
IPSJ SIG Technical Report

Separate Chaining Meets Compact Hashing

Dominik Köppl1,a)

Abstract: While separate chaining is a common strategy for resolving collisions in a hash table taught in
most textbooks, compact hashing is a less common technique for saving space when hashing integers whose
domain is relatively small with respect to the problem size. It is widely believed that hash tables waste a
considerable amount of memory, as they either leave allocated space untouched (open addressing) or store
additional pointers (separate chaining). For the former, Cleary introduced the compact hashing technique
that stores only a part of a key to save space. However, as can be seen by the line of research focusing on
compact hash tables with open addressing, there is additional information, called displacement, required for
restoring a key. There are several representations of this displacement information with different space and
time trade-offs. In this article, we introduce a separate chaining hash table that applies the compact hashing
technique without the need for the displacement information. Practical evaluations reveal that insertions
in this hash table are faster or use less space than all previously known compact hash tables on modern
computer architectures when storing sufficiently large satellite data.

1. Introduction

A major layout decision for hash tables is how collisions

are resolved. A well-studied and easy-implementable layout

is separate chaining, which is also applied by the hash table

unordered map of the C++ standard library libstdc++ [4,

Sect. 22.1.2.1.2]. On the downside, it is often criticized for

being bloated and slow*1. In fact, almost all modern replace-

ments feature open addressing layouts. Their implementa-

tions are highlighted with detailed benchmarks putting sep-

arate chaining with unordered map as its major representa-

tion in the backlight of interest. However, when considering

compact hashing with satellite data, separate chaining be-

comes again a competitive approach, on which we shed a

light in this article.

1.1 Related Work

The hash table of Askitis [2] also resorts to separate chain-

ing. Its buckets are represented as dynamic arrays. On in-

serting an element into one of these array buckets, the size

of the respective array increments by one (instead of, e.g.,

doubling its space). The approach differs from ours in that

these arrays store a list of (key,value)-pairs while our buckets

1 Department of Informatics, Kyushu University, Japan Society
for Promotion of Science

a) dominik.koeppl@inf.kyushu-u.ac.jp
*1 Cf. http://www.idryman.org/blog/2017/05/03/writing-a-

damn-fast-hash-table-with-tiny-memory-footprints/,
https://probablydance.com/2017/02/26/i-wrote-the-

fastest-hashtable/,
https://attractivechaos.wordpress.com/2018/10/01/

advanced-techniques-to-implement-fast-hash-tables,
https://tessil.github.io/2016/08/29/benchmark-

hopscotch-map.html, to name a few.

separate keys from values.

The scan of the buckets in a separate chaining hash table

can be accelerated with SIMD (single instruction multiple

data) instructions as shown by Ross [21] who studied the ap-

plication of SIMD instructions for comparing multiple keys

in parallel in a bucketized Cuckoo hash table.

For reducing the memory requirement a of hash table,

a sparse hash table layout was introduced by members of

Google*2. Sparse hash tables are a lightweight alternative

to standard open addressing hash tables, which are repre-

sented as plain arrays. Most of the sparse variants replace

the plain array with a bit vector of the same length marking

positions at which an element would be stored in the array.

The array is emulated by this bit vector and its partitioning

into buckets, which are dynamically resizeable and store the

actual data.

The notion of compact hashing was coined by Cleary [5]

who studied a hash table with bidirectional linear probing.

The idea of compact hashing is to use an injective function

mapping keys to pairs of integers. Using one integer, called

remainder, as a hash value, and the other, called quotient, as

the data stored in the hash table, the hash table can restore

a key by maintaining its quotient and an information to re-

tain its corresponding remainder. This information, called

displacement, is crucial as the bidirectional linear probing

displaces elements on a hash collision from the position cor-

responding to its hash value, i.e., its remainder. Poyias and

Raman [20] gave different representations for the displace-

ment in the case that the hash table applies linear probing.

In this paper, we show that it is not necessary to store

additional data in case that we resort to separate chaining

*2 https://github.com/sparsehash/sparsehash

1ⓒ 2019 Information Processing Society of Japan

Vol.2019-AL-173 No.5
2019/5/10

IPSJ SIG Technical Report

as collision resolution. The main strength of our hash table

is its memory-efficiency during the construction while being

at least as fast as other compact hash tables. Its main weak-

ness is the slow lookup time for keys, as we do not strive for

small bucket sizes.

2. Separate Chaining with Compact

Hashing

Our hash table H has |H| buckets, where |H| is a power

of two. Let h be the hash function of H. An element with

key K is stored in the (h(K) mod |H|)-th bucket. To look

up an element with key K, the (h(K) mod |H|)-th bucket

is linearly scanned.

A common implementation represents a bucket with a

linked list, and tries to avoid collisions as they are a ma-

jor cause for decelerating searches. Here, the buckets are

realized as dynamic arrays, similar to the array hash table

of Askitis [2]. We further drop the idea of avoiding colli-

sions. Instead, we want to maintain buckets of sufficiently

large sizes to compensate the extra memory for maintain-

ing (a) the pointers to the buckets and (b) their sizes. To

prevent a bucket from growing too large, we introduce a

threshold bmax for the maximum size. Choosing an ade-

quate value for bmax is important, as it affects the resizing

and the search time of our hash table.

