Universal Dependenciesの拡張にもとづく 古典中国語(漢文)の直接構成鎖解析の試み

安岡 孝一1,a)

概要:古典中国語(漢文)の解析手法として、Universal Dependencies の拡張により、構成鎖 (catena) 解析をおこなう手法を提案する。言語横断的な依存構造記述である Universal Dependencies は、ニューラルネットを用いた言語解析ツール等に採用されており、言語をまたいだ係り受け解析に非常に有用である。しかし、Universal Dependencies は、句構造という考え方をかなり意識的に排除しており、古典中国語の文法構造に適用した場合、この点で、どうしてもいくつかの齟齬が生じてしまう。本稿では、これらの齟齬を出来る限り解決すべく、Universal Dependencies を直接構成鎖解析へと拡張する形で、句構造の導入を試みる。

キーワード:漢文コーパス、構成鎖不可分性、依存文法解析、直接構成素解析、句構造解析

1. はじめに

筆者が班長を務める京都大学人文科学研究所共同研究班 「東アジア古典文献コーパスの実証研究」(班員: ウィッテル ン クリスティアン, 守岡知彦, 池田巧, 山崎直樹, 二階堂 善弘,鈴木慎吾,師茂樹,李媛,白須裕之,藤田一乗)では, 現在, 古典中国語 (漢文) の依存文法解析に精力を傾注して おり、その道具立ての一つとして、Universal Dependencies (以下「UD」)[1]の古典中国語への適用を研究している。依 存文法解析それ自体は、Tesnière [2] の構造的統語論に源を 発し、Мельчук [3] の有向グラフ記述によって、一応の完 成を見た手法である。その最大の特長は、言語横断的な記 述が可能だという点にあり、Мельчук の手法をコンピュー 夕向けに洗練した UD においても、言語に関わらない記述、 という特長が前面に押し出されている。UD における文法 構造記述は、句構造を考慮せず、全てを単語間のリンクと して表現する. これは、Мельчук の有向グラフ記述が、単 語間のリンクという形態を取っていたからであり、そうい う割り切りの結果として、言語横断的な文法構造記述を可 能としているのである.

ただし、句構造を考慮しない、という UD の特長は、古典中国語の文法解析においては必ずしも利点ではなく、実際、いくつかの齟齬が起こっている。たとえば、「是民受之也」という文を UD で記述すると、見かけ上の二重主語の問題 [4] が起こってしまう。この文は「民受之」を X とお

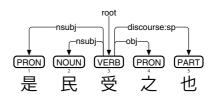


図1 「是民受之也」の古典中国語 UD

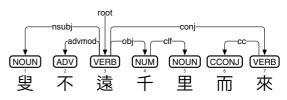


図2 「叟不遠千里而來」の古典中国語 UD

くと、「是 X 也」というコピュラ文だが、「是」が X の主語であることを表すリンク (nsubj) と、「民」が「受」の主語であることを表すリンクの見分けがつかず、「受」から 2本の nsubj が出ているように見える (図 1)のである.あるいは、「叟不遠千里而來」(図 2)のような「不 Y 而 Z」という形の構文においては、「不」が Y だけに係っているのか、それとも「Y 而 Z」全体を否定しているのかが、UD では必ずしもハッキリしない [5].これらの齟齬は、そもそもUD が句構造を考慮していないからであり、依存文法解析においては宿命とも言えるのだが、われわれとしては、これらを解決して、さらに先へと進みたい.

本稿では、古典中国語 UD に句構造を導入するにあたり、 Wells [6] の直接構成素解析 (immediate constituent analysis)

京都大学 Kyoto University

a) yasuoka@kanji.zinbun.kyoto-u.ac.jp

	Nominals	Clauses	Modifier Words	Function Words
Core arguments	nsubj 主語 ⇔nsubj:pass [受動文] obj 目的語 iobj 間接目的語	csubj 節主語 →csubj:pass [受動文] ccomp 節目的語 xcomp 節補語		
Non-core arguments	VOCALIVE TO THE THE SECOND		advmod 連用修飾語 discourse 談話要素 →discourse:sp [文助詞]	aux 動詞補助成分 cop 繫辞 (copula) mark 標識 (marker)
Nominal dependents	111100 十 日 1 5 6 2 1 1 5 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		amod 用言による連体修飾語	det 決定詞 clf 類別詞 case 格表示
Coordination	edination MWE Loose		Special	Other
conj 接続 cc 接続詞	compound 複合 (endocentric) flat 並列 (exocentric) ⇔flat:vv [動詞類]	list 細目 parataxis 隣接表現	orphan 親なし	punct 句読点 root 親

