1EERALIE

RRBE

SWXFE 7077329 Vol12 No.2 20 (May 2019)

JVM _EOEIRSEED 728 OIS iR

A =t

2018F11A1HZER

SEMAMESHMBFICIHEZIN TV LW T O YT IV FEEFTTO YT A %E A, EHOEE
*IEREICIBIR T 21C1E,) 7 7 Ly AFERE Ao TEBICETE S 280\, [AEIC, SRS RS
WKHEINTOARW IJVM EOSETEPNZTO 7T AOWEZFHWICENL L &3, &%, VU
Tr Ly AERE (1BEALDEE, N4 FI—F~ODI XL F) OEKLINA N I— Faadh) % Ea7
T2 DIAMOEBIREE A 20 JVM S A N O — R385 &3 B8N 3] SIFAET 5. N5 OffHTe:
i hw?Swh@l?&%%ﬂﬁ%%%#%:VNKW§ﬂtﬂfFU—¥mwﬂ LTI ETF OB

—7J5, B SENS TS VENTINA b a— FasGHlImH T2 &, 1T A CORITIEE
ﬁm*m%&m BTLZENTER V., 20X BRECRTOELERIE, BWSHEOINLRRENE
FEHT L0 N FEATIEOBMES 1I2H 5. AFEERTE, BEDONA b I — F LNV OG5 H
M7 L =27 =27 & HCWBNSENTIMSRREGOBE L2 RET 5. Ko OMPMHERIL, ISR
Me TEL@H] 2RELPOIATTLIEICEY, /N b I = FLNVOMBITHEMNAKT L 50556 b,
@%%%@%%w%%%ﬁﬁﬁﬁ’%ﬁ?é:kﬁﬂ%f%é.%%?%ﬁ&%ﬁobeﬁm%%@k
D DIMEIEIR G DR & FEFR 2 ot.é%ﬁ,¥$7477U¢®w<9#®%ﬁ%%%mwf,%%
T AR EO M B L

Presentation Abstract

Abstract Interpretation for JVM-hosted Dynamic Languages

SE1J1 UMATANT!®)

Presented: November 1, 2018

When writing a program in a programming language whose semantics is not specified precisely, we have
to actually execute our program using the reference implementation in order to reason about its behavior.
Similarly, if we want to analyze the characteristics of a program written in a JVM-hosted language whose
semantics is not precise, we usually have no choice other than analyzing bytecode instructions generated by
the reference implementation (i.e., a bytecode compiler). There are many available static analyzers targeting
JVM bytecode. They work well for bytecode instructions compiled from a statically-typed language such
as Java and Scala. On the other hand, when applied to the ones compiled from a dynamic language, most
analyzers fail to obtain useful information. Such low accuracy is mainly caused by the complexity of runtime
mechanisms used for realizing dynamic behavior of the dynamic language. In this presentation, we propose
a method for building an abstract interpreter that exploits an existing bytecode-level abstract interpretation
framework. While relying on the bytecode-level analysis, our abstract interpreter can understand the exact
behavior of programs written in a JVM-hosted dynamic language to some extent. We actually implemented
an abstract interpreter for Clojure using the proposed method and confirmed its effectiveness by applying
the abstract interpreter to several functions defined in the standard library.

This is the abstract of an unrefereed presentation, and it
should not preclude subsequent publication.

b ORURE R B A R

Graduate

606-8501,

School of Informatics, Kyoto University, Kyoto
Japan

2) umatani@kuis.kyoto-u.ac.jp

© 2019 Informati

ion Processing Society of Japan

20

