
Electronic Preprint for Journal of Information Processing Vol.27

Regular Paper

GNU Radio-based Cloud Development Environment for
Software-defined Radio Users

Hirotaka Suzuki1,a) Haruhisa Ichikawa1 JinMitsugi2 Yuusuke Kawakita3

Received: March 29, 2018, Accepted: December 4, 2018

Abstract: Software-defined radio (SDR) is used for R&D such as cognitive radio. Because sampling devices and per-
sonal computers configuring the SDR environment have fixed configurations, some reconfiguration is needed when the
SDR application requires different data sources and computational resources. To enable reconfiguration, we present a
cloud platform that has scalable computing resources and data sources deployed over a wide area. We use the existing
SDR development environment (SDRDE) and implement it on the cloud platform. It is necessary to transfer the SDR
environment to the cloud by separating the UI and data management from the existing SDRDE. In this study, we se-
lected the GNU Radio Companion (GRC) as the base platform and implemented an SDRDE for an unspecified number
of users by separating the UI. In addition, we used task parallel and distributed computing for the SDR application. In
this study, we focus on compatibility with the base implementation and lifting the limits of computational resources.
We confirmed the compatibility with GRC in terms of user skill sets and software assets and evaluated the system
response time. Further, the relationship between CPU utilization and instructions per cycle during SDR application
execution shows that in general, this approach is effective.

Keywords: software-defined radio, GNU Radio, development environment, cloud computing, task parallel and dis-
tributed computing

1. Introduction

Software-defined radio (SDR) is a technology that enables the
components of a radio system implemented in hardware to be
implemented in software on a personal computer (PC) or an em-
bedded system. By modifying software on a single platform such
as a PC, the radio functions for various frequencies and commu-
nication systems can be easily changed [1]. SDR is used for re-
search and development tasks such as researching efficient uti-
lization of radio resources in cognitive radio and attempts to im-
plement existing or new communication methods/standards [2].
Figure 1 (a) shows the general configuration of an environment
that utilizes SDR. This environment is generally configured us-
ing a sampling device with an analog-to-digital converter (ADC)
as a data source, and a PC with an SDR development environ-
ment (SDRDE) such as LabVIEW, GNU Radio Companion, or
MATLAB + Simulink is connected to the system.

Hardware configurations for the sampling device data source
and PC computational resource are fixed. Parameters for the data
source include the bandwidth, center frequency, sampling rate,
and location of sampling and are subject to the constraints of the
hardware and its location. The performance of the SDR applica-
tion (SDR App) is subject to the constraints of the PC’s computa-

1 The Graduate School of Informatics and Engineering, the University of
Electro-Communications, Chofu, Tokyo 182–8585, Japan

2 The Faculty of Environment and Information Studies, Keio University,
Fujisawa, Kanagawa 252–0882, Japan

3 Faculty of Information Technology, Kanagawa Institute of Technology
Atsugi, Kanagawa 243–0292, Japan

a) suzuki.hirotaka@kwkt-lab.org

Fig. 1 (a) Configuration of a general SDR environment, and (b) configura-
tion of an SDR environment using cloud computing.

tional resources because it runs as a stand-alone program. When
the SDR system is preconfigured for a specified objective and use,
the configuration of the data source and the computing resources
needed to operate the SDR can be estimated. For personal use
or research and development, estimating and reconstructing data
sources and computational resources in advance is difficult, be-
cause the system configuration is not defined according to the
change in requirements such as the radio standards/methods and
usage data. It is not realistic to reconfigure the SDR execution
environment each time the SDR App is reconfigured or to meet
temporary performance and requirements. This reconfiguration
would diminish the efficiency of research or product and service

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

development.
We propose a platform in which data source and computational

resources limits are avoidable by using a cloud-based platform of
the SDR environment, as shown in Fig. 1 (b). By separating the
operation and management of data sources and major SDR exe-
cution environments from the user side, the platform enables the
data source to be expanded over a wide area, and the SDR can run
using scalable computational resources. As a result, the user can
focus on research and development using SDR and actual sam-
pling data for tasks such as experimental development and data
analysis. In this study, we also consider parallel and distributed
computing (PDC) to increase scalability [3].