表1 古典中国語 UD 依存構造タグ

を拡張する形で、UDを変換する手法を提案する。Wellsの直接構成素解析は、その後にChomsky [7] によって歪められてしまったものの、元々は、単語境界における構成素の離れやすさ・離れにくさを扱う手法である。これに対し本稿では、Osborne [8] の構成鎖 (catena) を導入することにより、構成鎖の離れにくさ (不可分性) を全順序関係として定式化する。さらに、その順序付けアルゴリズムによって、古典中国語 UD を構成鎖の解析木へと変換する。

なお、本稿のアイデアの核となる部分は、守岡 [9] の UD 階層化と、Lee [10] の Constraint-based Maximum Entropy Parsing に、その着想を得ている。また、本稿で示すアルゴリズムは、その本質的な部分において、田中 [11] が UD Japanese-KTC で用いた変換手法の「逆回し」である。それぞれに感謝の意を述べたい。

2. 古典中国語 UD の直接構成鎖解析への拡張

n 個の単語 w_i から成る古典中国語の文 $S=w_1w_2...w_n$ に対し,S の UD を S つ組 $[i,w_i,p_i,h_i,r_i]$ で与える。ただし

 p_i : w_i の品詞 (PROPN・NOUN・PRON・NUM・VERB・ADP・ADV・AUX・PART・INTJ・PROPN・SCONJ・CCONJ・PUNCT・SYM のいずれか [4])

 h_i : w_i を終点とするリンクの始点番号

 r_i : w_i を終点とするリンクのタグ (表 1)

とする。なお、 r_i =root であるような w_i は、S 中にただ 1 つとし、 r_i =root $\Leftrightarrow h_i$ =0 とする。また、古典中国語の UD 有向グラフには、リンクのループも交差もない (projective) ものとする。さらに、UD 上での単語 w_i の深さ d_i と、構成鎖 C_i を、以下のように定義する。

 d_i : root から w_i に至る有向リンク数 (root を含む)

 C_i : w_i を始点とする有向部分木の全単語 (w_i を含む)

図1のUDにおける各値を表2に、図2のUDにおける各

表2 図1のUDにおける $[i, w_i, p_i, h_i, r_i]$ および d_i, C_i

i	w_i	p_i	h_i	r_i	d_i	C_i
1	是	PRON	3	nsubj	2	是
2	民	NOUN	3	nsubj	2	民
3	受	VERB	0	root	1	是民受之也
4	之	PRON	3	obj	2	之
5	也	PART	3	discourse:sp	2	也

表3 図2のUDにおける $[i, w_i, p_i, h_i, r_i]$ および d_i, C_i

_	Pro [-, -: -: -: -: -: -: -: -: -: -: -: -: -:									
	i	w_i	p_i	h_i	r_i	d_i	C_i			
	1	叟	NOUN	3	nsubj	2	叟			
	2	不	ADV	3	3 advmod		不			
	3	遠	VERB	0	root	1	叟不遠千里而來			
	4	千	NUM	3	obj	2	千里			
	5	里	NOUN	4	clf	3	里			
	6	而	CCONJ	7	СС	3	而			
	7	來	VERB	3	conj	2	而來			

値を表 3 に示す。なお、projective な UD における C_i は、 文 S 中においていずれも連続な単語列となり (付録参照)、この場合において C_i は構成素とみなしうる.

集合 $F = \{C_1, C_2, ..., C_n\}$ 上での全順序関係 (等価を含む) が,以下の 4 条件を満たす時,この全順序関係を構成鎖不可分性 (catena inseparability) と呼ぶ.

- a) $d_j < d_k \implies C_j < C_k$
- b) $d_i = d_k$ かつ $h_i < h_k \Rightarrow C_i < C_k$
- c) $j < k < h_j = h_k \implies C_j < C_k$ $\forall k \in C_j = C_k$
- d) $h_j = h_k < j < k \implies C_j > C_k$ もしくは $C_j = C_k$

条件 a) は、UD 有向グラフを木構造として見た際に、root からみて「浅い」構成鎖ほど離れやすくすることで、いわゆる幅優先の走査順を保障する条件である。条件 c) と d) は、ある単語から複数のリンクが出ている場合に、リンクが「遠い」構成鎖をやや離れやすくする条件である。条件 b) は、これら以外の場合に、文頭に近い構成鎖から離れや

すくする条件である.

