
Electronic Preprint for Journal of Information Processing Vol.27

Regular Paper

dajFS: A New File System
with Per-directory Adaptive Journaling

Wataru Aoyama1,a) Hideya Iwasaki1,b)

Received: October 26, 2018, Accepted: January 15, 2019

Abstract: A journaling file system is a file system that records information about pending updates to the file system
before committing the updates. This mechanism raises the reliability of the system because it enables any inconsis-
tencies to be repaired with minimal loss of data. Since there is a tradeoff between the overhead and reliability, ext3,
a journaling file system commonly used by the Linux kernel, offers three journaling modes: speed-prioritized mode,
reliability-prioritized mode, and intermediate mode. Unfortunately, in ext3, the journaling mode has to be set individu-
ally for each file system. Thus, the granularity of the journaling mode setting is very coarse. In addition, the journaling
mode must be determined at the time of mounting the file system and cannot be changed without unmounting it. To
resolve this problem, this paper proposes a new journaling file system named dajFS (per-directory adaptive journaling
file system) that is able to set an appropriate journaling mode for each directory and to switch the journaling mode of
a directory to another on the fly without unmounting the file system. Essentially, the journaling mode that is specified
for a directory applies to all files that reside directly under that directory. By using dajFS, the user can determine and
set a journaling mode for each directory on the basis of the importance of files under that directory. As a result, the
user can enjoy moderate granularity with the journaling mode setting.

Keywords: journaling file system, consistency, journaling mode, ext3, Linux kernel

1. Introduction

File systems are the part of an operating system that manage
data on storage devices. When an operating system is abnormally
aborted due to, for example, power failure or system crash during
a file operation, a file system might fall into an inconsistent state.
Basic techniques to cope with this problem include file recovery
based on file-system scan such as fsck [1], journaling [2], soft-
update [3], [4], and copy on write [5]. Among these, journaling is
used in various file systems such as the third extended (ext3) file
system, JFS *1, XFS [6], ReiserFS *2, and NTFS [7].

A journaling file system is a file system that records informa-
tion about pending updates to the file system before committing
the updates. By this mechanism, it is possible to repair any in-
consistencies with minimal loss of data.

Typically, a journaling file system logs metadata (i.e., informa-
tion about actual data)/actual data into a special log file called a
journal. After confirming that they are recorded in the journal, it
writes them into the permanent storage on a disk and removes the
logs from the journal. Note that we use “permanent storage” to
represent the disk area in which metadata and actual data are per-
manently stored; this does not include the disk area for a log file.
Even if the operating system crashes, it is possible to know how
far the update process has proceeded by investigating the content
of the journal, and thus to resolve any inconsistencies. In this pa-
per, we use the term “log file” to represent a journal so as to avoid
confusion because the term “journal” is also used as a journaling

1 The University of Electro-Communications, Chofu, Tokyo 182–8585,
Japan

a) aoyama@ipl.cs.uec.ac.jp
b) iwasaki@cs.uec.ac.jp

mode name.
The degree to which the inconsistencies can be resolved de-

pends on how the data are recorded into a log file, i.e., journaling

mode. In ext3, a journaling file system commonly used by the
Linux kernel, three journaling modes are available: writeback,
ordered, and journal. In this paper, we use slanted fonts to rep-
resent the name of a journaling mode. These journaling modes
are different in their risk levels: writeback has the highest risk,
ordered has the medium risk, and journal has the lowest. The
risk level depends on which data are recorded and in what order
they are recorded into a log file. Lower risk level means higher
reliability, but also larger overhead.

Ideally, an adequate journaling mode with moderate granular-

ity depending on the target risk level desired by the user is ap-
plied. For example, we want to apply journal for files that have
important data, and to use writeback for files that are not so im-
portant. Unfortunately, in ext3, the granularity is “per file sys-
tem”, which means that journaling mode must be set individually
for each file system. This granularity is too coarse, because all

files in the same file system are applied using the same journaling
mode. It is impossible to set an appropriate journaling mode in
a finer way. For example, it is impossible to apply the journal
mode to one part of a file system and to apply the ordered mode
to another part at the same time. In addition, it is impossible to
switch the journaling mode without unmounting the file system
first.

A few studies have removed this restriction of ext3. For ex-
ample, File-adaptive Journaling [8] is a file system that supports

*1 http://jfs.sourceforge.net/
*2 https://reiser4.wiki.kernel.org/index.php/Main Page

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

per-file journaling mode by enabling the user to select an ade-
quate journaling mode for each file. Unfortunately, choosing and
setting a journaling mode for every file is a very time-consuming
task for the user. Thus, the per-file granularity is too fine.

