
Abstract: Elliptic curve cryptosystems (ECCs) are widely used because of their short key size. They can ensure
enough security with shorter keys, and use less memory space to reduce parameters. Hence, an elliptic curve is typi-
cally used in embedded systems. The dominant computation of an ECC is scalar multiplication Q = kP, P ∈ E(Fq).
Thus, the security and efficiency of scalar multiplication are paramount. To render secure ECCs, complete addition
formulae can be employed for a secure scalar multiplication. However, this requires significant memory and is thus
not suitable for compact devices. Several coordinates exist for elliptic curves such as affine, Jacobian, projective. The
complete addition formulae are not based on affine coordinates and thus require considerable memory. In this study,
we achieved a compact ECC by focusing on affine coordinates. In fact, affine coordinates are highly advantageous in
terms of memory but require many if statements for scalar multiplication owing to exceptional points. We improve
the scalar multiplication and reduce the limitations for input k. Furthermore, we extend the affine addition formulae to
delete some exceptional inputs for scalar multiplication. Our compact ECC reduces memory complexity up to 26 %
and is much more efficient compared to Joye’s RL 2-ary algorithm with the complete addition of formulae when the
ratio I/M of computational complexity of inversion (I) to multiplication (M) is less than 7.2.

Keywords: Elliptic curve scalar multiplication, side channel attack(SCA), exception-free addition formulae

1. Introduction
Elliptic curve cryptosystems (ECCs) are widely used because

of their short key size. They can ensure enough security with
shorter keys, and use less memory space to reduce parameters.
Hence, an elliptic curve is typically used in embedded systems
[1]. The dominant computation of ECCs is scalar multiplication
Q = kP, P ∈ E(Fq). Thus, the security and efficiency of scalar
multiplication is paramount.

Studies regarding secure elliptic curve scalar multiplication al-
gorithms can be divided into two. One pertains to prior studies
regarding efficient secure scalar multiplication [6], [7], [8], [10].
The other pertains to efficient coordinates with addition formu-
lae. Several coordinates for elliptic curves exist such as affine,
Jacobian, and projective. Although it appears that we need to
only combine efficient secure scalar multiplication with efficient
coordinates, it is in fact not that simple because some scalar mul-
tiplications require branches to apply the addition formulae. For
example, in the case of affine or Jacobian coordinates, both dou-
bling and addition formulae exist for two inputs of P and Q [4].
That is, when the scalar multiplication algorithm employs addi-
tion formulae in affine or Jacobian coordinates, we need to versify
whether the two input points are equal. In fact, not only the condi-
tion P = Q but also other points such as O+ P, P−P, and 2P = O

become exceptional inputs. Hence, researchers have investigated
on complete addition formulae [5], [11], [13], which can com-
pute for any two input points. Further, new methods have been
proposed by combining a powering ladder with complete addi-
tion formulae to protect the elliptic curve scalar multiplication

1 Graduate School of Engineering Osaka University

from side channel attack (SCA) [12].
Complete addition formulae operate well to exclude such

branches. However, complete addition formulae are not efficient
from the memory and computational standpoints. Particularly,
complete addition formulae are not based on affine coordinates
and thus require significant memory.

In this study, we achieved a compact ECC by focusing on affine
coordinates. In fact, affine coordinates are highly advantageous in
terms of memory but requires many if statements for scalar
multiplication owing to exceptional points. We adopt two ap-
proaches. First, we analyze a scalar multiplication with the input
point and scalar k in detail by assigning three notions of gener-
ality of k, secure generality, and executable coordinate. Subse-
quently, we demonstrate that the Montgomery ladder[8], Joye’s
LR 2-ary algorithm [7], and Joye’s RL 2-ary algorithm [7] sat-
isfy the secure generality but that Joye’s double-add algorithm[6]
does not satisfy secure generality. Further, we verify coordinates
that becomes executable. Subsequently, we improve Joye’s RL
2-ary algorithm [7] to reduce the limitations for input k. Further,
we extend the affine addition formulae to delete some exceptional
inputs for scalar multiplication. Subsequently, we propose a new
scalar multiplication by combining our improved Joye’s RL 2-ary
algorithm to our extended affine addition formulae. We enhance
the efficiency of our method by 2-bit scanning using the affine
double and quadruple formulae (DQ) [9], that can compute both
2P and 4P simultaneously with only one inversion computation.
Finally, our compact ECC reduces memory complexity by 36 %
and is more efficient compared to Joye’s RL 2-ary algorithm with
complete addition formulae when the ratio of inversion to multi-
plication is less than 7.2.