文 S と集合 $F = \{C_1, C_2, ..., C_n\}$ に対して、ある構成鎖不可分性が与えられたならば、その昇順に S を分割していく作業が、Wells [6] の直接構成素解析にあたる。たとえば表 S の「叟不遠千里而來」に対し、 $C_3 < C_1 = C_7 < C_2 < C_4 < C_5 < C_6$ という構成鎖不可分性が (仮に) 与えられたならば、この文の直接構成素解析は、Wells の記法で以下のように書ける.

$$C_3 \downarrow ($$
 雙不遠千里而來)

叟 不 遠 千 里 而 來 $C_1 = C_7 \downarrow ($ 毀) (而來)

叟 | 不 遠 千 里 | 而 來 $C_2 \downarrow ($ 不)

叟 | 不 || 遠 千 里 | 而 來 $C_4 \downarrow ($ 千里)

叟 | 不 || 遠 || 千 里 | 而 來 $C_5 \downarrow ($ 里)

叟 | 不 || 遠 || 千 ||| 里 | 而 來 $C_6 \downarrow ($ 而)

및 | 不 || 遠 || 千 ||| 里 | 而 來 $C_6 \downarrow ($ 而)

 C_i による分割の「残余」を \overline{C}_i と記すことにすると、上の $C_3 < C_1 = C_7 < C_2 < C_4 < C_5 < C_6$ における残余は、以下のと おりとなる (ϕ は長さ 0 の単語列).

$$\overline{C}_3 = \phi$$
 $\overline{C}_4 = \overline{z}$ $\overline{C}_1 = \overline{C}_7 = \overline{C}_5 = \overline{C}$ $\overline{C}_5 = \overline{C}$ $\overline{C}_6 = \overline{x}$

文 S と集合 $F=\{C_1,C_2,...,C_n\}$ に対して、ある構成鎖不可分性が与えられた際に、残余の集合 (ϕ を除く) を $G=\{\overline{C}_1,\overline{C}_2,...,\overline{C}_n\}$ $-\{\phi\}$ とおく。この時、 $F\cup G$ 上での(単語列の真部分集合の)半順序関係 \supset を、直接構成鎖解析木(以下、IC 解析木)と呼ぶ。例として、表 3 の「叟不遠千里而來」に対し、 $C_3<C_1=C_7<C_2<C_4<C_5<C_6$ が与えられた場合の IC 解析木を図 3 に示す。

次に、この IC 解析木を、古典中国語 UD と融合することを考えてみよう。端的には、UD 有向グラフの 5 つ組 $[i,w_i,p_i,h_i,r_i]$ のうち、 w_i を、 C_i と \overline{C}_i (ϕ を除く) に拡張する。それに伴い h_i を拡張して、 $F \cup G$ 上での半順序関係 \supset に合致させる。 r_i は、 C_i を終点とするリンクへ移動し、 \overline{C}_i を終点とするリンクにはタグを付与しない。

このような方法で、図2の「叟不遠千里而來」に対し、表3において図3の条件で IC 融合 UD を作成 (表4) したところ、図4が得られた。「不」が「遠千里」に係っていて、「而來」には係っていないことが、一目瞭然である。 同様に、図1の「是民受之也」に対し、表2において $C_3 < C_5 < C_1 < C_2 < C_4$ という構成鎖不可分性で IC 融合 UD を作成したところ、図5が得られた。「是」が「民受之」の主語 (nsubj) であり、「民」が「受之」の主語であることが見て取れる。また、等価を含まない構成鎖不可分性は2分木の IC 融合 UD を構

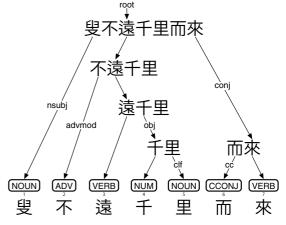



図3 表3の C_3 < C_1 = C_7 < C_2 < C_4 < C_5 < C_6 によるIC解析木

表4 表3の $C_3 < C_1 = C_7 < C_2 < C_4 < C_5 < C_6$ による拡張 i w_i n_i $C_i / \overline{C_i}$ h_i r_i

i	w_i	p_i	C_i / C_i	h_i	r_i
1	叟	NOUN	叟	C_3	nsubj
	(C_1)		不遠千里		-
2	不	ADV	不	\overline{C}_1	advmod
	(C_2)		遠千里		-
3	遠	VERB	叟不遠千里而來	0	root
	(\overline{C}_4)		φ	-	-
4	千	NUM	千里	\overline{C}_2	obj
	(\overline{C}_5)		遠		-
5	里	NOUN	里	C_4	clf
	(C_5)		千		-
6	而	CCONJ	而	C_7	СС
	(C_6)		來		-
7	來	VERB	而來	C_3	conj
	(\overline{C}_6)		(\overline{C}_1)		-

図4 表4にもとづく IC 融合 UD

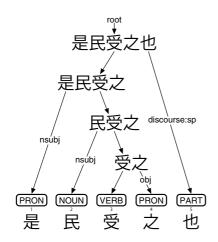


図5 表2の $C_3 < C_5 < C_1 < C_2 < C_4$ によるIC融合UD

成し、等価を含む構成鎖不可分性は3分木以上となること も、それぞれ図5・図4から理解できる。

ちなみに、IC融合UDから元のUDへの逆変換は、以下の手順でおこなうことができる。

- (1) IC 融合 UD において、タグの無いリンク (\overline{C}_i へのリンク) を、双方向リンクに置き換える。
- (2) 構成鎖のうち、単語 w_i 以外のノードを除去する。 その際に、各単語への到達性を維持する形で、リンクを縮退する。