To resolve this problem, we propose a new journaling file sys-
tem named dajFS (per-directory adaptive journaling file system)
that sets an appropriate journaling mode for each directory and
can switch the journaling mode of a directory to another on the
fly without having to unmount the file system. By using dajFS,
the user can easily set journaling modes with moderate granular-
ity.

2. The ext3 Journaling File System

The ext3 is a journaling file system that was developed on the
basis of ext2. In this section, we describe the internals of ext3, as
we implemented dajFS as an extension of ext3.

2.1 Layout of ext3
The layout of ext3 is shown in Fig. 1, where data structures un-

related to this paper have been omitted. The ext3 manages a file
system by dividing it into block groups of the same size [9]. The
contents of each block group are as follows. I-node bitmap (IB)
and data bitmap (DB) are bitmaps for managing i-node blocks
and data blocks, respectively. I-node blocks (INODE) are blocks
within which the i-nodes of files are stored. Data blocks (DATA)
are blocks within which actual file data are stored. Among them,
IB, DB, and INODE are classified as metadata. In this paper, M

and D represent metadata and actual data, respectively. The gray
part of the figure represents the area for a log file, the structure of
which is described in Section 2.2.

To reduce the number of I/O operations, the Linux kernel
caches data in a disk on the memory, which is called disk cache.
We use the terms i-node bitmap cache, data bitmap cache, i-node

cache, and data cache for the disk caches of IB, DB, INODE, and
DATA, respectively.

When a user process issues an asynchronous write operation to
a file, the kernel writes data to the corresponding disk caches and
informs the user process of the completion of the write operation.
As a result, every disk cache that includes new data is marked as
“dirty”, which means that the content of the disk cache has been
changed and has to be flushed to the disk. Precisely speaking,
there are two kinds of “dirty” disk cache. One is “JBDDirty”,
which is managed by the Journaling Block Device presented in
Section 2.2, and the other is “normal dirty”, which is managed
outside the journaling mechanism. This paper does not distin-
guish these two and simply uses “dirty”.

2.2 Structure of Log File
The ext3 uses a built-in kernel module for journaling called

Fig. 1 Layout of ext3.

Journaling Block Device (JBD). JBD uses the following terms:
commit, which is an operation for writing a data to a log file,
checkpoint, which is an operation for writing a committed data
in a log file onto a disk, and recovery, which is an operation for
restoring the consistency of a file system in an inconsistent state.

A transaction is a group of file operations that should be per-
formed as a whole as if it were an atomic operation. A transac-
tion is managed mainly by two dually linked lists in the kernel:
t buffers and t sync datalist. The former holds every data
that is to be written into a log file and the latter holds every data
that is to be written directly into the permanent storage bypass-
ing a log file. All data in t buffers and t sync datalist are
written to a disk by the kernel thread kjournald. By treating every
data in t sync datalist as a part of a transaction, it is possible
to enforce the writing order of data in both linked lists.

The structure of a log file in ext3 is presented in Fig. 2, which
also omits the data structures unrelated to this paper. A log file
consists of a journal superblock (JS) and a sequence of transac-
tions that are used as a ring buffer. A journal superblock holds
information that is necessary for managing a log file, such as
the starting point of a sequence of transactions. In a transaction,
change histories, i.e., dirty disk caches (M′ and D′), are sand-
wiched between a descriptor block (JD) and a commit block (JC).
The “prime” in M′ and D′ means “dirty”: M′ is a dirty metadata
and D′ is a dirty actual data. Each transaction is given a unique
identifier (transaction ID). ext3 executes transactions in the order
of this ID.

A transaction is one of three states: running, committing, and
checkpointing. These states are shown in Fig. 3. A running trans-
action can add a new change history, i.e., a dirty disk cache, to
t buffers/t sync datalist. If a synchronization instruction
is performed or timeout occurs, the running transaction transits
to the committing state. In the committing state, a transaction
is not allowed to add a new change history, and change histories
in the transaction are committed one by one. In this committing
process, every disk cache in t buffers is written in a log file
and every disk cache in t sync datalist is written in the per-

Fig. 2 Structure of log file in ext3.

Fig. 3 States of a transaction.

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

manent storage. When the commitment for all change histories
is completed, the state transits to the checkpointing state. In this
state, every data in a log file is written into the permanent storage.
Once a transaction reaches the checkpointing state, it is possible
to recover the file system even if the operating system abnormally
crashes.

2.3 Journaling Modes
As discussed in the Introduction, there are three journaling

modes in ext3: writeback, ordered, and journal. The operation
flows for these modes are shown in Fig. 4.