Resize. When we try to insert an element into a bucket of

maximum size bmax, we create a new hash table with twice

the number of buckets 2|H| and move the elements from the

old table to the new one, bucket by bucket. After a bucket

of the old table becomes empty, we can free up its memory.

This reduces the memory peak commonly seen in hash ta-

bles or dynamic vectors reserving one large array, as these

data structures need to reserve space for 3m elements when

resizing from m to 2m. This technique is also common for

sparse hash tables.

Search in Cache Lines. We can exploit modern com-

puter architectures featuring large cache sizes by selecting

a sufficiently small bmax such that buckets fit into a cache

line. Since we are only interested in the keys of a bucket

during a lookup, an optimization is to store keys and values

separately: In our hash table, a bucket is a composition of a

key bucket and a value bucket, each of the same size. This

gives a good locality of reference [7] for searching a key. This

layout is favorable for large values of bmax and (keys,value)-

pairs where the key size is relatively small to the value size,

since (a) the cost for an extra pointer to maintain two buck-

ets instead of one becomes negligible while (b) more keys

fit into a cache line when searching a key in a bucket. An

overview of the proposed hash table layout is given in Fig. 1.

2.1 Compact Hashing

Compact hashing restricts the choice of the hash func-

tion h. It requires an injective transform f that maps a

key K to two integers (q, r) with 1 ≤ r ≤ |H|, where r

acts as the hash value h(K). The values q and r are called

quotient and remainder, respectively. The quotient q can be

used to restore the original key K if we know its correspond-

ing remainder r. We translate this technique to our separate

chaining layout by storing q as key in the r-th bucket on in-

serting a key K with f(K) = (q, r).

A discussion of different injective transforms is given by

Fischer and Köppl [11, Sect. 3.2]. Suppose that all keys

can be represented by k bits. We want to construct a bi-

jective function f : [1..2k] → f([1..2k]), where we use the

last lgm bits for the remainder and the other bits for the

quotient. Our used transform*3 is inspired by the split-

mix algorithm [13]. It intermingles three xorshift [17] func-

tions f⊗

j : x 7→ x⊗(2jx) mod 2k with three multiplica-

tive functions f×
c : x 7→ cx mod 2k, where ⊗ denotes the

bit-wise exclusive OR operation. The composition of these

functions is invertible, since each of them itself is invertible:

Xorshift. The function f⊗

j is self-inverse, i.e., f⊗

j ◦
f⊗

j (K) = K, for an integer j with k ≥ j > ⌊k/2⌋ or

−k ≤ j < −⌊k/2⌋. For datasets whose keys only slightly

differ (i.e., incremental values), selecting j < −⌊k/2⌋ in-

stead of j > ⌊k/2⌋ is more advantageous since the former

distributes the last k + j bits affecting the remainder. This

can lead to a more uniform distribution of the occupation

of the buckets.

Multiplicative. Each of our functions f×
c is initialized

with an odd number c less than 2k. It is known that the

family
{

f×
c

}

c odd
is universal [8, Sect. 2.2], but not strongly

universal [23]. Since c and 2k are relatively prime, there is an

modular multiplicative inverse of c with respect to the divi-

sor 2k, which we can find with the extended Euclidean algo-

rithm inO(k) time in a precomputation step [14, Sect. 4.5.2].

2.2 Resize Policies

We resize a bucket with the C function realloc. Whether

we need to resize a bucket on inserting an element depends

on the policy we follow:

Incremental Policy : Increment the size of the bucket

such that the new element just fits in. This policy saves

memory as only the minimum required amount of mem-

ory is allocated. As buckets store at most bmax = O(1)

elements, the resize can be performed in constant time.

In practice, however, much of the spent time depends on

the used memory allocator for increasing the allocated

space. We append ‘++’ to a hash table in subscript if it

applies this policy.

Half Increase : Increase the size of a bucket by 50%*4.

This policy eases the burden of the allocator at the ex-

pense of possibly wasting memory for unoccupied space

in the buckets. We append ‘50’ in subscript to a hash

table if it applies this policy.

2.3 Bucket Variations

Our hash table layout in Fig. 1 supports different quo-

tient and value bucket types. In the experiments, we call a

*3 https://github.com/kampersanda/poplar-trie
*4 Inspired by the discussion in https://github.com/facebook/

folly/blob/master/folly/docs/FBVector.md.

2ⓒ 2019 Information Processing Society of Japan

Vol.2019-AL-173 No.5
2019/5/10

IPSJ SIG Technical Report

find(K)

f(K)

(q, r)

find i with get(i) = q

v : quotient buckets[r][i]

v

hash map

declare key-type : tranform-type::key-type

declare quotient-type : tranform-type::quotient-type

declare value-type : value-bucket-type::item-type

transform : transform-type

buckets : uint8 t (storing lg |H|)

bucket sizes : uint8 t[2buckets]

quotient buckets : quotient-bucket-type[2buckets]

value buckets : value-bucket-type[2buckets]

insert(key-type, value-type)
find(key-type) : value-type

transform-type,value-bucket-type

transform

declare quotient-type

declare remainder-type

f(key-type) : (quotient-type, remainder-type)
f−1(quotient-type, remainder-type) : key-type

key-type

bucket

set(position : int, item-type)
get(position : int) : item-type

item-type

≪quotient-bucket-type→bucket<transform::quotient-type>≫

≪value-bucket-type≫

≪transform-type≫

user: hash map: transform: quotient buckets:[r]

Fig. 1 Diagram of our proposed hash table. The call of find(K) returns the i-th element
of the r-th bucket at which K is located. The injective transform determines the
types of the key and the quotient.

hash table by the name of its quotient bucket representation.