図5から図1へ、図4から図2へ、それぞれ逆変換できることを確認されたい。

3. 構成鎖不可分性の順序付けアルゴリズム

前章の議論を要約すると、projective な UD に対して、適切な構成鎖不可分性を与えることができれば、直接構成素解析をおこなったのと同等の結果が得られる、ということである。では、適切な構成鎖不可分性を与える順序付けアルゴリズムは、実際に書くことができるのか。構成鎖不可分性の 4 条件にしたがって、 C_j と C_k の順序付けアルゴリズム Inseparability を、python 風に書いてみよう (図 6).

実のところ、図6が判定しているのは条件a) b) のみで、条件c) は InseparabilityLL に、条件d) は InseparabilityRR に、その他 ($j < h_j = h_k < k$) は InseparabilityLR に、それぞれ押しつけている。というのも、InseparabilityLL・RR・LRは、対象言語の語順の自由さにより、異なる可能性が高い。

図 7 では、古典中国語 UD に限定した上で、とりあえず r_j と r_k のみに着目して、仮に InseparabilityLL・RR・LR を 書いてみた。仮のアルゴリズムではあるものの、表 2 に対しては $C_3 < C_5 < C_1 < C_2 < C_4$ という構成鎖不可分性が、表 3 に対しては $C_3 < C_1 = C_7 < C_2 < C_4 < C_5 < C_6$ という構成鎖不可分性が、それぞれ図 6 の Inseparability で得られる.

ただし、現時点での図 $6\cdot7$ の順序付けアルゴリズムは、 もちろん完璧ではないし万能でもない。たとえば、「孔子 不得中道而與之」(図 $8\cdot$ 表 5) という「不 Y 而 Z」形の文

```
def Inseparability(j, k):
  if d_j < d_k:
     \texttt{return} \ \lceil C_j {<} C_k \rfloor
  if d_i > d_k :
     return \lceil C_k < C_j \rfloor
   if h_j < h_k:
     return \lceil C_j < C_k \rfloor
   if h_j > h_k:
     return \lceil C_k < C_j \rfloor
   if j < k < h_j = h_k:
     return InseparabilityLL(j, k)
   if k < j < h_j = h_k:
     return InseparabilityLL(k, j)
   if h_j = h_k < j < k:
     return InseparabilityRR(j, k)
   if h_i = h_k < k < j:
     return InseparabilityRR(k, j)
  if j < k:
     return InseparabilityLR(j, k)
  if k < j:
     return InseparabilityLR(k, j)
  return \lceil C_j = C_k \rfloor
            図 6 順序付けアルゴリズム Inseparability (j,k)
def InseparabilityLL(j, k):
  if r_i=compound and r_k=compound :
     if \exists i ただし h_i = h_i かつ j < i < k:
        return(InseparabilityLL(j,i) לים InseparabilityLL(i,k))
     return \lceil C_j = C_k \rfloor
  \texttt{return} \ \lceil C_j {<} C_k \rfloor
\operatorname{def} Inseparability \operatorname{RR}(j,k) :
  for x in [conj,flat,list,parataxis,discourse:sp] :
     if r_j = x and r_k = x :
        if \exists i ただし h_i = h_j かつ j < i < k:
           return (InseparabilityRR(j,i) \mathcal{D} InseparabilityRR(i,k))
        return \lceil C_i = C_k \rfloor
  return \lceil C_k < C_j \rfloor
def InseparabilityLR(j, k):
  for x in [case, mark, parataxis, discourse:sp, punct] :
     if r_k = x:
        return \lceil C_k < C_i \rfloor
  if r_i=nsubj and r_k=conj :
```

図7 古典中国語 UD 向け (仮) InseparabilityLL・RR・LR

if $\exists i$ ただし r_i =nsubj かつ $j < i < h_i = h_i$:

return $\lceil C_i < C_k \rfloor$

return $\lceil C_i = C_k \rfloor$

return $\lceil C_j < C_k \rfloor$

を見てみよう。この文においては,「不」が「Y而 Z」全体に係っていることから, $C_3 < C_1 < C_2 < C_7 < C_5 < C_4 < C_6 < C_8$ という構成鎖不可分性が適切だと考えられる (図 9)。しかしながら,現時点の図 $6\cdot 7$ の順序付けアルゴリズムは,このような構成鎖不可分性を出力できない.代わりに得られるのは, $C_3 < C_1 = C_7 < C_2 < C_5 < C_4 < C_6 < C_8$ という「不」が「得中道」にだけ係った構成鎖不可分性である.