In the writeback mode (Fig. 4 (a)), ext3 writes disk caches for
all kinds of metadata (i.e., i-node bitmap caches, data bitmap
caches, and i-node caches) into a log file. In contrast, ext3 does
not write any data caches into a log file but rather writes them
into the permanent storage directly. This mode does not prescribe
their writing order into a log file/permanent storage. For this pur-
pose, ext3 places dirty disk caches for all kinds of metadata on
t buffers and dirty data caches for actual file data on a data
structure called a dirty list that is outside the journaling mecha-
nism. Since the writing order is not determined, a metadata on
the permanent storage might come to refer to invalid actual data,
but the consistency of metadata cannot be compromised.

The ordered mode (Fig. 4 (b)) also writes disk caches for all
kinds of metadata into a log file and data caches for actual file
data directly into the permanent storage. The difference between

Fig. 4 Three journaling modes in ext3.

this mode and writeback is that ordered enforces the writing or-
der: actual file data first and then metadata. To do so, ext3 places
dirty disk caches for all kinds of metadata on t buffers and
dirty data caches on t sync datalist. Due to the enforcement
of writing order, a metadata on the permanent storage is guaran-
teed to refer to a valid actual data.

The journal (Fig. 4 (c)) writes all data caches (for both meta-
data and actual data) into a log file by placing them on
t buffers. Thus, the consistency of metadata and actual data
cannot be compromised.

There is a tradeoff between the overhead and reliability. The
writeback mode has the lowest overhead among the three but its
reliability is also the lowest. In contrast, journal mode has the
highest reliability at the expense of the speed: its overhead is the
highest. The overhead and reliability of ordered lie between those
of writeback and journal.

In ext3, journaling mode has to be set per file system; i.e., the
journaling mode is determined at the time of mounting the file
system and cannot be changed without unmounting it. Thus, the
granularity of the journaling mode setting is very coarse. Some
studies [10], [11] have focused on raising both the speed and reli-
ability of the file system at the same time, but they cannot change
the granularity of the journaling mode setting.

3. Design of dajFS

3.1 Overview and Design Decisions of dajFS
The dajFS is a file system that enables the user to set a journal-

ing mode per directory in a file system and to switch the journal-
ing mode of one directory to another on the fly without unmount-
ing the file system. Basically, the journaling mode that is spec-
ified for a directory applies to all files that reside directly under
that directory. We think that the design decision of per directory
granularity of the journaling mode setting is quite adequate, for
the following reason.

In Linux, standard directory names and contents placed under
standard directories are determined on the basis of the Filesystem
Hierarchy Standard [12]. For example, the /etc directory holds
the system’s configuration files and the /tmp directory holds tem-
porary files. As you can see from these examples, files under
the same directory tend as having common features, and conse-
quently can be regarded as having almost the same importance.
These observations led us to design the dajFS as a journaling
file system whose granularity is per-directory. As discussed in
the Introduction, the granularity of ext3 is the entire file system,
which is too coarse. In contrast, per-file granularity [8] is too
fine, even though it would be convenient for the user to be able
to assign a journaling mode to each file. The problem is that
specifying adequate journaling modes to all files would be a very
time-consuming task for the user. Thus, per-directory granularity
is a moderate and adequate design decision.

3.2 Journaling Modes in dajFS
The dajFS provides the same three journaling modes as

those in ext3 along with one addition: the lightweight mode,
which guarantees the minimum required ability for maintaining
consistency by recording only i-node bitmap and data bitmap

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

Table 1 Journaling modes in dajFS.

journaling target of log order overhead consistency
mode i-node bitmap data bitmap i-node cache data cache

cache cache

lightweight � � minimum minimum
writeback � � � small small
ordered � � � D→ M medium medium
journal � � � � large high

Fig. 5 Example of file manipulation in dajFS.

into a log file.
There are two situations in which the lightweight mode is re-

quired. The first is when there is a directory where even the con-
sistency guaranteed by writeback mode is unnecessary. /tmp
might be an instance of such directories. The second is when
there are directories used by an application that has its own ways
of guaranteeing consistency of the files related to the application.
For example, SQLite assures consistencies of databases by treat-
ing the execution of an SQL statement as a transaction. For di-
rectories governed by such an application, any journaling mode
in ext3 could be too much, as both the application and the file
system make duplicated efforts to keep the consistencies. The
lightweight mode can be used by such applications to reduce
overheads caused by this duplication. If we use lightweight for
such directories, we can entrust guaranteeing consistencies to the
application’s mechanism while minimizing the overhead of jour-
naling by dajFS.