There, we evaluated the following representations:

cht. Our default quotient bucket stores quotients bit-

compactly, i.e., it stores a quotient in k−lg |H| bits*5, where
k is the bit size needed to represent all keys and |H| is the
number of buckets of H. For that, it uses bit operations to

store the quotients in a byte array. The number of bits used

by a key bucket is quantized at eight bits (the last byte of

the array might not be full). Since lg |H| is constant until a
rehashing occurs, we do not have to maintain this value in

each bucket.

single. A variant storing keys and values in a single bucket

instead of two separate ones can save additional space. How-

ever, this space improvement is marginal compared to the

more severe slowdown for either (a) locating a quotient if we

maintain a list of (key,value)-pairs or (b) changing the size of

the bucket if we first store all keys and then subsequently all

values. For the experiments, we used the representation (b).

avx. Another representation of the quotient bucket applies

SIMD instructions to speed up the search of a key in a large

bucket. For that, it restricts the quotients to be quantized at

8 bits. We use the AVX2 instructions mm256 set1 epik and

mm256 cmpeq epik for loading a quotient with k bits and

comparing this loaded value with the entries of the bucket,

respectively. The realloc function for resizing a bucket

cannot be used in conjunction with avx, since the allocated

memory for avx must be 32-byte aligned.

plain. For comparison, we also implemented a variant that

does not apply compact hashing. For that, we created the

trivial injective transform fh : K 7→ (K,h(K) mod 2m) that

uses an arbitrary hash function h for computing the remain-

ders while producing quotients equal to the original keys. Its

*5 More precisely, the quotient needs ⌈lg |f |⌉ − lg |H| bits, where
⌈lg |f |⌉ is the number of bits needed to represent all values of
the transform f , which is k in our case.

inverse is trivially given by f−1(q, r) = q.

2.4 Details on Sizes

We set the maximum bucket size bmax to 255 elements

such that we can represent the size of a bucket in a single

byte. A full bucket with 64-bit integers takes roughly 2KiB

of memory, fitting in the L1 cache of a modern CPU.

For each bucket we store its size and pointers to its quo-

tient and value bucket, using altogether 17 bytes. Since we

additionally waste less than one byte in cht for storing the

quotients in a byte array, this gives an overhead of at most

18 bytes per bucket. Let m denote the (fractional) number

of bytes needed to store an element. Then our hash table

uses 18|H|+ nm bytes for storing n elements, where |H| is
at most ⌈2n/bmax⌉ if we assume a uniform distribution of

the elements among all buckets.

A non-sparse open addressing hash table with maximum

load factor α ≤ 1 uses at least nm/α bytes. If m ≥ 3.03

bytes, we need to set α to more than 0.956 to make the open

addressing hash table slimmer than our separate hashing ta-

ble. When resorting to linear probing we encounter

cα := (1/2) · (1 + (1/(1− α))2) (1)

collisions on average for an insertion operation [15, Sect. 6.4].

But cα < bmax ⇔ α < 1 − 1/
√
2bmax − 1 ≈ 0.956, and

hence such a table faces more collisions on average or uses

more space than our proposed hash tables. If m < 3.03 rep-

resents the number of bytes for storing a key and a value,

one would usually resort to storing the data in a plain ar-

ray, as there can be at most 38m ≈ 20 · 106 keys. The

only interesting domain is when we consider compact hash-

ing for m < 3.03, where m now represents the number of

bytes we need for the quotient and the value. However, com-

pact representations of open addressing hash tables need to

store displacement information, which should take at most

3ⓒ 2019 Information Processing Society of Japan

Vol.2019-AL-173 No.5
2019/5/10

IPSJ SIG Technical Report

12 13 14 15 16

0

20

40

60

80

number of elements [lg]

a
v
g
.
ti
m
e
p
er

el
em

en
t
[µ
s/
#
]

Construction Time

12 13 14 15 16
2

4

6

8

10

12

14

16

number of elements [lg]
a
v
g
.
ti
m
e
p
er

el
em

en
t
[µ
s/
#
]

Query Time

Fig. 2

Left : Time for inserting 210 · (3/2)n elements consist-
ing of randomly generated 32-bit values and 32-bit
keys into a hash table, for n ≥ 0. Right: Time for
querying all inserted elements.

avx50 clearyP plain50
avx++ google rigtorp

cht++ layeredS spp

18 |H| bytes ≤ 1.13 bits per element to be on par with the

memory overhead of the separate chaining layout.

3. Experiments

We implemented our proposed hash table in C++17. The

implementation is freely available at https://github.com/

koeppl/separate_chaining.

Evaluation Setting. Our experiments ran on an Ubuntu

Linux 18.04 machine equipped with 32 GiB of RAM and an

Intel Xeon CPU E3-1271 v3 clocked at 3.60GHz. We mea-

sure the memory consumption by overloading the calls to

malloc, realloc, free and its C++ counterparts with the

tudostats framework*6. The benchmark was compiled with

the flags -O3 -DNDEBUG --march=native, the last option

for supporting AVX2 instructions.