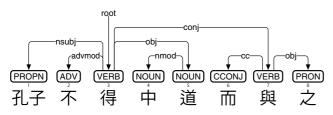


図8 「孔子不得中道而與之」の古典中国語 UD

表5 図8のUDにおける $[i, w_i, p_i, h_i, r_i]$ および d_i, C_i

i	w_i	p_i	h_i	r_i	d_i	C_i
1	孔子	PROPN	3	nsubj	2	孔子
2	不	ADV	3	advmod	2	不
3	得	VERB	0	root	1	孔子不得中道而與之
4	中	NOUN	5	nmod	3	中
5	道	NOUN	3	obj	2	中道
6	而	CCONJ	7	СС	3	而
7	與	VERB	3	conj	2	而與之
8	之	PRON	7	obj	3	之

これは、図7のアルゴリズムにおいて、 r_j と r_k のみに着目しているための限界であり、図9と図4の間の問題を解決するためには、他の要素にも着目する必要があるということである。しかしながら、他の要素にも着目した場合、図7のアルゴリズムを解析的に記述するのは、かなり膨大な作業が予想される。むしろ、機械学習などの手法によって、InseparabilityLL・LR・RR を構成するやり方に、挑戦すべきだろう。

4. おわりに

古典中国語 UD に構成鎖不可分性を導入し、構成鎖による解析を試みた. これにより、古典中国語 UD に句構造を導入する目途が立ったといえる. さらに、構成鎖不可分性

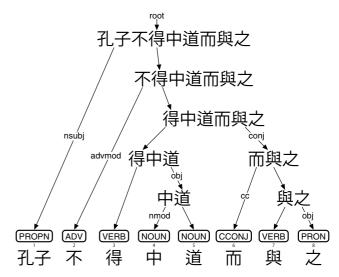


図9 表5の C_3 < C_1 < C_2 < C_7 < C_5 < C_4 < C_6 < C_8 によるIC融合UD

を自動生成するための順序付けアルゴリズムを試作し、その有効性を検証した。ただし、アルゴリズム全体を解析的に書くのは困難が伴う、という点が課題として残されている。また、本研究の副産物として、UDの公式フォーマットである CoNLL-U の拡張をおこない、コメント行に構成鎖不可分性 (catena inseparability)を、そのまま記載する方法(図 10)を考案した。

本稿の手法は、リンクに交差がない古典中国語 UD において有効であり、他の言語の UD においても、リンクに交差がない場合は同様に有効だと考えられる。一方、リンクに交差がある UD に対しては、解析木にも交差が起こってしまうことを、付録に示す。

なお、本研究は、科学研究費補助金基盤研究(B) 17H01835 『古典漢文形態素コーパスにもとづく動詞の作用域の自動抽出』の研究助成を受けている。

ext = 是. atena_ir 是 民受之也	 _	<5<1<2<4 n,代名詞,指示,* n,名詞,人,人 v,動詞,行為,得失 n,代名詞,人称,止格 p,助詞,句末,*	PronType=Dem	3 3 0 3 3	nsubj nsubj root obj discourse:sp	- - - -	Gloss=this SpaceAfter=No Gloss=people SpaceAfter=No Gloss=receive SpaceAfter=No Gloss=[3PRON] SpaceAfter=No Gloss=[final-particle] SpaceAfter=No
ext = 叟 atena_ir 叟 不遠 千里而來		<1=7<2<4<5<6 n,名詞,人人 v,副詞,描界 v,動詞,描字: n,数詞,数字: n,名詞,度量衡;* p,助詞,接続,並列 v,動詞,行為,移動	Polarity=Neg Degree=Pos NounType=Class	3 3 0 3 4 7 3	nsubj advmod root obj clf cc conj		Gloss=old-gentleman SpaceAfter=No Gloss=not SpaceAfter=No Gloss=distant SpaceAfter=No Gloss=thousand SpaceAfter=No Gloss=[distance-unit] SpaceAfter=No Gloss=and SpaceAfter=No Gloss=come SpaceAfter=No
		(1<2<7<5<4<6<8 n,名詞,子複合的人名 v,副詞,否定無界 v,動詞,行為:得失 n,名詞,制度,儀別 n,名詞詞,接続,並別 v,動詞,行為,交流 p,助詞,行為,交流 n,代名詞,人称,止格	NameType=Prs Polarity=Neg Case=Loc Person=3 PronType=Prs	3 3 0 5 3 7 3 7	nsubj advmod root nmod obj cc conj obj		Gloss=Confucius SpaceAfter=No Gloss=not SpaceAfter=No Gloss=get SpaceAfter=No Gloss=centre SpaceAfter=No Gloss=doctrine SpaceAfter=No Gloss=and SpaceAfter=No Gloss=participate SpaceAfter=No Gloss=[3PRON] SpaceAfter=No