This paper is organized as follows. We first introduce the re-

Secure and Compact Elliptic Curve Cryptosystems

YAOAN JIN1　ATSUKO MIYAJI1

1ⓒ 2019 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2019-CSEC-85 No.17
Vol.2019-IOT-45 No.17

2019/5/24



lated work in Section 2. In Section 3, we analyze a scalar multi-
plication from the point of input scalar k in detail assigning three
new notions. Subsequently, we propose a variant of the affine
addition formulae in Section 4. We improve Joye’s RL 2-ary al-
gorithm to reduce the limitations for input k and coordinates in
Section 5. We compare our scalar multiplication with the affine
formulae to previous scalar multiplication algorithms with com-
plete addition formulae in Section 6. We conclude our work in
Section 7.

2. Related work
The related studies regarding secure elliptic curve scalar multi-

plication algorithms can be divided into two. One pertains to prior
studies regarding efficient scalar multiplication [6], [7], [8], [10]
and the other pertains to efficient complete addition formulae
[5], [11], [13]. Some scalar multiplications require branches to
apply the addition formulae. Complete addition formulae oper-
ate well to exclude such branches. However, complete addition
formulae are not efficient from the memory and computational
standpoints. We focus on right-to-left (RL) algorithm in this pa-
per.

2.1 Scalar multiplication
Montgomery ladder scanning scalar from MSB to LSB with-

out dummy computations can compute scalar multiplications reg-
ularly [8]. Thus, in the Montgomery ladder, the security issue de-
pends on the addition formulae of the elliptic curve. If we utilize
addition formulae on affine or Jacobian coordinates, branches to
avoid additions on two inputs exist, such as P + P, P − P, and
O + P, and the doubling of P with 2P = O. Branches results
in SCA. Hence, upon implementation, we should use ”if state-
ments” carefully. Meanwhile, if we utilize complete addition for-
mulae [11], then we exclude ”if statements” but sacrifice memory
and computational efficiency [12].

As for Joye’s double-add algorithm, Algorithm 1, by scanning
a scalar from LSB to MSB [6], the same discussion as the above
holds. Furthermore, for regular right-to-left (RL) m-ary, Algo-
rithm 2 are proposed in [7]. In this m-ary algorithm, the same
discussion as that of the Montgomery ladder holds. It is note-
worthy that both the regular LR m-Ary and RL m-Ary algorithms
are suitable for scalar multiplications with m-Ary representation.
The regular 2-Ary algorithms are improved from Algorithm 2 by
assuming that the MSB of the input scalar is always ‘1’ in [7].
However, they can not compute scalar multiplications correctly
when the scalar begins with ‘0’. All of these ladders are regular
and without dummy computations. They perform equally well
compared to Montgomery ladder mentioned before.

2.2 Complete Elliptic Curve Addition formulae
Izu and Takagi proposed the x-only differential addition and

doubling formulae [5], which proved to be exceptional only if
both input coordinates of x and z are 0 [12]. These addition for-
mulae are applied to the Montgomery ladder, in which after the
computation of the x-coordinate, the y-coordinate can be recov-
ered by the formula of Ebeid and Lambert [3].

Renes, Joost, Craig Costello, and Lejla Batina proposed com-

plete addition formulae for prime order elliptic curves [11].
Based on the theorems of Bosma and Lenstra [2], the complete
addition formulae for an elliptic curve E(Fp) can be obtained
without points of order two. E(Fp) with prime order excludes the
points of order two, thus, we can use the complete addition for-
mulae on E(Fp). The authors also mentioned that if the complete
addition formulae were used in an application, their efficiency
could be improved based on specific parameters and further com-
putation. However, they are still costly.