Contestants. We selected the following hash tables that

are representative C++ hash tables, are sparse, or work with

compact hashing.

• std: The unordered map implementation of libstdc++.

We used the default maximum load factor 1.0, i.e., we

resize the hash table after the number of stored elements

exceeds the number of buckets.

• rigtorp: The fast but memory-hungry linear-probing

hash table of Erik Rigtorp*7. The load factor is hard-

coded to 0.5.

• google: Google’s sparse hash table*2 with quadratic

probing. Its maximum load factor is set to the default

value 0.8.

*6 https://github.com/tudocomp/tudostats
*7 https://github.com/rigtorp/HashMap

• spp: Gregory Popovitch’s Sparsepp*8, a derivate of

Google’s sparse hash table. Its maximum load factor

is 0.5.

• tsl: Tessil’s sparse map*9 with quadratic probing. Its

default maximum load factor is 0.5.

• cleary, elias, layered: The compact hash tables of

Cleary [5] and Poyias and Raman [20].

– elias partitions the displacement into integer arrays of

length 1024, which are encoded with Elias-γ [10].

– layered stores this information in two multiple associa-

tive array data structures. The first is an array storing

4-bit integers, and the second is an unordered map for

displacements larger than 4 bits.

The implementations are provided by the tudocomp

project*10. All hash tables apply linear probing, and

support a sparse table layout. We call these hash tables

Bonsai tables for the following evaluation, and append

in subscript ‘P’ or ‘S’ if the respective variant is in its

plain form or in its sparse form, respectively. We used

the default maximum load factor of 0.5.

3.1 Micro-Benchmarks

Our micro benchmarks are publicly available at https:

//github.com/koeppl/hashbench for third-party evalua-

tions. We provide benchmarks for insertions, deletions, and

lookups of (a) inserted keys (for successful searches) and (b)

keys that are not present in the hash tables (for unsuccessful

searches).

*8 https://github.com/greg7mdp/sparsepp
*9 https://github.com/Tessil/sparse-map
*10 https://github.com/tudocomp/compact_sparse_hash

4ⓒ 2019 Information Processing Society of Japan

Vol.2019-AL-173 No.5
2019/5/10

IPSJ SIG Technical Report

24 25 26 27

6

8

10

12

number of elements [lg]

a
v
g
.
m
em

o
ry

p
er

el
em

en
t
[b
y
te
s/
#
]

Random Insertion : Space

single

cht++

clearyS
eliasS

google

layeredS
plain50
spp

tsl

0 0.2 0.4 0.6 0.8 1

6

8

10

12

14

avg. time per element [s/#]
a
v
g
.
m
em

o
ry

p
er

el
em

en
t
[b
y
te
s/
#
]

Random Insertion : Time/Space

cht50 cht++ clearyS
google layeredS plain50
plain++ spp tsl

Fig. 3 Left : Space needed for constructing the hash tables in the setting of Fig. 2. Right :
Memory and time divided by the number of stored elements. Each element is
composed of a 32-bit key and a 32-bit value, using combined 8 bytes.

Inserting Random Elements. We used std::rand as a

random generator to produce 32-bit keys and values. The

measured times and memory consumptions are depicted in

Fig. 2 and Fig. 3. Our variants plain and avx do not use the

compact hashing technique. Instead, like other non-compact

hash tables, they use the identity function in this setting.

Here, avx50 is faster than plain50 during the construction,

and far superior when it comes to searching keys.

While the discrepancy in time between the incremental

and the half increase policy is small for most bucket rep-

resentations, the construction of avx++ takes considerably

longer than avx50, as we cannot resort to the fast realloc

for allocating aligned memory required for the SIMD oper-

ations.

The construction of single is tedious, as it needs to move

all values of a bucket on each insertion. On the other hand,

its search time is on par with cht++. Our compact and non-

compact hash tables match the speed of the sparse and non-

sparse Bonsai tables, respectively.

Reversed Space. Like in the previous experiment, we fill

the hash tables with n random elements for n ≥ 216. How-

ever, this time we let the hash tables reserve 216 buckets in

advance. We added a percent sign in superscript to the plain

hash tables that (a) use our injective transform and (b) take

(additionally) advantage of the fact that they only need to

store quotients of at most 16 bits. The results are visualized

in Fig. 4. We see that plain%50 is superior to google, while

plain%
++ uses far less space that other non-compact hash ta-

bles. Like in Fig. 2, a major boost for lookups can be per-

ceived if we exchange plain with avx*11, which takes the

*11 avx is not shown in Fig. 4 since our memory allocation counting
library does not count aligned allocations needed for avx.

same amount of space as plain.

Unsuccessful Searches. The search of not stored ele-

ments is far more time consuming with our separate chain-

ing hash tables, as can be seen in the left of Fig. 5. When

restricted to separate chaining, best bets can be made with

avx, as it is the fastest for scanning large buckets. It is on

a par with the Bonsai tables, but no match for the sparse

hash tables.

Removing Elements. We evaluated the speed for remov-

ing arbitrary elements from the hash tables, and present the

results in the right of Fig. 5. We used the hash tables created

during the construction benchmark (Fig. 2). Interestingly,

avx becomes faster than rigtorp in the last instance. The

other implementations are on a par with the non-compact

sparse contestants. We could not evaluate the Bonsai ta-

bles, as there is currently no implementation available for

removing elements.

