.

3. Recursively pack these MBRs into nodes at the next level, proceeding upwards, until
the root node is created.

The three algorithms differ only in the way how the objects (or rectangles) are ordered
at each level. However, in all the three algorithms, each leaf node contains the same
number of objects (or rectangles). Obviously, this can not reflect the actual distribution
of objects. And, these algorithms can not lead to good clustering.

2.4 Existing SOM-based R*-tree

One SOM-based R*-tree has been proposed in [8]. The objects (feature vectors) are
clustered in advance. The R*-tree is built using the CBV vectors as “objects”, each of
which corresponds to one cluster of objects. When k nearest neighbor search is performed,
k nearest neighbor CBV vectors are obtained first, each of which corresponds to one
cluster. Then, the k nearest neighbor objects are found in these k clusters. Obviously, the
k actual nearest neighbor objects are not always located in the k “nearest” clusters. The
unstrict searching result may be enough for some applications. However, it is not enough
for many applications. The NSBR*-tree proposed in the present paper has overcome this
problem. In our approach, the MBRs of all clusters obtained by clustering are employed
as “objects” to build the R*-tree and all the objects in each of these clusters are contained
in an array. All the searching algorithms on R*-tree can be used with a small modification
and the searching result is strict.

3 NSBR*-tree

3.1 Introduction

In the NSBR*-tree proposed in this paper, the clusters obtained by SOM-based clustering
are directly used to form “leaf nodes”. No limitation exists on the number of entries in

—378—

each leaf node. Thus, no overflow (neither reinsertion nor splitting) occurs in the “leaf
node” level. That is, the distribution of “leaf nodes” can well reflect the actual distribution
of objects. An array is introduced to contain all the objects of every cluster obtained by
clustering.

The NSBR*-tree is shown in Fig. 2

RootNode

e R*-tree using
R2 clusterl cluster MBRs
;. 1 kluster2 } ~as objects
| }) f'—_-ll L p-node s
]
— 1, . oy [i . M i
cluster3 -t |/ ‘m'EMBRl/ mEMBRl ;mEMBR] §m§MBRll m;MBRlI?ngMBRl
- .__::.Lusﬁeu
b usters hd } "leaf flodes" leyel. (array)
=T l_ci“ft_“s Rl IO1~05 i O6~010 | 011~0O1s | O15~020 | O21~024 | O25~0O29 I
il R — ‘ —
- clusterl cluster2 cluster3 cluster4d cluster5 cluster6
(a)clusters and their MBRs (b) NSBR*-tree

Figure 2: NSBR*-tree

Figure 2 (a) is the clusters discovered by SOM clustering; (b) is the corresponding
NSBR*-tree. We think the clusters in the array may be regarded as “leaf nodes” of the
NSBR*-tree, which are different from the other nodes. We call the parent nodes of the
“leaf nodes” p-nodes. In p-node level, m refers to the number of objects in corresponding
cluster and MBR refers to that of each cluster.

One problem occurs when the main memory does not have enough space for the array
containing all the feature vectors since the array is loaded at once into the memory for
searching. According to our investigations, for 100,000 12-dimensional feature vectors
with floating values, 10M Bytes memory is enough. This is not a big problem for the
present computers. Of course, for the applications using very large databases, the whole
or part of the array can be held in the second storage. We think the NSBR*-tree can be
applied well in applications with middle scale database or with lower scale database.

3.2 Building
Building algorithm of SOM-based R*-tree is as follows:
e Stepl: using SOM technology, cluster all the objects;

o Step2: calculate the MBR of each cluster;

e Step3: = build R*-tree using the MBRs obtained in Step2 as “objects” and the
insertion algorithm of the original R*-tree.

Step4: form an array containing all clusters;

e Step5: link the R*-tree obtained in Step3 and the array obtained in Step4;

—379—

3.3 Searching

Generally speaking, all the search algorithms on R*-tree can be simply adapted to NSBR*-
tree. Here, the well-known k-NN search algorithm proposed by N. Roussopoulos in [9] is
taken as an example. 7

The adopted k-NN search algorithm is shown in Fig. 3

Main procedure:: k-NN(QueryObject, k, IndexTree)
/* k-nearest neighbor search of QueryObject in IndexTree */
(1) NearList=new List(k) / for k candidates of nearest neighbors */
(2) Distance of each member in NearList ¢~ co /* initialize NearList */
(3) k-NearestTraversal(QueryObject,k,NearList,Index.RootNode)
(4) report all objects in NearList as the final query result
END ‘
Subprocedure:: k-NearestTraversal(QueryObject k ,NearList,Node)
1 If Node is a p-node Then
2 ActiveBranchList - all entries in Node
3 Sort_by_distance(ActiveBranchList)
4 last=pruneActiveBranchList;
/* last refers to the number of child_nodes left after pruning */
For i:=1 to last /* for each child-node left in ActiveBranchList;

if Dist(QueryObject, child_node;)<NearList.MaxDist Then

For each object of the corresponding cluster in array
If Dist(QueryObject,object)<NearList.MaxDist Then
9 insert(NearList, Dist(QueryObject,object), Object)
10 Else /* if Node is not a p-node */
11 ActiveBranchList « child_nodes in Node
12 Sort_by.distance(ActiveBranchList)
13 last=pruneActiveBranchList;
/* last refers to the number of child nodes left after pruned */

14 For i:=1 to last /* for each child node left in ActiveBranchList */

o0 ~3 O O

15 if Dist(QueryObject, child_node;)<NearList.MaxDist Then
16 k-Nearest Traversal(QueryObject,k,NearList,child node;)
14 else

15 exit For-loop

END

Figure 3: adapted k-NN search algorithm for NSBR*-tree

The main idea of this algorithm is the same as that of the k-NN search algorithm
proposed by N. Roussopoulos [9]. The only difference is that, in the NSBR*-tree, when
the tree is traversed recursively to some entry of some p-node, the corresponding cluster
(not child node like R*-tree) in the array must be checked.