Table 1 summarizes the addition formulae including the com-
plete addition formulae, where M, S , I, and A are the costs for
one field multiplication, square, inversion and addition, respec-
tively; further, ma and mb are the costs for multiplication to a and
b, respectively,

Assuming that S = 0.8M and ignoring the computational com-
plexity of ma, mb, and A, the computational complexity of ADD
+ DBL in complete addition is 24M. Subsequently, the compu-
tational complexity of ADD + DBL in affine is more efficient
than that in complete addition or Jacobian when I < 8.8M or
I < 8.2M. Meanwhile, the computational complexity of ADD +

DBL in Jacobian is always more efficient than that in complete
addition by 11.2M.

Table 1 Computational complexity of Elliptic Curve Addition Formulae

Method Conditions ADD DBL Memory
x-only

addition[5]
Either x or

z-
coordinate

is not 0

8M + 2S 5M + 3S 10

Complete
addi-

tion[11]

2 - #E(Fp) 12M+3ma+

2mb + 23A
12M+3ma+

2mb + 23A
15

Affine - 2M + S + I 2M+2S +I 5
Jacobian - 12M + 4S 2M + 7S 8

3. Exceptional inputs in scalar multiplication
This section analyzes two algorithms (Algorithms 1–2) with

input scalar k =
∑ł−1

i=0 ki2i (in binary) and point P from the fol-
lowing three aspects: generality of k, secure generality, and exe-
cutable coordinate.

3.1 Generality of k
We define the generality of k as follows. The scalar multipli-

cation should compute kP for ∀k ∈ [0,N − 1], where N ∈ {0, 1}ł

is the order of P. Subsequently, it includes a case where the MSB
of k is zero (kł−1 = 0). We say that a scalar multiplication satisfies
the generality if it can operate for any k ∈ [0,N−1] with (kł−1 = 0)
or (kł−1 = 1). Let us investigate whether Algorithms 1–2 satisfy
the generality of input scalar k. The Joye’s double-add algorithm
(Algorithm 1) can operate for any input scalar k ∈ [0,N − 1].
It is obvious that Algorithm 1 can compute kP correctly when
kł−1 = 1. Algorithm 1 scans the scalar from the right and reads
“0”s at the end if kł−1 = 0. The “0”s read at the end does not
change the value saved in R[0] that is the correct computation re-
sult. In summary, Algorithm 1 can compute kP correctly with any
input scalar k ∈ [0,N − 1].

Joye’s RL m-ary algorithm satisfies the generality, implying
that it can compute kP for any input k ∈ {0, 1}ł, k ∈ [0,N − 1].

2ⓒ 2019 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2019-CSEC-85 No.17
Vol.2019-IOT-45 No.17

2019/5/24



This proof will be given in the final version. We herein focus on
the case of m = 2, which is shown in Algorithm 2.

Algorithm 1 Joye’s double-add algorithm[6]

Input: P ∈ E(Fp), k =
∑ł−1

i=0 ki2i

Output: kP
Uses: R[0], R[1]

1: R[0]← O
2: R[1]← P
3: for i = 0 to ł − 1 do
4: R[1 − ki]← 2R[1 − ki] + R[ki]
5: end for
6: return R[0]

Algorithm 2 Joye’s RL 2-ary algorithm [7]

Input: P ∈ E(Fp), k =
∑ł−1

i=0 ki2i

Output: kP
Uses: A, R[1], R[2]
Initialization

1: R[1]← O, R[2]← O, A← P
Main Loop

2: for i = 0 to ł − 2 do
3: R[1 + ki]← R[1 + ki] + A, A← 2A
4: end for

Aggregation and Final correction
5: A← (kł−1 − 1)A + R[1] + 2R[2]
6: A← A + P
7: return A

3.2 Secure generality
We define the notion of the secure generality added to the

generality as follows: If a scalar multiplication can compute
kP regularly without dummy operations satisfying generality for
k ∈ [0,N − 1], where N ∈ {0, 1}ł is the order of P, then we say
that such an algorithm satisfies the secure generality.