Distinct Keys. We inserted our hash tables into the udb2

benchmark*12, where the task is to compute the frequencies

of all 32-bit keys of a multiset, in which roughly 25% of all

keys are distinct. For that, the hash tables store each of

these keys along with a 32-bit value counting its processed

occurrences. Our results are shown in Sect. 3.3. We expect

from a succinct representation to use space about 2 bytes

per key, as about 25% of all keys are distinct, and each

(key,value)-pair takes 8 bytes. The evaluation shows that,

if time is not of importance, the memory footprint can be

considerably improved with our proposed hash table layout.

*12 https://github.com/attractivechaos/udb2

5ⓒ 2019 Information Processing Society of Japan

Vol.2019-AL-173 No.5
2019/5/10

IPSJ SIG Technical Report

25 25.5 26 26.5

5

10

15

20

25

30

number elements [lg]

a
v
g
.
m
em

o
ry

p
er

el
em

en
t
[b
y
te
s/
#
]

Reserved : Space

single

cht++

clearyP
clearyS
eliasP

eliasS

google

layeredP
layeredS
plain50

plain%50

plain%
++

spp

tsl

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

6

8

10

12

14

avg. time per element [s/#]
a
v
g
.
m
em

o
ry

p
er

el
em

en
t
[b
y
te
s/
#
]

Reserved: Time/Space

single

cht++

clearyS
google

layeredS
plain50

plain%50

plain%
++

spp

tsl

Fig. 4 Time for inserting 225 ·(3/2)n random elements for integers n ≥ 0. The hash tables
are prepared to reserve 29 · (3/2)n buckets before the insertions start.

3.2 Conclusion

On the upside, the evaluation reveals that our proposed

hash tables can be constructed at least as fast as all other

compact sparse hash tables (cf. Fig. 2). Our hash ta-

bles use less space than any non-sparse compact hash ta-

ble (cf. Fig. 3). Especially fast are deletions (cf. Fig. 5),

outpacing even some speed-optimized hash tables on large

instances. Combining avx50 with compact hashing can lead

to a fast and memory-efficient hash table if there are good

lower bounds on the number of elements that need to be

stored (cf. Fig. 2 for the time and plain50 in Fig. 4 for the

space).

On the downside, lookups, especially when searching for

a non-present key, are even slower than most of the sparse

Bonsai tables, as bmax is much larger than the number of

maximal collisions encountered during an insertion of an el-

ement in one of the Bonsai tables. That is because their

default maximum load factor of α := 0.5 gives cα ≤ 3 colli-

sions on average for an insertion operation (cf. Eq. (1)).

In total, the major advantage of our proposed hash table

layout is its low memory footprint. Its construction speed

matches with other memory-efficient hash table representa-

tions. However, if the focus of an application is on query-

ing rather than on dynamic aspects as insertion or deletion,

Cuckoo hash tables or perfect hashing provide a much better

solution.

3.3 Future Work

We think that a bucketized compact Cuckoo hash ta-

ble [21] based on our proposed hash table layout can be an

even more memory-friendly hash table. For that, we store

a master and a slave separate chaining hash table whose

numbers of buckets are independent from each other. On

inserting an element, we first try to insert the element in

the master table. If its respective bucket BM is already full,

we try to insert the element in the slave table. If its re-

spective bucket BS is also full, we take a random element

of both buckets BM and BS, exchange it with the element

we want to insert, and start a random walk. By doing so,

the distribution of the load factors of all buckets should be-

come more uniform such that a resizing of the hash tables

can be delayed at the expense of more comparisons. Both

hash tables can be made compact, as each bucket is dedi-

cated to exactly one injective transform (corresponding to

its respective hash table).

In the experiments, the measured memory is the number

of allocated bytes. The resident set sizes of our hash ta-

bles differ largely to this measured memory, as we allocate

many tiny fragments of space. A dedicated memory man-

ager can reduce this space overhead, but also reduce the

memory requirement of the bucket pointers by allocating a

large subsequent array, in which memory can be addressed

with pointers of 32-bit width or less. For future evaluations,

we also want to vary the maximum load factors of all hash

tables instead of sticking to the default ones.

For searching data in an array, the more recent SIMD

instruction set AVX2 provides a major performance boost

unlike older instruction sets like SSE, as benchmarks for

comparing strings*13 demonstrate a speed boost of more

than 50% for long string instances. We wonder whether we

can experience an even steeper acceleration when working

with the AVX256 instruction set.

In our implementation of cht, we extract the quotients

*13 https://github.com/koeppl/packed_string

6ⓒ 2019 Information Processing Society of Japan

Vol.2019-AL-173 No.5
2019/5/10

IPSJ SIG Technical Report

12 14 16 18

6

8

10

12

number of elements [lg]

ti
m
e
[l
g
µ
s]

Unsuccessful Search: Time

12 14 16 18

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

number of elements [lg]
a
v
g
.
ti
m
e
p
er

el
em

en
t
[µ
s/
#
]

Deletion: Time

avx50 clearyP layeredP rigtorp tsl

single clearyS layeredS spp cht++

google plain50 std

avx50 google spp

single plain50 std

cht++ rigtorp tsl

Fig. 5 Left : Time for looking up 28 random keys that are not present in the hash tables.
Right : Time for erasing 28 random keys that are present in the hash tables. In
both figures, the number of elements (x-axis) is the number of elements a hash table
contains.

from its bit-compact byte array B sequentially during the

search of a quotient q. We could accelerate this search by

packing q ⌊64/k⌋ times in one 64-bit integer p, where k is

the quotient bit width, and compare the same number of

quotients in B with B[i..i + 63] ⊗ p for i = ck ⌊64/k⌋ with

an integer c, where we interpret B as a bit vector. Using

shift and bitwise AND operations, we can compute a bit vec-

tor C such that C[j] = 1 ⇔ q = B[i + (j − 1)k..i + jk − 1]

for 1 ≤ j ≤ ⌊64/k⌋, in O(lg k) time by using bit parallelism.