図10 CoNLL-U フォーマットの catena inseparability 拡張

付録 他言語 UD への応用

本稿の手法に関し、他の言語の UD への応用について、以下では考察してみよう。図 11 に示したのは、Chomsky [7] の「Colorless green ideas sleep furiously」という英文を、StanfordNLP [12] の en_ewt モデル 0.1.0 で依存文法解析した結果の UD である。

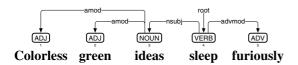


図11 「Colorless green ideas sleep furiously」の英語 UD

表6 図 11 の UD における $[i, w_i, p_i, h_i, r_i]$ および d_i, C_i

i	w_i	p_i	h_i	r_i	d_i	C_i
1	Colorless	ADJ	3	amod	3	Colorless
2	green	ADJ	3	amod	3	green
3	ideas	NOUN	4	nsubj	2	Colorless green ideas
4	sleep	VERB	0	root	1	Colorless green ideas sleep furiously
5	furiously	ADV	4	advmod	2	furiously

図 11 の UD 有向グラフにおいて、5 つ組 $[i, w_i, p_i, h_i, r_i]$ と深さ d_i と構成鎖 C_i は、表 6 のようになっている。この C_i に図 $6\cdot 7$ の順序付けアルゴリズムを (そのまま) 適用すると、現状では $C_4 < C_3 < C_5 < C_1 < C_2$ という構成鎖不可分性が得られる。この構成鎖不可分性にしたがうと、 \overline{C}_i は

 $\overline{C}_4 = \phi$

 \overline{C}_3 = sleep furiously

 \overline{C}_1 = green ideas

 $\overline{C}_5 = \text{sleep}$

 $\overline{C}_2 = ideas$

となり、IC 融合 UD を作成すると、表 7・図 12 のようになる。筆者の見る限り、この「Colorless green ideas sleep furiously」という英文に対し、本稿の手法は正しく (機械的に)直接構成素解析をおこなうことができており、図 12 の IC 融合 UD は Chomsky [7] の句構造による文法木と同型である。

表7 表6の $C_4 < C_3 < C_5 < C_1 < C_2$ による拡張

	衣 / 。	衣もの 04	$< C_3 < C_5 < C_1 < C_2 $ \sim	よる払	派
i	w_i	p_i	C_i / \overline{C}_i	h_i	r_i
1	Colorless	ADJ	Colorless	C_3	amod
	(C_1)		green ideas		-
2	green	ADJ	green	\overline{C}_1	amod
	(C_2)		ideas		-
3	ideas	NOUN	Colorless green ideas	C_4	nsubj
	(\overline{C}_2)		sleep furiously		-
4	sleep	VERB	Colorless green ideas	0	root
	(\overline{C}_5)		sleep furiously		
			ϕ	-	-
5	furiously	ADV	furiously	\overline{C}_3	advmod
	(C_5)		sleep		-

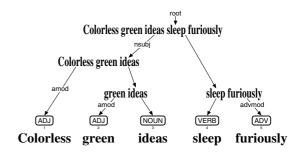


図 12 表 7 にもとづく IC 融合 UD

ただし、英語 UD は、このようなスジのいい例ばかりではない。われわれの古典中国語 UD は、リンクの交差を許していないが、英語 UD においては、リンクの交差が起こる (non-projective) 場合があるのだ。図 13 は、「I rode a horse here which had no name」という英文を、同様に StanfordNLPで依存文法解析した結果の UD である。「here」へのリンクと「had」へのリンクが、交差しているのが見て取れる。

この場合,本稿の手法にしたがって C_i を導出すると,表 8 に示すとおり C_4 が「a horse which had no name」となってしまい,文中において不連続である.すなわち,non-projective な UD においては, C_i が不連続な単語列になりうる.一般的な文法解析において,不連続な単語列による要素を許すかどうかについては,そもそも Wells [6] においても議論があるが,ここでは不連続な単語列も構成鎖として扱うことにしよう.

不連続な単語列を許した上で、表 8 の C_i に図 $6\cdot 7$ の順序付けアルゴリズムを (そのまま) 適用すると、現状では $C_2 < C_1 < C_5 < C_4 < C_3 < C_7 < C_6 < C_9 < C_8$ という構成鎖不可分性が得られる。これによって、図 14 の IC 融合 UD が得られるが、解析木にも交差が発生してしまう。このような交差のある解析木を許すかどうかは、解析対象の性質に

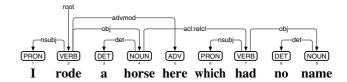


図13 リンクに交差がある英語 UD の例

表8 図 13 の UD における $[i, w_i, p_i, h_i, r_i]$ および d_i, C_i

i	w_i	p_i	h_i	r_i	d_i	C_i			
1	I	PRON	2	nsubj	2	I			
2	rode	VERB	0	root	1	I rode a horse here which had no name			
3	a	DET	4	det	3	a			
4	horse	NOUN	2	obj	2	a horse which had no name			
5	here	ADV	2	advmod	2	here			
6	which	PRON	7	nsubj	4	which			
7	had	VERB	4	acl:relcl	3	which had no name			
8	no	DET	9	det	5	no			
9	name	NOUN	7	obj	4	no name			