Algorithm 2 executes the same computations of addition and
doubling without any dummy operations for every bit of scalar
yielding a point P and a scalar k ∈ {0, 1}ł. It is regular without
dummy operations for any k, and thus satisfies secure generality.
Algorithm 1 also executes the same computations of addition and
doubling without any dummy operations until the final input bit
of a scalar k ∈ {0, 1}ł. Its final step in the main loop becomes a
dummy operation when processing kł−1 = 0. In fact, Algorithm 1
reads “0”s at the end if kł−1 = 0. Subsequently, the computation
R[1] ← 2R[1] + R[0] becomes a dummy operation, thus, we can
know whether the scalar begins with “0” by changing the value
of R[1]. If the result does not change, then the MSB of the scalar
is “0”. Thus, Algorithm 1 does not satisfy secure generality at the
kl−1.

3.3 Executable coordinate
Let us define the notion of a coordinate to a scalar multiplica-

tion algorithm. If the coordinate can be executed for an algorithm
for ∀k ∈ {0, 1}ł, we say that a coordinate is executable coordinate
for the algorithm. This notion is important because even if an al-
gorithm satisfies secure generality, we must choose an executable
coordinate.

Let us investigate the executable coordinates in Algorithm 1.

Algorithm 1 requires addition or doubling formulae with O. This
is why neither the affine nor Jacobian coordinate is executable.

Let us investigate Algorithm 2. Algorithm 2 contains excep-
tional inputs k. R[1] and R[2] are initialized as O in Step 2 and
A is initialized as P in Step 4. In the main loop, O + P appears
independent of k in Step 6. It is obvious that O + P, P + P, and
−P + P are computed when k = 1, 2, 0 in the final correction,
respectively. In summary, Algorithm 2 has to compute addition
with O independent to k, P+P if k = 2, P−P if k = 0. Neither the
affine nor Jacobian coordinate can compute all of O + P, O + 2P,
2P + 2P, P + P, and −P + P. Meanwhile, the complete addition
formulae [11] are executable coordinates. As shown in Section
2, we must sacrifice computational and memory complexity if we
use the complete addition formulae.

We herein focus on Algorithm 2 as it satisfies the secure gen-
erality of k, and improve it such that it can be used for the affine
coordinate that requires a small memory. It is noteworthy that
our idea can be applied to Algorithms 1 easily and that Jacobian
coordinate is also executable for our new Algorithms 7–8.

4. Variants of affine addition formulae
Affine addition formulae are advantageous because of

less memory usage. The computational cost, however, de-
pends on the ratio of inversion to the multiplication cost,
where t(A + A) = 2M + S + I and t(2A) = 2M + 2S + I.

Algorithm 3 Affine addition formula
Input: P = (x1, y1) and Q = (x2, y2)
Output: P,P + Q
1: t0 ← (x2 − x1)−1

2: y2 ← y2 − y1

3: t0 ← t0y2

4: y2 ← t2
0 − x1 − x2

5: x2 ← (x1 − y2)t0 − y1

6: return (x1, y1),(y2, x2)

Algorithm 4 Affine doubling formula
Input: P = (x1, y1)
Output: P,2P
1: t0 ← 3x2

1 + a
2: t1 ← (2y1)−1

3: t0 ← t0t1
4: t1 ← t2

0 − 2x1

5: t2 ← (x1 − t1)t0 − y1

6: return (x1, y1),(t1, t2)

The detailed algorithms are shown in Algorithms 3 and 4. It is
noteworthy that both Algorithms 3 and 4 can retain the value
of the input point of P, which can be used continually for the
next input. Affine addition formulae have exceptional points.
O can not be represented explicitly, while it is described as a
point at infinity. Thus, affine addition formulae cannot compute
O + P = O, P − P = O, or 2P = O. The addition formula
cannot compute P + P, which can only be computed by the
doubling formula. When implementing affine addition formulae,
branches are required to avoid such exceptional points. We want
to fully utilize affine addition formulae because they reduce
memory. Scalar multiplications should satisfy the generality

3ⓒ 2019 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2019-CSEC-85 No.17
Vol.2019-IOT-45 No.17