Finally, we would like to see our hash table in applications

where saving space is critical. For instance, we could devise

the Bonsai trie [6] or the displacement array of layered [20],

which are used, for instance, in the LZ78 computation [1].

Acknowledgments We are thankful to Rajeev Raman

for a discussion about future work on compact hash tables

at the Dagstuhl seminar 18281, to Marvin Löbel for the im-

plementations of the Bonsai hash tables, to Shunsuke Kanda

for the implementation of our used injective transform, and

to Manuel Penschuck for running the entropy experiments

on a computing cluster.

This work is founded by the JSPS KAKENHI Grant Num-

ber JP18F18120.

References

[1] D. Arroyuelo, R. Cánovas, G. Navarro, and R. Raman.

LZ78 compression in low main memory space. In Proc.

SPIRE, volume 10508 of LNCS, pages 38–50, 2017.

[2] N. Askitis. Fast and compact hash tables for integer

keys. In Proc. ACSC, volume 91 of CRPIT, pages

101–110, 2009.

[3] B. H. Bloom. Space/time trade-offs in hash coding

with allowable errors. Commun. ACM, 13(7):422–426,

1970.

[4] P. Carlini, P. Edwards, D. Gregor, B. Kosnik,

D. Matani, J. Merrill, M. Mitchell, N. Myers, F. Nat-

ter, S. Olsson, S. Rus, J. Singler, A. Tavory, and

J. Wakely. The GNU C++ Library Manual. FSF,

2018.

[5] J. G. Cleary. Compact hash tables using bidirectional

linear probing. IEEE Trans. Computers, 33(9):828–

834, 1984.

[6] J. J. Darragh, J. G. Cleary, and I. H. Witten. Bon-

sai: a compact representation of trees. Softw., Pract.

Exper., 23(3):277–291, 1993.

[7] P. J. Denning. The working set model for program

behavior. Commun. ACM, 11(5):323–333, 1968.

[8] M. Dietzfelbinger, T. Hagerup, J. Katajainen, and

M. Penttonen. A reliable randomized algorithm for

the closest-pair problem. J. Algorithms, 25(1):19–51,

1997.

[9] P. Dinklage, J. Fischer, D. Köppl, M. Löbel, and

K. Sadakane. Compression with the tudocomp frame-

work. In Proc. SEA, volume 75 of LIPIcs, pages 13:1–

13:22, 2017.

[10] P. Elias. Efficient storage and retrieval by content and

address of static files. J. ACM, 21(2):246–260, 1974.

7ⓒ 2019 Information Processing Society of Japan

Vol.2019-AL-173 No.5
2019/5/10

IPSJ SIG Technical Report

23.5 24 24.5 25 25.5

20

40

60

80

100

120

140

number of elements [lg]

m
em

o
ry

[M
iB

]

UDB2: Space

0.1 0.2 0.3 0.4 0.5 0.6

1.5

2

2.5

3

avg. time per element [s/#]
a
v
g
.
m
em

o
ry

p
er

el
em

en
t
[b
y
te
/
#
]

UDB2: Time/Space

Fig. 6
Time for processing hashed keys from a random generator pro-
vided in the udb2 benchmark. Keys and values are 32 bit integers.

single
++ clearyS layeredS spp

cht++ google plain
++ tsl

[11] J. Fischer and D. Köppl. Practical evaluation of

Lempel-Ziv-78 and Lempel-Ziv-Welch tries. In Proc.

SPIRE, volume 10508 of LNCS, pages 191–207, 2017.

[12] C. Fu, O. Bian, H. Jiang, L. Ge, and H. Ma. A

new chaos-based image cipher using a hash function.

IJNDC, 5(1):37–44, 2017.

[13] G. L. S. Jr., D. Lea, and C. H. Flood. Fast splittable

pseudorandom number generators. In Proc. OOPSLA,

pages 453–472, 2014.

[14] D. E. Knuth. Art of Computer Programming, Vol-

ume 2: Seminumerical Algorithms. Addison Wesley,

Redwood City, CA, USA, 1981.

[15] D. E. Knuth. The Art of Computer Programming,

Volume 3: Sorting and Searching. Addison Wesley,

Redwood City, CA, USA, 1998.

[16] S. C. Manekar and S. R. Sathe. A benchmark study of

k-mer counting methods for high-throughput sequenc-

ing. GigaScience, 7(12), 2018.

[17] G. Marsaglia. Xorshift RNGs. Journal of Statistical

Software, 8(i14), 2003.

[18] G. Marçais and C. Kingsford. A fast, lock-free ap-

proach for efficient parallel counting of occurrences of

k-mers. Bioinformatics, 27(6):764–770, 2011.