—380—

4 Experimental Results

We used a real color image database to examine the cost of building NSBR*-tree and the
behavior of the k-NN search algorithm on it. Also, an R*-tree is built by inserting the
objects one by one and the k-NN searching performance on the R*-tree is also tested.
And the comparisons of the time cost for building, the index size and the k-NN searching
performance are made between the R*-tree and the NSBR *-tree.

Color images from H?soft corporation and Stanford University, including pictures of
landscapes, animals, buildings, people and plants, are used in our experiment. The image
size is fixed at 128128 pixels. Haar wavelets, a kind of wavelet transform, are employed
to compute their feature vectors because Haar wavelets are very fast and have been found
to perform well in practice [10]. Using six-level two-dimensional wavelet transform, the
length of image feature vectors decreases to 12.

The query objects are determined as follows. We chose 100 objects randomly from the
‘database as the query objects. The index trees were built using the other objects. The
cardinality of the database refers to the number of objects used to build the index trees.

Besides the time cost, we also tested the number of object distance calculations, which
is regarded the main cost in multimedia data searching. All experiments were performed
on a COMPAQ DESKPRO 386 (OS:FreeBSD 3.4-STABLE) having 128 MBytes of mem-
ory. The cardinality of database used in our experiment is 10000.

1. Comparison of index building

Table 1: Comparison of index building

items R*-tree NSBR*-tree
TimeCost of
building index 12.4237(sec.) | 7.0542(sec.)
" height 4 4
index size 3.3MB 2.4MB

In Tab. 1, the timecost is calculated from the time within which all the necessary
data for building index are loaded into memory. Thus, it does not contain the 1/0
operations. This is because the necessary data for building R*-tree and for building
NSBR*-tree are the same, which results in I/O operations are the same. The index
size for NSBR*-tree contains the size of the array.

2. Comparison of k-NN Searching Performance

The searching performance on the original R*-tree and NSBR*-tree are tested with
different k values.

Figure 4 shows the comparison of k-NN searching performance.

5 Conclusion

In the present paper, we combine the cluster technology and R*-tree in order to lessen
the overlap among the leaf nodes and to well cluster the objects by the leaf nodes, which

—381~—

5000

260 r
R'-treg —+— R-tree —+—
240 NSBR*™-tree -~ 4500 NSBR*-tree -
220 g 4000
£ 200 % 3500
@ & 3000 }
E 180 8
3 8 2500
& 160 . g
S0 e g 2000
g0l e S
] e g 1500
120 e € 1000 VI
X e -
100 500} o
80 °
10 20 30 40 50 60 100 10 20 100

k value

30 40 50 60
' Kk value

Figure 4: comparison on execution time and object distance calculations

are important issues to the searching performance. Our approach, a new index structure
for point objects (called NSBR*-tree) has much better searching performance than the
original R*-tree according to our experiments. The NSBR*-tree is described in detail,
including its structure, its building and its searching algorithm.

References

[1] Beckmann N., Kriegel H.P., Schneider R., Seeger B. ”The R*-tree: An Efficient and Robust
Access Method for Points and Rectangles.”. In ACM SIGMOD, May 1990.

[2] J. Zavrel. ”Neural Information Retrieval”. PhD thesis, University of Amsterdam, 1995.

[3] A. Rauber. ”LabelSOM: On the Labeling of Self-Organizing Maps”. In Proc. of IJCNN’99,
Washington DC, July, 1999. ‘

[4] T. Kohonen. ”Self-Organization of Very Large Document Collections: State of the Art”.
In Proc. of ICNNYS, volume 1, pages p.65-74, London, UK, 1998. Springer.

[5] Roussopoulos N. and Leifker D. ”Direct Spatial Serach on Pictorial Databases Using Packed
R-trees”. In Proceedings of the ACM SIGMOD international Conference on Management
of Data, p.17-31, 1985.

Kamel 1., Faloutsos C. ”On Packing R-trees”. In Proc. 2nd International Conference on
Information and Knowledge Management, p. 490-499, Arlington, VA, November 1993.

(6]

Scott T. Leutenegger et al. ”STR: A Simple and Efficient Algorithm for R-tree Packing”.
In Proc. of the 13rd International Conference on Data Engineer, p. 497-506 Birmingham
U.K. 1997. ‘

Kun-seok Oh, Yaokai Feng, Kunihiko Kaneko and Akifumi Makinouchi. "SOM-Based R*-
Tree for Similarity Retrieval”. In DASFAA 2001, Hongkong, China, May, 2001.

Nick Roussopoulos, Steph'en‘ Kelley, Frederic Vincent. ”Nearest Neighbor Queriés”. In
Proc. of ACM SIGMOD Intl. Conf. on Management of Data, San Jose, CA, p. 71-79,
June, 1995.

[10] Jacobs C.E., Finkelstein A., Salesin D.H. "Fast Multiresolution Image Querying”. In Proc.
SIGGRAPHY5, Los Angeles, California, p.6-11, 1995. ‘

'

—382—