2019/5/24



of k in Section 3, and thus suitable for any k ∈ [0,N − 1],
where the order of P is N, which includes a special case of
k = 0. Algorithm 2 satisfies the secure generality but the affine
coordinate is not executable on them. Thus, we extend the
affine addition formulae. The corresponding operations are
shown in Algorithms 5 and 6, which can compute P − P = O

and 2P = O when E(Fp) does not include a point (0, 0). For
example, E(Fp) without two-torsion points, including the prime
order elliptic curve on the Weierstrass form satisfy the condition.
It is noteworthy that both Algorithms 5 and 6 retain the value
of the input point of P similarly as Algorithms 3 and 4. Let
us explain our idea of the extended affine addition formulae.
The inversion of a (mod p) can be computed by the extended
Euclidean algorithm, Ecd(a, p), or Fermat’s little theorem,
Fermat(a, p) = ap−2 (mod p). Interestingly, both algorithms can
operate and output 0 even if a = 0; that is, both are executable
for a special input of “0”. Therefore, we compute 1

x2−x1
and

1
2y1

from Algorithms 3 and 4 in the beginning and execute the
remaining parts. Subsequently, the results for the ordinary inputs
of P, Q are the same as those of Algorithms 3 and 4, respec-
tively. Furthermore, the results for the exceptional inputs of P−P
and 2P = O can be given as (0, 0), which is assumed asO = (0, 0).

Algorithm 5 Extended affine addition
Input: P = (x1, y1) and Q = (x2, y2)
Output: P,P + Q
1: t0 ← (x2 − x1)−1

2: y2 ← y2 − y1

3: x2 ← x2 − x1

4: t1 ← (x2 + 2x1)x2

5: x2 ← y1 x2

6: t2 ← (y2
2t0 − t1)t0

7: t1 ← ((x1 − t2)y2 − x2)t0
8: return (x1, y1), (t2, t1)

Algorithm 6 Extended affine doubling
Input: P = (x1, y1)
Output: P, 2P
1: t0 ← 3x2

1 + a, t1 ← (2y1)−1

2: t4 ← y2
1, t2 ← 8x1t4

3: t3 ← t2
0 − t2, t2 ← t2

1

4: t3 ← t3t2, x1 ← x1 − t3
5: t0 ← t0 x1, t4 ← 2t4
6: t0 ← (t0 − t4)t1
7: x1 ← x1 + t3
8: return (x1, y1),(t3, t0)

Neither Algorithm 3 nor 4 can output P − P = (0, 0) or
2P = (0, 0), even if an inversion of x2 − x1 or 2y1 is computed
by the Euclidean algorithm or Fermat’s little theorem.

Theorem 1 Let E(Fp) be y2 = x3 + ax + b, b , 0 (mod
p), meaning that point (0, 0) is not on E(Fp). P,Q are points
on E(Fp). By setting (0, 0) as O, the extended addition for-
mula can compute the addition of P and Q correctly if P , Q
(P , O,Q , O), P − P = O, and O + O. The extended doubling
formula can compute the doubling of P correctly for any point on
E(Fp).
Proof:

We can transform formulae (1) (2) to the extended affine addi-
tion formula by extracting the factor of 1

X2−X1
. When computing

P − P, the inversion of zero must be computed. By the extended
Euclidean algorithm, or Fermat’s little theorem, we obtain zero
for the inversion of zero. This demonstrates that by our affine
addition formula, we can compute P − P:

X3 = 0,Y3 = 0 (1)

This implies P−P = (0, 0). Further, we regard (0, 0) as O. Subse-
quently, our variant of affine addition formula computes P−P = O

correctly. Further, it is clear that O + O = O can be computed
correctly. We should emphasize that extracting the factor of 1

x2−x1

does not affect the addition of other points because the factor 1
x2−x1

will become zero only when computing P − P and O + O, and in
the other situation, extracting the factor of 1

x2−x1
is always safe.

The computational cost of Algorithm 5 is 6M +S + I and uses the
memory of seven.

We can transform formulae (3) (4) to the extended affine dou-
bling formula by extracting 1

y1
. When computing 2P = O, where

P is of zero y-coordinate, the inversion of zero will be zero. Sub-
sequently, we can compute 2P = (0, 0) by our affine doubling for-
mula. Further, we regard (0, 0) as O, implying that our variant of
the affine doubling formula can compute 2P = O correctly when
the point (0, 0) is not on E(Fp). Further, extracting the factor of

1
2y1

does not affect the doubling of other points. The y-coordinate
of P becomes zero only when 2P = O. The variant of the affine
doubling formula is exception-free, implying that it can compute
the doubling of all points on E(Fp), where the point (0, 0) is not
on it. The computational cost of Algorithm 6 is 4M + 4S + I and
uses the memory of seven.