To sum up, the user can select one of four journaling modes —
lightweight, writeback, ordered, or journal — for each directory
depending on the importance of the files directly under that direc-
tory. These four journaling modes by dajFS are summarized in
Table 1.

Similar to ext3, the user can use dajFS by first creating a file
system on a block device by mkfs and then mounting the file sys-
tem by mount. After that, the user can set/switch the journaling
mode of a directory by using the interfaces provided by dajFS.
By default, a new directory is given the same journaling mode on
creation as that of its parent directory. The user can also change
the journaling mode at any time while keeping the file system
mounted.

3.3 Treatment of Links and File Movements
In Linux, it is possible to give multiple path names to a file by

using hard links or symbolic links. This makes the relationship
between files and path names one-to-many.

In dajFS, if a file is hard-linked from multiple directories, the
file obeys the journaling mode of the directory that made the hard
link most recently. For example, when a new hard link to a file

is created, the journaling mode of the directory from which the
link is created is applied to the file. This might change the jour-
naling mode applied to the file. In contrast, when a symbolic link
to a file is created, the journaling mode applied to the file is not
affected.

When a file is moved from one directory to another, the file
obeys the journaling mode of the latter directory.

3.4 Example of File Manipulation in dajFS
To illustrate how dajFS works, here we show a small and sim-

ple example. We assume a current user named aoyama whose
home directory is /home/aoyama. Figure 5 (a) shows a part of
the directory structure of the file system rooted at / whose jour-
naling mode is journal. The journaling mode of a directory is
presented as the first letter of the journaling mode name in a cir-
cle at the top-right corner of the directory name.

Since the /etc directory contains important files such as the
password file (/etc/passwd), its journaling mode is journal. In
contrast, /tmp directory is set to lightweight because it gener-
ally contains less important temporary files. The importance of
/home is between the two. Thus, we set its journaling mode and
that of aoyama as ordered. There are two directories under the
aoyama directory: paper and Downloads. The paper directory
contains important source files of a paper, so it is assigned the
journal mode. In contrast, Downloads contains files downloaded
from the Internet, which can be redownloaded if necessary, so we
select lightweight for Downloads. Initially, paper contained two
files, abst.tex and main.tex, but Downloads currently has no
file.

Suppose that the user is aoyama and initially the current work-
ing directory is /home/aoyama. Also suppose that the user ex-
ecutes the sequence of commands presented in Fig. 6. In this
shell session, two commands provided by dajFS are used. First,
“lsjournal dir” prints the journaling mode name of a speci-
fied directory to the standard output. If dir is omitted, the cur-
rent working directory is used. Second, “setjournal dir mode”
switches the journaling mode of the specified directory dir to
mode. The result of switching is printed to the standard output.

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

Fig. 6 Shell session of the example.

In this shell session, the user makes the eps directory just un-
der /home/aoyama. Since a new directory inherits the journaling
mode of its parent directory, its journaling mode is ordered. Next,
the user switches the journaling mode of eps to writeback by is-
suing the setjournal command. The directory structure at this
moment is presented in Fig. 5 (b).

Next, suppose that the user invokes an application to draw a
figure and stores a generated file (fig.eps) in the eps directory.
The fig.eps file obeys the writeback journaling mode. Then,
the user changes the current working directory to paper, whose
journaling mode is journal, and makes a hard link to fig.eps. As
a result, fig.eps is referred to from two directories. Since the
most recent link was created from the paper directory, fig.eps
comes to obey the journaling mode of paper, i.e., journal. The
directory structure at this moment is presented in Fig. 5 (c).

Finally, the user downloads epsf.sty from the network into
the Downloads directory. At first, the downloaded file is
managed by lightweight, which is the journaling mode of the
Downloads directory. However, after moving the file to the
paper directory by the mv command, epsf.sty comes to obey
the paper directory’s journal mode. The final directory structure
is presented in Fig. 5 (d).

4. Implementation of dajFS

We implemented dajFS by extending the ext3 and Journaling
Block Device (JBD) in Linux Kernel 4.2.

4.1 Remembering Journaling Mode
To hold a specified journaling mode in a data structure for a

directory, we added journaling mode information in the i-node
block on the disk and i-node cache. For the i-node block, we
utilized two unused bits in the i-node flag area named i_flags,
which has a width of 32 bits.