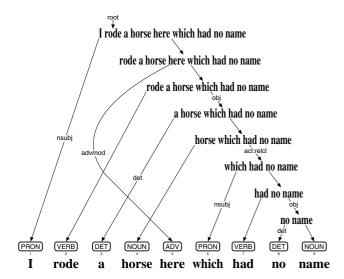


図 14 表 8 の IC 融合 UD 例 $(C_2 < C_1 < C_5 < C_4 < C_3 < C_7 < C_6 < C_9 < C_8)$

もよる[13]が、議論の余地があるだろう.

日本語 UD においても、やや稀ではあるものの、リンクに交差がある文例 (図 15) が存在する。交差がない文例 (図 16) と比較検討してみよう。

図 15 の UD に対し、本稿の手法にしたがって C_i を導出すると、表 9 に示すとおり C_5 が「これが正しいと」となってしまい、文中において不連続である。一方、図 16 の UD に対し、本稿の手法にしたがって C_i を導出すると、やはり C_5 が「これが正しいと」となる (表 10) が、こちらは文中において連続している。すなわち、不連続な単語列となる C_i が現れるのは、UD のリンクに交差がある場合に限定されるといえる。

不連続な単語列を許した上で、表9の C_i に図6・7の順序付けアルゴリズムを(そのまま)適用すると、現状では $C_7 < C_3 < C_5 < C_4 < C_6 < C_1 < C_2$ という構成鎖不可分性が得られる。これによって、図17のIC融合UDが得られるが、やはり解析木にも交差が発生してしまう。一方、表10の C_i に図6・7の順序付けアルゴリズムを(そのまま)適用

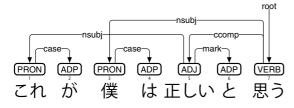


図15 リンクに交差がある日本語 UD の例

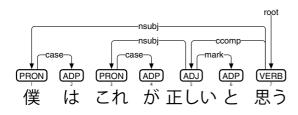


図 16 「僕はこれが正しいと思う」の日本語 UD

表**9** 図 15 の UD における $[i, w_i, p_i, h_i, r_i]$ および d_i, C_i

i	w_i	p_i	h_i	r_i	d_i	C_i
1	これ	PRON	5	nsubj	3	これが
2	が	ADP	1	case	4	が
3	僕	PRON	7	nsubj	2	僕は
4	は	ADP	3	case	3	は
5	正しい	ADJ	7	ccomp	2	これが正しいと
6	٤	ADP	5	mark	3	٤
7	思う	VERB	0	root	1	これが僕は正しいと思う

表 10 図 16 の UD における $[i, w_i, p_i, h_i, r_i]$ および d_i, C_i

i	w_i	p_i	h_i	r_i	d_i	C_i
1	僕	PRON	7	nsubj	2	僕は
2	は	ADP	1	case	3	は
3	これ	PRON	5	nsubj	3	これが
4	が	ADP	3	case	4	が
5	正しい	ADJ	7	ccomp	2	これが正しいと
6	٤	ADP	5	mark	3	٤
7	思う	VERB	0	root	1	僕はこれが正しいと思う

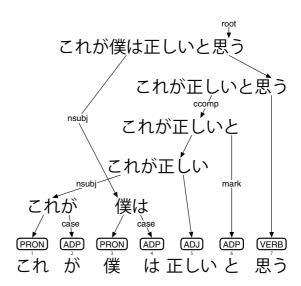


図 17 表 9 の IC 融合 UD 例 $(C_7 < C_3 < C_5 < C_4 < C_6 < C_1 < C_2)$

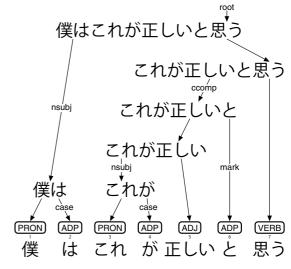


図 18 表 10 の IC 融合 UD 例 $(C_7 < C_1 < C_5 < C_2 < C_6 < C_3 < C_4)$

すると、現状では $C_7 < C_1 < C_5 < C_2 < C_6 < C_3 < C_4$ という構成鎖不可分性が得られる。これによって、図 18 の IC 融合 UD が得られるが、こちらの解析木に交差は無い。

ここで、図 17 と図 18 の IC 融合 UD を比較してみると、 語順を除いて同型とみなせる。いずれも妥当な解析結果だ と考えられるが、図 17 の交差の問題は残る。