It is noteworthy here that the original affine addition formulae
cannot compute P − P = O, P + O = P, and 2P = O, while our
extended affine addition formulae can compute P−P and 2P = O

correctly. The Jacobian and projective addition formulae com-
pute P − P = O and 2P = O correctly. Thus, both coordinates
become ”executable coordinates” in our Algorithms 7–8. This
implies that if our scheme perform well on the affine addition for-
mulae to compute scalar multiplications, it can be extended to the
Jacobian addition formulae or projective addition formulae easily
and will perform better.

5. Secure and Efficient Elliptic Curve Scalar
Multiplication

We propose memory-efficient algorithms that can avoid SCA
by combining Algorithm 2 with the original and our extended
affine addition formulae. It is noteworthy that the original affine
coordinate is not executable for Algorithm 2 because the addition
formula excludes P+P, P+O, and P−P and the doubling formula
excludes 2P with a two-torsion point P. We improve Algorithm
2 to avoid these exceptional inputs such that the original and ex-
tended affine coordinates become executable for Algorithm 2.

We also enhance the efficiency of our method by two-bit
scanning using the affine double and quadruple formulae
(DQ-formula) [9], which can compute both 2P and 4P
simultaneously with only one inversion computation, de-
noted by {2P, 4P} ← DQ(P). Thus, the computational cost

4ⓒ 2019 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2019-CSEC-85 No.17
Vol.2019-IOT-45 No.17

2019/5/24



of obtaining both 2P and 4P in the affine coordinate is
t({2P, 4P} ← P) = 8M + 8S + I. Our primary idea to apply
the DQ-formulae is by adjusting the length of the scalar by
padding “0” in front of the scalar to guarantee no processing
required for the remaining bits after a two-bit scanning. Us-
ing our adjusting idea, the processing of the remaining bits
does not depend on the odd or even length of the input scalar k.

Algorithm 7 New 2-ary RL powering ladder
Input: P ∈ E(Fp)

k =
∑ł−1

i=0 ki2i, k ∈ [0,N]
Output: kP

Uses: A, A[0], R[0], R[1]
Initialization

1: R[0] = −P
2: R[1] = P
3: A← 2P
4: R[k0]← R[k0] + A

Main Loop
5: for i = 1 to ł − 1 do
6: R[ki]← R[ki] + A
7: A← 2A
8: end for

Final Correction
9: R[k0]← R[k0] − P

10: A← −A + R[0] + 2R[1]
11: return A

Algorithm 8 New two-bit 2-ary RL powering ladder
Input: P ∈ E(Fp)

k =
∑ł−1

i=0 ki2i, k ∈ [0,N]
Output: kP

Uses: A, A[0], R[0], R[1]
Initialization

1: R[0] = −P
2: R[1] = P
3: {A, A[1]} ← DQ(P) = {2P, 4P}
4: R[k0]← R[k0] + A

Main Loop
5: for i = 1 to ł − 1 do
6: R[ki]← R[ki] + A
7: R[ki+1]← R[ki+1] + A[1]
8: {A, A[1]} ← DQ(A[1])
9: i = i + 2

10: end for
Final Correction
11: R[k0]← R[k0] − P
12: A← −A + R[0] + 2R[1]
13: return A

First, we improve Algorithm 2 to the new 2-ary RL Algorithm
7, and combine with two-bit scanning to obtain the new two-bit
2-ary RL Algorithm 8. Algorithms 7 and 8 consist of three parts:
initialization, main loop and final correction. Compared to Algo-
rithm 2, we change the initialization of R[.] to avoid the excep-
tional initialization of O and the exceptional computation O+P in
the main loop. The initialization of R[.] causes R[1] + 2R[2] = O

to be added to the final result in the aggregation of Algorithm 2.
The initialization of R[.] causes R[0] + 2R[1] = P to be added
to the final result in the final Step of our algorithms. Thus, we
avoid the exceptional computations in the original final correc-

tion A ← A + P of Algorithm 2. Steps 3 and 4 of Algorithms
7 and 8 help to avoid the exceptional computations of P + P or
P − P if A is initialized as P. The final correction adjusts the ex-
cess computations in Steps 3 and 4 in Algorithms 7 and 8. We
adjust the length of k to be even by padding “0” in front of input
scalar k, and thus verify whether two-bit scanning can operate in
Algorithm 8.