To reduce the overhead caused by referring to the directory’s
journaling mode during file manipulation, dajFS automatically
caches the referred journaling mode in the i-node for the file.
There are three timings for making this cache. First, when a file
and an i-node for the file are newly created, dajFS stores the jour-

naling mode of the parent directory into the i-node. Second, when
a file is moved from one directory to another, dajFS caches the
journaling mode of the destination directory. Third, when the
journaling mode of a directory is changed, dajFS caches the new
journaling mode for the files under that directory.

4.2 Interfaces for Getting/Setting Journaling Mode
dajFS serves interfaces that use the ioctl system call

for setting/getting the journaling mode of a directory to the
user. The new commands (arguments) given to ioctl are
IOC GETJOURNAL and IOC SETJOURNAL.

Processing IOC GETJOURNAL is quite simple. After making
sure the target of the command is really a directory, dajFS returns
the journaling mode stored in the i-node flags, i.e., i_flags. For
the case of IOC SETJOURNAL, after making sure that the target
is a directory, dajFS stores the new mode given as an argument
of ioctl into the i-node flags of the directory. In the latter case,
before storing the new mode, it is necessary to commit and check-
point all the transactions managed by dajFS so as to preserve the
writing order within a transaction. If committing and checkpoint-
ing were neglected, the writing order within a transaction for a
file whose journaling mode is switched could be disturbed, as
dirty disk caches are placed in either t buffers or the dirty list
depending on the journaling mode (see Fig. 4) and disk writings
from these lists are not synchronized.

4.3 Implementing writeback /ordered /journal Modes
For writeback, ordered, and journal modes, we used ext3 im-

plementations without any modifications. In ext3, functions in
the kernel used for file operations never change once the file sys-
tem is mounted. In dajFS, since journaling mode is not fixed,
we implemented a mechanism for selecting appropriate functions
used for file operations depending on the current journaling mode
in the i-node cache of a target file.

4.4 Implementing lightweight Mode
A read operation in the lightweight mode is the same as those

in the other three modes. It refers to the corresponding data cache
for the target of the read operation from the i-node cache. If there
exists no such data cache, or if the existing data cache is old, it
reads the actual data from a disk.

In a write operation in the lightweight mode, the targets of
recording into a log file are i-node bitmap cache and data bitmap
cache. Thus, dajFS places them in t buffers. In addition, sim-
ilar to the data caches in the ordered mode, dajFS places i-node
caches in t sync datalist, whose contents are not written into
a log file but are directly written into the permanent storage. This
enables us to implement the lightweight mode on the basis of the
code for the writeback mode.

It should be noted that, in the lightweight mode, there might be
a case where a transaction has no dirty disk caches in t buffers.
Such a case could not happen in other journaling modes because
if a write operation makes a data cache dirty, it definitely makes
its corresponding i-node cache dirty at the same time. If we only
used the kjournald kernel thread of ext3 without any modifica-
tions, a meaningless transaction that has only JD and JC might

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

Fig. 7 Results of IOZone tests for HDD.

Fig. 8 Performances of IOZone tests for SSD.

Table 2 System configuration used in the evaluation.

Hardware CPU Intel Core i5-4570 3.20 GHz 8M cache
Memory 8 GB
HDD 500 GB Hitachi Serial ATA/3.0 7200 rpm
SSD 120 GB Intel SSD 520 Series

Software Linux Ubuntu16.04 x86 64
kernel Kernel 4.2

be produced in a log file. Thus, we modified kjournald so that it
avoids producing such a meaningless transaction.

5. Evaluation

To determine the effectiveness of the proposed dajFS, we con-
ducted experiments from the following two viewpoints.
• overhead of dajFS compared to ext3/ext2

• validity of per-directory journaling mode of dajFS

Table 2 presents the system configuration of the experi-
ments. We prepared two environments: one using HDD and the
other using SSD as an external storage, on which a file system
(dajFS/ext3/ext2) was created. We executed every experiment
five times and calculated their average values.

We used the following file systems.
• dajFS-l, dajFS-w, dajFS-o, and dajFS-j: dajFS where the

journaling mode of the parent directory of target files for op-
eration (e.g., write) was set to lightweight, writeback, or-
dered, or journal, respectively.

• ext3-w, ext3-o, and ext3-j: ext3 when journaling mode for a
file system was set to writeback, ordered, or journal, respec-
tively.

• ext2: ext2 as a journaling-less file system.

5.1 Overheads
To evaluate the overhead of dajFS, we used the IOZone file

system benchmark tool *3 and measured the I/O performances
of read, re-read, random-read write, re-write, and random-write

*3 http://www.iozone.org

tests.
In the experiments, file size was set to 16 GB and the unit size

of a single write was set to 8 MB. The obtained performance took
the elapsed times by close, fsync, and fflush into account.