[19] K. Nair and E. RoseLalson. The unique id’s you can’t

delete: Browser fingerprints. In Proc. ICETIETR,

pages 1–5, 2018.

[20] A. Poyias and R. Raman. Improved practical compact

dynamic tries. In Proc. SPIRE, volume 9309 of LNCS,

pages 324–336, 2015.

[21] K. A. Ross. Efficient hash probes on modern proces-

sors. In Proc. ICDE, pages 1297–1301, 2007.

[22] T. Takagi, S. Inenaga, K. Sadakane, and H. Arimura.

Packed compact tries: A fast and efficient data struc-

ture for online string processing. IEICE Transac-

tions on Fundamentals of Electronics, Communica-

tions and Computer Sciences, 100-A(9):1785–1793,

2017.

[23] M. Thorup. Even strongly universal hashing is pretty

fast. In Proc. SODA, pages 496–497, 2000.

8ⓒ 2019 Information Processing Society of Japan

Vol.2019-AL-173 No.5
2019/5/10

IPSJ SIG Technical Report

Appendix

A.1 Applications

We provide two applications of our hash tables on real-

world data sets.

A.1.1 Keyword Fingerprinting

An application of hash tables is to store fingerprints of a

set of keywords. We hash each keyword with Austin Ap-

pleby’s Murmurhash*14, which is a well received hash func-

tion for generating fingerprints [12, 19]. The obtained finger-

print is put into the hash tables. Non-compact hash tables

use the identity as a dummy hash function, while the com-

pact hash tables use our injective transform. Such a hash

table can be used as a Bloom filter [3] for discarding strings

that are not part of the set of keywords. Table A·1 gives the

time and space needed for constructing such a Bloom fil-

ter. In Table A·2 we measure the time it takes to query for

all inserted keywords. We used data sets from [22] and [9],

split each dataset into strings by using either the newline

or whitespace as a delimiter, and removed all duplicates.

We can see that our separate chaining hash table variants

use far less space then the compact non-sparse hash tables,

while they are smaller or on par with their sparse variants.

A.1.2 Computing the Empirical Entropy

Given a text T of length n whose characters are drawn

from a finite alphabet Σ := {c1, . . . , cσ}, the empiri-

cal entropy Hk of order k for an integer k ≥ 0 is de-

fined as H0(T) := (1/n)
∑σ

j=1 nj lg(n/nj) for nj :=

|{i : T [i] = cj}|, and Hk(T) := (1/n)
∑

S∈Σk |TS |H0(TS),

where TS is the concatenation of each character in T that

directly follows an occurrence of the substring S ∈ Σk in

T . We can compute H0(T) with an array using σ ⌈lg n⌉ bits
of space storing the frequency of each character. For larger

orders, we count all k-mers, i.e., substrings of length k, in T

and iterate over the frequencies of all k-mers of T to com-

pute Hk(T). Using an array with σk ⌈lg n⌉ bits, this ap-

proach can become obstructive for large alphabet sizes. For

small alphabets like in DNA sequences, highly optimized k-

mer counters can compute the entropy up to order 55 [16].

Here, we present an approach that stores the frequen-

cies of the k-mers with our separate chaining hash table.

Our approach is similar to Jellyfish [18], but more naive

as we do not apply Bloom filters or concurrency for speed-

up. Instead, our target is to compute the entropy for

byte alphabets, orders k ≤ 7, but massive data sets. For

that task, we use cht++ and start with byte values repre-

senting the frequencies. Whenever the current representa-

tion of the frequencies becomes too small, we increment

the number of bytes of the frequency representation by

one. By doing so, we reach up to 3 bytes per stored fre-

*14 https://github.com/aappleby/smhasher

quency in our experiments. As the experimental setup is

also of independent interest for computing the empirical en-

tropy of massive data sets, we made it freely available at

https://github.com/koeppl/compression_indicators.

For the experiments, we took two datasets, cc and dna,

each of 128 GiB. The former data set has an alphabet size

of 242, and consists of a web page crawl provided by the

commoncrawl organization*15. The latter data set is a col-

lection of DNA sequences extracted from FASTA files with

an alphabet size of 4. We computed the entropies of each

prefix of length 2n(1024)3, for 1 ≤ n ≤ 7, for the data

sets cc and dna in Table A·3 and Table A·4, respectively.
We summarize the needed time and space for these com-

putations in Fig. A·1. These experiments ran on a com-

puting cluster equipped with Intel Xeon Gold 6148 CPUs

clocked at 2.40GHz with 192 GiB of RAM running Red Hat

Linux 4.8.5-36. The measured memory is the maximum used

resident set size.

We can see that the amount of needed memory becomes

saturated after processing the first 2 GiB of dna, where we

use less than 3 MiB of RAM in total for all orders of k. That

is not surprising, as there can be only 47 different k-mers of

length 7. For cc, it is more relevant to have a memory-

efficient implementation, as there can be 2427 ≈ 5 · 1010
7-mers. We conclude by the strictly monotonic increase of

the occupied memory that new k-mers for k ≥ 4 are found

in cc even after surpassing the 64 GiB prefix.