Next, we explain the affine coordinates (ordinary and our ex-
tended version) that is used in Algorithms 7 and 8. The original
affine coordinate is used in Step1–9 of Algorithm 7 and Step 1–
11 of Algorithm 8. Our extended affine formulae are used in Step
10 of Algorithm 7 and Step 12 of Algorithm 8. Our Algorithms 7
and 8 satisfy generality of k, and execute the same computations
of addition and doubling without any dummy operations.

Theorem 2 proves that Algorithms 7–8 avoid all exceptional
computations of affine addition formulae when k ∈ [0,N − 3].

Theorem 2 Let E/Fp be an elliptic without two-torsion
points. Let E(Fp) 3 P , O be an elliptic curve point, whose
order is N ∈ {0, 1}ł. Then, Algorithms 7 and 8 can compute kP
correctly for input k ∈ [0,N − 3].
Proof:

We prove that all three parts exclude the exceptional computa-
tions of affine addition formulae, which are additions of P±P and
O+ P, and doubling of 2P = O. The doubling of 2P = O does not
appear in the algorithms because of E(Fp) without two-torsion
points. Thus, we only focus on the exceptional additions.

In the initialization, R[0] and R[1] initialized as (Px,−Py) and
(Px, Py) are ”odd” scalar points such as (2t + 1)P, t ∈ Z. A initial-
ized as ((2P)x, (2P)y) is an ”even” scalar point such as 2tP, t ∈ Z.
It is obvious that R[0]← −P + 2P or R[1]← P + 2P in Step 4 is
computed correctly by the addition formula if N , 3.

In the main loop, it is noteworthy that 1) A , O because of
E(Fp) without two-torsion points and A always increases as an
”even” scalar point until 2ł−lP, 2ł−1 < N when loop processing
kł−2. A increases to an ”odd” scalar point at the end of loop. 2)
Until loop processing kł−2, R[0] , O is always updated as an
”odd” scalar point and with a smaller scalar than A. 3) Until loop
processing kł−2, R[1] , O is also always updated as an ”odd”
scalar point. If k = {1}ł, R[1] is always with a larger scalar than
A and becomes (2ł−1 + 1)P, (2ł−1 + 1) ≤ N. It also occurs when
k = N − 1 or k = N − 2, so we excludes these two cases. Oth-
erwise, R[1] is with a smaller scalar than A in the main loop.
In summary, R[0],R[1], A[1] , O are scalar points of P whose
scalars are never over N until loop processing kł−2. Therefore,
the ”odd” scalar point can never be the same point as the ”even”
scalar point. The computations in the main loop exclude the ex-
ceptional computations of affine.

In the final correction, R[k0] , O is an ”odd” scalar point and
−P = (N − 1)P is an ”even” scalar point. Step 11 computes P− P
only when k0 = 0. However we can always put an ‘0’ in front of k
to avoid this. If k = 0, Step12 computes the exceptional computa-
tion, P−P. Our extended affine addition formula can be used here
because E(Fp) without two-torsion points excludes point (0, 0).

The same proof can be shown in the two-bit scanning version.

5ⓒ 2019 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2019-CSEC-85 No.17
Vol.2019-IOT-45 No.17

2019/5/24



6. Efficiency and Memory Analysis
We analyze the computational and memory complexity of Al-

gorithms 2, 7 and 8, which are shown in Table 2. The memory
complexity counts the number of Fp elements including the mem-
ory used in the addition formulae. The total computational com-
plexity of Algorithm 2 with complete addition is (ł+1)24M, if we
ignore the computational complexity of ma, mb and A. Assuming
the ratio of S = 0.8M, Algorithms 7 and 8 are more efficient than
Algorithm 2 with complete addition if I

M < 8.8 and I
M < 9.3.

Algorithm 8 is more efficient than Algorithm 7 if I
M > 7.2. In

summary, if 9.3 > I
M > 7.2, Algorithm 8 is the most efficient. If

I
M < 7.2, Algorithm 7 is the most efficient.