We compared dajFS-w with ext3-w, dajFS-o with ext3-o, and
dajFS-j with ext3-j. dajFS-l was compared with ext2 because
there is no corresponding journaling mode to lightweight in ext3.

Figures 7 and 8 present the results. As shown, dajFS had
almost the same performances in both HDD and SSD envi-
ronments as those by ext3 for all tests in writeback (Fig. 7 (b)
and Fig. 8 (b)), ordered (Fig. 7 (c) and Fig. 8 (c)), and journal
(Fig. 7 (d) and Fig. 8 (d)) modes. These results demonstrate that
the introduction of per-directory journaling mode in dajFS im-
posed no extra overheads compared with ext3.

For lightweight mode (Fig. 7 (a) and Fig. 8 (a)), which has been
newly introduced into dajFS, the performances of read, re-read,
and random-read tests for both HDD and SSD and those of write,
re-write, and random-write tests for SSD were almost the same
as those by ext3. For the performances for write, re-write, and
random-write tests for HDD, dajFS-l outperformed ext2 dramat-
ically. This was because a specialized tree data structure called
HTree was introduced in ext3, the base of dajFS, to promote ef-
ficiency of the file system.

5.2 Validity of Per-directory Granularity
To determine whether the per-directory granularity of journal-

ing mode setting in dajFS is reasonable, we measured the perfor-
mances of two benchmark programs: SQLite *4 and MySQL *5.
When using dajFS, we assigned appropriate journaling modes to
various directories without losing the integrity of the systems.
5.2.1 SQLite

SQLite is an open-source relational database management sys-

*4 https://www.sqlite.org/
*5 http://www.mysql.com/

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

Fig. 9 Elapsed times of SQLite.

tem that has its own internal mechanism for guaranteeing the
database integrity. At the beginning of a transaction, SQLite cre-
ates a temporary file called rollback journal file, and uses it to roll
back the database when abnormality occurs. SQLite writes every
modification into the rollback journal file, and upon commitment,
reflects the modification to the database. Thus, two duplicated
mechanisms for maintaining consistency work at the same time:
one served by a journaling file system (ext3/dajFS) and the other
served by SQLite itself.

To avoid such duplication, we made small modifications to the
source code of SQLite so as to place the database itself and the
rollback journal file on different directories. When using dajFS,
we set the journaling mode of the database directory as journal
and that of the directory of the rollback journal file as lightweight.

In these experiments, for a table of integers and strings, we
measured elapsed time for 10,000 insertions of random data, that
for 10,000 random updates of stored data, and that for 10,000
random deletions of stored data.

Figure 9 presents the results for the HDD and SSD environ-
ments when the journal mode served by SQLite is set to its de-
fault *6.

Elapsed times for random updates by dajFS were 11% shorter
for HDD and 35% shorter for SSD than those of ext3-j. In ad-
dition, elapsed times for random deletions by dajFS were also
11% shorter for HDD and 36% shorter for SSD than those of
ext3-j. In contrast, dajFS showed worse performance than ext3-j
for random insertions to HDD. We presume this is because ext3-j
treated actual data as the target of journaling, which accelerated
sequential writes of blocks.

These results demonstrate that the per-directory setting of jour-
naling modes in dajFS’s design has sufficient validity.
5.2.2 MySQL

MySQL is also an open-source implementation of a relational
database management system. It can create temporary files not
only for maintaining data consistencies but also for gaining pro-
cessing speed. For example, when processing an SQL statement
that has “ORDER BY” or “GROUP BY”, MySQL writes the result
of a quick sort to a temporary file. Clearly, such a temporary file
is less significant than database files.

We used dajFS and let MySQL create temporary files under a
directory whose journaling mode was writeback. In addition, we
set journal mode to the directory under which the database files
were to be placed.

In these experiments, we measured the time it took to sort ten

*6 The default is “delete” mode.

Fig. 10 Elapsed times of MySQL.

million randomly generated data by their dates in a table of inte-
ger, string, and date.

Figure 10 presents the results. For HDD, the elapsed time of
dajFS was 12% shorter than that of ext3-d. Similarly, the im-
provement in elapsed time was about 30% for SSD.

These results demonstrate that the overhead of journaling tem-
porary files in MySQL can be reduced by appropriately utilizing
the per-directory journaling mode served by dajFS.