ドイツ語 UD においては、また別の問題が起こりうる. 図 19 に示したのは、「Er sieht sehr gut aus」という独文を、StanfordNLPの de_gsd モデル 0.1.0 で依存文法解析した結果の UD である。この文の「sieht」と「aus」は、動詞「aussehen」の 3 人称単数現在形「aussieht」が分離したものだと解され、compound:prt という特殊なリンクで繋がれている。

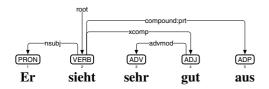


図19 「Er sieht sehr gut aus」のドイツ語 UD

表 11 図 19 の UD における $[i, w_i, p_i, h_i, r_i]$ および d_i, C_i

i	w_i	p_i	h_i	r_i	d_i	C_i
1	Er	PRON	2	nsubj	2	Er
2	sieht	VERB	0	root	1	Er sieht sehr gut aus
3	sehr	ADV	4	advmod	3	sehr
4	gut	ADJ	2	xcomp	2	sehr gut
5	aus	ADP	2	compound:prt	2	aus

本稿の手法にしたがって C_i を導出すると、表 11 のようになる。ここで「aussieht」を考慮すると、 $C_2 < C_1 < C_4 < C_5 < C_3$ という構成鎖不可分性が、分離動詞を表現する点では妥当だと考えられる(図 20)。だが、この構成鎖不可分性の $C_4 < C_5$ は、条件 d)に違反しており、本稿の手法では導出できない。

表 11 を構成鎖不可分性の 4 条件に適合させるならば、たとえば $C_2 < C_1 < C_4 = C_5 < C_3$ が考えられる。しかしながら、図 21 の IC 融合 UD が「Er sieht sehr gut aus」の解析結果として妥当かどうかは、非常に疑問が残る。ドイツ語

図 20 表 11 の IC 融合 UD 例 $(C_2 < C_1 < C_4 < C_5 < C_3)$

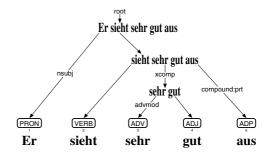


図 21 表 11 の IC 融合 UD 例 $(C_2 < C_1 < C_4 = C_5 < C_3)$

UD に対しては、図 20 の IC 融合 UD が導出できるよう、 構成鎖不可分性の 4 条件を緩和すべきかもしれない。

本稿の手法を、英語 UD・日本語 UD・ドイツ語 UD に応用する場合について、ざっと概観した。古典中国語 UD とは異なる問題があり、どうやら言語ごとに手法を変えざるを得ない、というところまでは判明したものの、具体的な変更点には立ち入ることができなかった。これらについては、またいずれ、稿を改めて議論したい。

参考文献

- [1] Joakim Nivre: Towards a Universal Grammar for Natural Language Processing, CICLing 2015: 16th International Conference on Intelligent Text Processing and Computational Linguistics (April 2015), pp.3-16.
- [2] Lucien Tesnière: Éléments de Syntaxe Structurale, Paris: C. Klincksieck (1959).
- [3] Igor A. Mel'čuk: Dependency Syntax: Theory and Practice, New York: State University of New York Press (1988).
- [4] 安岡孝一: Universal Dependencies にもとづく古典中国語 (漢文) の依存文法解析, センター研究年報 2018 (2018 年 10 月).
- [5] 安岡孝一: 漢文の依存文法解析と返り点の関係について,日本漢字学会第1回研究大会予稿集(2018年12月),pp.33-48.
- [6] Rulon S. Wells: Immediate Constituents, Language, Vol.23, No.2 (April-June 1947), pp.81-117.
- [7] Noam Chomsky: Syntactic Structures, Hague: Mouton (1957).
- [8] Timothy Osborne, Michael Putnam, Thomas Groß: Catenae: Introducing a Novel Unit of Syntactic Analysis, Syntax, Vol.15, No.4 (December 2012), pp.354-396.
- [9] 守岡知彦: 古典中国語 UD コーパスの IPFS を用いた表現の試み,情報処理学会研究報告, Vol.2018-CH-118 (2018 年8月), No.6, pp.1-7.
- [10] Young-Suk Lee, Zhiguo Wang: Language Independent Dependency to Constituent Tree Conversion, Proceedings of COLING 2016: the 26th International Conference on Computational Linguistics (December 2016), pp.421-428.
- [11] 田中貴秋: UD Japanese-KTC: 京大コーパス句構造版からの Universal Dependencies 化, 第 1 回 Universal Dependencies 公開研究会 (2018 年 6 月).
- [12] Peng Qi, Timothy Dozat, Yuhao Zhang, Christopher D. Manning: Universal Dependency Parsing from Scratch, Proceedings of the CoNLL 2018 Shared Task (October 2018), pp.160-170.
- [13] Marco Kuhlmann: Mildly Non-Projective Dependency Grammar, Computational Linguistics, Vol.39, No.2 (June 2013), pp.355-387.