*15 http://commoncrawl.org/

9ⓒ 2019 Information Processing Society of Japan

Vol.2019-AL-173 No.5
2019/5/10

IPSJ SIG Technical Report

data sets

hash table cc dblp proteins urls wiki

single 21.1 29.0 29.3 176.0 5.0
cht50 25.0 34.9 35.0 218.5 6.0
cht++ 21.2 29.1 29.5 177.0 5.0
clearyS 21.3 30.2 30.5 190.8 5.1
eliasP 57.5 112.0 112.0 859.7 14.6
eliasS 21.0 29.5 29.8 184.8 5.0
google 33.2 46.4 46.9 293.9 7.9
layeredP 59.5 116.0 116.1 892.3 15.1
layeredS 22.3 32.2 32.5 212.4 5.3
plain50 29.0 40.8 40.9 265.1 6.9
plain++ 24.6 34.0 34.4 214.6 5.7
rigtorp 96.7 192.0 192.0 1536.0 24.0
std 85.8 95.9 96.7 706.0 20.5
tsl 35.4 52.0 52.5 339.3 8.4

data sets

hash table cc dblp proteins urls wiki

single 3.8 5.2 5.5 36.2 1.0
cht50 1.5 2.0 2.3 14.4 0.4
cht++ 1.9 2.7 3.0 21.1 0.5
clearyS 1.2 2.0 2.4 16.0 0.3
eliasP 5.7 8.9 9.3 63.3 1.5
eliasS 6.1 9.6 10.1 70.1 1.5
google 1.0 1.4 1.8 12.3 0.3
layeredP 0.6 0.9 1.2 7.1 0.2
layeredS 1.2 1.9 2.3 15.7 0.3
plain50 0.8 1.1 1.5 9.3 0.2
plain++ 1.2 1.8 2.1 16.8 0.3
rigtorp 0.3 0.5 0.8 3.7 0.1
std 0.9 1.2 1.5 9.5 0.3
tsl 0.4 0.7 1.0 6.2 0.2

memory [MiB] time [s]
Table A·1 Construction of a fingerprint keyword dictionary.

0 2 4 6

0

2,000

4,000

6,000

prefix length [lg GiB]

ti
m
e
[s
]

dna

0 2 4 6

0.5

1

1.5

2

2.5

3

prefix length [lg GiB]

m
em

o
ry

[M
iB

]

dna

0 2 4 6

0

2

4

6

·104

prefix length [lg GiB]

ti
m
e
[s
]

cc

0 2 4 6

0

20

40

60

prefix length [lg GiB]

m
em

o
ry

[G
iB

]

cc

Fig. A·1 Computing the k-th order entropy.
knum=2 knum=4 knum=6

knum=3 knum=5 knum=7

10ⓒ 2019 Information Processing Society of Japan

Vol.2019-AL-173 No.5
2019/5/10

IPSJ SIG Technical Report

data sets

hash table cc dblp proteins urls wiki

single 0.4 0.8 1.1 5.7 0.2
cht50 0.5 1.0 1.3 7.4 0.2
cht++ 0.4 0.8 1.1 5.7 0.2
clearyS 0.4 0.6 0.9 5.3 0.2
eliasP 2.6 3.2 3.5 18.8 0.7
eliasS 2.6 3.1 3.5 18.4 0.7
google 0.3 0.5 0.8 4.4 0.1
layeredP 0.3 0.5 0.7 3.3 0.1
layeredS 0.4 0.6 0.9 5.2 0.2
plain50 0.5 0.9 1.2 6.9 0.1
plain++ 0.5 0.9 1.3 6.9 0.1
rigtorp 0.3 0.4 0.6 2.7 0.1
std 0.5 0.8 1.0 5.2 0.2
tsl 0.3 0.5 0.8 4.0 0.1

Table A·2 Query time in seconds for a fingerprint keyword dic-
tionary.

prefix order k

length 2 3 4 5 6 7

1 3.47259 2.90481 2.35796 1.90477 1.49418 1.18580
2 3.48268 2.92203 2.38605 1.94619 1.54430 1.23745
4 3.48717 2.93171 2.40566 1.97859 1.58677 1.28333
8 3.48762 2.93742 2.41886 2.00233 1.62009 1.32094
16 3.48920 2.94113 2.42738 2.01886 1.64558 1.35130
32 3.49006 2.94411 2.43471 2.03284 1.66737 1.37798
64 3.49100 2.94669 2.44088 2.04409 1.68482 1.40001
128 3.49055 2.94684 2.44231 2.04753 1.69087 1.40839

Table A·3 Empirical entropy of the data set cc. Prefix length is
in GiB.

prefix order k

length 2 3 4 5 6 7

1 1.94051 1.86247 1.77680 1.69265 1.61940 1.56313
2 1.91210 1.87496 1.83286 1.78250 1.73037 1.68750
4 1.92923 1.91052 1.88797 1.85679 1.82093 1.78944
8 1.93363 1.92250 1.90831 1.88764 1.86061 1.83383
16 1.93166 1.92232 1.91167 1.89491 1.87101 1.84585
32 1.93201 1.92421 1.91507 1.90190 1.88270 1.86160
64 1.93145 1.92424 1.91588 1.90445 1.88763 1.86889
128 1.93873 1.93273 1.92486 1.91341 1.89601 1.87634

Table A·4 Empirical entropy of the data set dna. Prefix length
is in GiB.

11ⓒ 2019 Information Processing Society of Japan

Vol.2019-AL-173 No.5
2019/5/10