5.3 Reliability of File System
To determine if dajFS is really capable of maintaining the

specified consistencies of the file system, we conducted experi-
ments that intentionally make the operating system crash during
file operations. To this end, we implemented a kernel thread that
caused a kernel panic after a predetermined period of time when
I/O operations for some target file were issued. As the target,
we created a new 1 KB file under a directory whose journaling
mode was lightweight, writeback, ordered, or journal. Then we
performed 2 KB of write operations to the target file, and let the
kernel thread cause kernel panic.

We classified the state of the file system into the following four
categories.
State 1 The entire file system was not destroyed, i.e., both i-

node bitmaps and data bitmaps are in normal state.
State 2 The target file was not destroyed, which means that its

i-node is normal. This is the same desired consistency as that
by ext3-w.

State 3 The content of the target file had no abnormality, which
means that its i-node referred to the correct actual data. This
is the same desired consistency as that by ext3-o.

State 4 The content of the target file was either the one before
the write operations or the one after the write operations.
This is the same desired consistency as that by ext3-j. In
the latter case, the data block was written into the permanent
storage safely.

Relationships between the journaling modes of dajFS and
these states are as follows.
• The lightweight mode guarantees State 1.
• The writeback mode guarantees until State 2.
• The ordered mode guarantees until State 3.
• The journal mode guarantees until State 4.
After kernel panic caused by the kernel thread, we investigated

the state of the file system and the target file by using a file system
analysis tool called the Sleuth Kit *7. Results showed that dajFS

*7 https://www.sleuthkit.org/

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

succeeded in keeping the desired state, i.e., consistency, for every
journaling mode of the parent directory of the target file.

6. Related Work

Okeanos [13] is a journaling file system that has two journal-
ing modes: wasteless and selective. From the observation that
write operations with small sizes of modifications can be a main
cause of performance degradation of the system [14], the waste-
lesss mode commits multiple data caches simultaneously by com-
bining their modified parts to form a single data, thus reducing the
cost of I/O operations. To avoid meaningless page duplication,
Okeanos also provides selective mode. In the selective mode,
a write operation uses the wasteless mode when the size of the
write operation is less than a certain threshold, and uses the or-
dered mode otherwise. Okeanos is implemented as an extension
of ext3.

Adaptive Journaling [15] is a mechanism that automatically
chooses appropriate journaling modes from the viewpoint of re-
ducing waiting time for I/O operations on the basis of I/O pat-
terns in transactions. It sets a journaling mode per transaction.
Specifically, it uses ordered mode for transactions that perform
sequential writes and uses journal mode for the other transactions
to reduce the seeking time of a disk.

Journaling mode selection in both Okeanos and Adaptive Jour-
naling is completely automatic, which means the user cannot
specify desired journaling modes. In contrast, dajFS lets the user
select which journaling mode to use for each directory.

File-adaptive Journaling [8] is a file system in which the user
can set a journaling mode per file. As a result, similar to dajFS,
more than one journaling modes co-exist in a file system. Al-
though the user can set journaling modes in a finer manner than
ext3, specifying the mode for every file is very time-consuming
and puts an enormous burden on the user. In contrast, by us-
ing dajFS, the user can eliminate this burden. For example, the
source of Linux kernel 4.2 contains M directories and N non-
directory files, where M = 3,376 and N = 50,781 after extracting
files from the archive, and M = 6,677 and N = 110,319 after
making the kernel. Thus, in the file-adaptive journaling, the user
sets desired journaling modes for at most N files. On the other
hand, by using dajFS, the user has only to set desired journaling
modes for at most M directories, provided that there are no prob-
lems in applying the same journaling mode to all files directly
under each directory.

7. Conclusion

In this paper, we proposed dajFS, a journaling file system that
offers per-directory journaling modes that can be changed with-
out unmounting the file system. By using dajFS, the user can
choose the appropriate journaling mode for a directory according
to the importance of the files placed directly under that directory.

The experimental results demonstrate the effectiveness of da-

jFS. Although dajFS was implemented as an extension of ext3,
it has almost no extra overhead compared to ext3. For SQLite,
which guarantees the consistency of database files by its own
mechanism, using dajFS reduced the execution times by up to
36%. For MySQL, which makes many temporary files, the exe-

cution times were reduced by up to 30% by using dajFS.
In future work, we will examine the correctness of dajFS by

using model checking. We expect that a method proposed by
Yang et al. [16] might be applicable to dajFS. We also want to
adapt dajFS to a clustered file system. As suggested in the re-
search by Hatzieleftheriou and Anastasiadis [17], extending the
journaling mechanism of dajFS to a clustered file system could
broaden the applicability of dajFS.

References

[1] Kowalski, T.J.: Fsck – The UNIX File System Check Program, UNIX
Vol. II, Hume, A.G. and McIlroy, M.D. (Eds.), W.B. Saunders Com-
pany, pp.581–592 (1990).