As for memory complexity, Algorithms 7 and 8 can reduce that
of Algorithm 2 with complete addition by 26% and 16%, respec-
tively.

Table 2 Comparison Analysis

Computational cost memory
Algorithm 2 +

Complete addition
[11]

(ł + 1)(24M + 6ma +

4mb + 46A)
19

Algorithm 7 + Affine (6.4ł + 18.8)M +

(2ł + 4)I
14

Algorithm 8 + Affine (10ł+33.2)M+ 3ł+12
2 I 16

7. Conclusion
We proposed two new secure and compact elliptic curve scalar

multiplication Algorithms 7 and 8 by combining Affine coordi-
nates to Joye’s regular RL 2-ary algorithm. Our primary ideas
were to exclude the exceptional computations of O+P, P−P = O

and P + P in the addition formulae from Joye’s regular RL 2-ary
algorithm and extend the Affine coordinates to compute P−P = O

and 2P = O by introducing a point (0, 0) as O when an elliptic
curve E(Fp) = (0, 0). Algorithm 8 combined two-bit scanning to
further improve the efficiency. Consequently, Algorithms 7 and
8 were more efficient than Algorithm 2 with complete addition if
I
M < 8.8 and I

M < 9.3. Further, Algorithms 7 and 8 could reduce
the memory of Algorithm 2 with complete addition by 26% and
16%, respectively.

References
[1] Afreen, R. and Mehrotra, S.: A review on elliptic curve cryptography

for embedded systems, arXiv preprint arXiv:1107.3631 (2011).
[2] Bosma, W. and Lenstra, H. W.: Complete systems of two addition

laws for elliptic curves, Journal of Number theory, Vol. 53, No. 2, pp.
229–240 (1995).

[3] Ebeid, N. and Lambert, R.: Securing the elliptic curve montgomery
ladder against fault attacks, Fault Diagnosis and Tolerance in Cryp-
tography (FDTC), 2009 Workshop on, IEEE, pp. 46–50 (2009).

[4] Goundar, R. R., Joye, M., Miyaji, A., Rivain, M. and Venelli, A.:
Scalar multiplication on Weierstraß elliptic curves from Co-Z arith-
metic, Journal of cryptographic engineering, Vol. 1, No. 2, p. 161
(2011).

[5] Izu, T. and Takagi, T.: A fast parallel elliptic curve multiplication re-
sistant against side channel attacks, International Workshop on Public
Key Cryptography, Springer, pp. 280–296 (2002).

[6] Joye, M.: Highly regular right-to-left algorithms for scalar multipli-
cation, International Workshop on Cryptographic Hardware and Em-
bedded Systems, Springer, pp. 135–147 (2007).

[7] Joye, M.: Highly regular m-ary powering ladders, International Work-
shop on Selected Areas in Cryptography, Springer, pp. 350–363

(2009).
[8] Joye, M. and Yen, S.-M.: The Montgomery powering ladder, Interna-

tional Workshop on Cryptographic Hardware and Embedded Systems,
Springer, pp. 291–302 (2002).

[9] Le, D.-P. and Nguyen, B. P.: Fast point quadrupling on elliptic curves,
Proceedings of the Third Symposium on Information and Communica-
tion Technology, ACM, pp. 218–222 (2012).

[10] Miyaji, A. and Mo, Y.: How to enhance the security on the least sig-
nificant bit, International Conference on Cryptology and Network Se-
curity, Springer, pp. 263–279 (2012).

[11] Renes, J., Costello, C. and Batina, L.: Complete addition formulas for
prime order elliptic curves, Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Springer, pp.
403–428 (2016).

[12] Susella, R. and Montrasio, S.: A Compact and Exception-Free Ladder
for All Short Weierstrass Elliptic Curves, International Conference on
Smart Card Research and Advanced Applications, Springer, pp. 156–
173 (2016).

[13] Wroński, M.: Faster Point Scalar Multiplication on Short Weierstrass
Elliptic Curves over Fp using Twisted Hessian Curves over Fp2, Jour-
nal of Telecommunications and Information Technology (2016).

6ⓒ 2019 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2019-CSEC-85 No.17
Vol.2019-IOT-45 No.17

2019/5/24