[2] Hagmann, R.: Reimplementing the Cedar File System Using Logging
and Group Commit, Proc. 11th ACM Symposium on Operating Sys-
tems Principles, SOSP 1987, pp.155–162 (1987).

[3] McKusick, M.K. and Ganger, G.R.: Soft Updates: A Technique for
Eliminating Most Synchronous Writes in the Fast Filesystem, Proc.
FREENIX Track: 1999 USENIX Annual Technical Conference, pp.1–
17 (1999).

[4] Ganger, G.R., McKusick, M.K., Soules, C.A.N. and Patt, Y.N.: Soft
Updates: A Solution to the Metadata Update Problem in File Systems,
ACM Trans. Comput. Syst., Vol.18, No.2, pp.127–153 (2000).

[5] Rosenblum, M. and Ousterhout, J.K.: The Design and Implementation
of a Log-structured File System, ACM Trans. Comput. Syst., Vol.10,
No.1, pp.26–52 (1992).

[6] Sweeney, A., Doucette, D., Hu, W., Anderson, C., Nishimoto, M. and
Peck, G.: Scalability in the XFS File System, Proc. 1996 USENIX
Annual Technical Conference, ATC 1996, pp.1–14 (1996).

[7] Solomon, D.A. and Custer, H.: Inside Windows NT, Microsoft Press,
2nd edition (1998).

[8] Shen, K., Park, S. and Zhu, M.: Journaling of Journal is (Almost)
Free, Proc. 12th USENIX Conference on File and Storage Technolo-
gies, FAST 2014, pp.287–293 (2014).

[9] McKusick, M.K., Joy, W.N., Leffler, S.J. and Fabry, R.S.: A Fast File
System for UNIX, ACM Trans. Comput. Syst., Vol.2, No.3, pp.181–
197 (1984).

[10] Chidambaram, V., Pillai, T.S., Arpaci-Dusseau, A.C. and
Arpaci-Dusseau, R.H.: Optimistic Crash Consistency, Proc. 24th
ACM Symposium on Operating Systems Principles, SOSP 2013,
pp.228–243 (2013).

[11] Lim, S.-H., Choi, H.J. and Park, D.-S.: Efficient Journaling Write-
back Schemes for Reliable and High-performance Storage Systems,
Personal Ubiquitous Comput., Vol.17, No.8, pp.1761–1774 (2013).

[12] LSB Workgroup, The Linux Foundation: Filesystem Hierarchy Stan-
dard (2015), available from 〈https://refspecs.linuxfoundation.org/
FHS 3.0/fhs-3.0.pdf〉.

[13] Hatzieleftheriou, A. and Anastasiadis, S.V.: Okeanos: Wasteless Jour-
naling for Fast and Reliable Multistream Storage, Proc. 2011 USENIX
Annual Technical Conference, ATC 2011, pp.235–240 (2011).

[14] Nightingale, E.B., Veeraraghavan, K., Chen, P.M. and Flinn, J.: Re-
think the Sync, ACM Trans. Comput. Syst., Vol.26, No.3, pp.6:1–6:26
(2008).

[15] Prabhakaran, V., Arpaci-Dusseau, A.C. and Arpaci-Dusseau, R.H.:
Analysis and Evolution of Journaling File Systems, Proc. 2005
USENIX Annual Technical Conference, ATC 2005, pp.105–120
(2005).

[16] Yang, J., Twohey, P., Engler, D. and Musuvathi, M.: Using Model
Checking to Find Serious File System Errors, ACM Trans. Comput.
Syst., Vol.24, No.4, pp.393–423 (2006).

[17] Hatzieleftheriou, A. and Anastasiadis, S.V.: Host-side Filesystem
Journaling for Durable Shared Storage, Proc. 13th USENIX Confer-
ence on File and Storage Technologies, FAST 2015, pp.59–66 (2015).

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

Wataru Aoyama received his M.E. de-
gree from the University of Electro-
Communications in 2018 and has been en-
gaged in Fujitsu Limited since 2018. His
research interests are operating systems
and systems software.

Hideya Iwasaki is a Professor in the
Graduate School of Informatics and En-
gineering at the University of Electro-
communications. From 2011, he is a
member of Science Council of Japan. He
received his M.E. degree in 1985, his Dr.
Eng. degree in 1988 from the University
of Tokyo. His research interests are pro-

gramming languages and systems, parallel processing, systems
software, and constructive algorithmics. He is a member of the
IPSJ and ACM.

c© 2019 Information Processing Society of Japan