Cloud-RAN [4] is an architecture for a mobile network config-
ured using SDR technology and cloud computing. It separates
the platform and provides services from the mobile phone carrier.
However, in contrast to the requests of Cloud-RAN in terms of
a platform for an unspecified number of users, the platform pro-
posed in this paper allows for unspecified services. The unspeci-
fied services are not just protocol related; they are also considered
in applications such as radio astronomy and the exploratory anal-
ysis of radio space. Users can configure and execute any SDR
App and access it from one operating environment with multiple
data sources.

The ultimate goal of our study is to achieve a cloud platform for
SDR using an existing SDR environment. We focus on construct-
ing on the cloud an SDR development and execution environ-
ment based on the existing components. We selected an existing
SDRDE and modified it for implementation on a cloud platform.
There are several challenges when performing this modification
using existing stand-alone SDRDEs. First, to enable the user of
various data sources, we separate the data-management mecha-
nism from an existing SDRDE. Thus, it is possible to search and
reference the sampling device and the stored sampling data. Sec-
ond, to provide this configuration and execution in the cloud to
an unspecified number of users, the UI is separated from an ex-
isting SDRDE, and the development and execution environment
is relocated to the cloud. In this paper, we deal with the second
challenge: developing the cloud development and execution en-
vironment and its client software from an existing SDEDE. Re-
garding the execution environment, we will focus on realizing
the split execution of the SDR App with UI separation. The re-
source management technique when multiple SDR Apps are con-
currently executed by an unspecified number of users is the next
step and is not handled in this paper.

The implementation presents two challenges. First, compati-
bility with the original SDRDE’s software assets and user skill
sets must be maintained. Here, the skill set refers to the skills
needed to operate and manage workflows of the existing soft-
ware. It is desirable for existing users to be able to use their
original skills on the new platform. Moreover, users should be
able to use the new platform without needing new knowledge.
Software assets are elements that are configured or used, such as
files, modules, basic data structures, and basic processing mech-
anisms. Modules and files used in the cloud-based SDRDE must
be compatible with those in the existing SDRDE. Second, to
avoid limits on computational resources, we realize an execution

environment that does not depend on a user’s local computational
resources. The reuse of software resources, especially UI compo-
nents, enables task-level PDC of the SDR App using client and
cloud computational resources. We focus on CPU and memory
computational resources. Additionally, we consider the perfor-
mance when the SDR App is executed while avoiding constraints.

The rest of this manuscript is organized as follows. The base
SDRDE implementation is introduced in Section 2, which also
includes related work on the separation of a UI from a stand-
alone environment and avoiding computational resource con-
straints during SDR App execution. The design, implementation,
and functional requirements for the proposed implementation are
introduced in Section 3. The evaluation is presented in Section 4.
Finally, the conclusions are presented in Section 5. This paper is
an extended version of a paper presented at APCC2016 [5]. Ad-
ditional related work, a system response time evaluation, and a
more detailed distributed processing evaluation have been added
to the original text.

2. Related Work

2.1 Overview of GNU Radio and GNU Radio Companion
We selected the GNU Radio (GR) and GNU Radio Compan-

ion (GRC) as the base platform for the SDR environment in this
study. GR and GRC has a transparent implementation because
it is open-source software with its own development community.
In addition, it has been used in several SDR studies, for example,
in the studies on spectrum sensing [6], [7] and the avoidance of
signal interference [8], [9].

GR is an open-source development toolkit for SDR. GR con-
tains various modules in units called blocks that can be grouped,
making it possible to use third-party modules, called out-of-tree
(OOT) modules, as well. A graph that describes the signal pro-
cessing flow of data from the source to the sink is called a flow-
graph. The nodes of this graph are the blocks, which are usu-
ally written in C++. The blocks written in C++ are available
in Python through the Swig interface. GRC is an environment
that generates an intuitive block diagram of a flowgraph from
GR. The software structure of GR deals with abstraction using
a block-definition file and a “.grc” file. The block-definition file
presents the information in a block in the form of an XML file.
The .grc file is also in XML format, and it can be saved or loaded
to structure the information in the flowgraph. GRC can generate
Python code, including GR blocks, using a template engine called
Cheetah. In this paper, we refer to the block diagram model on
the GRC and the structure inside the GRC as a flowgraph, and
refer to the Python code that is generated based on the flowgraph
as the SDR App.

2.2 Previous UI Separation Studies
CORNET3D [10] is a web application for researching testbeds

for dynamic spectrum access (DSA) for wireless communication
research and education. It uses a testbed called CORNET [11]
with an SDR. CORNET is composed of clusters that can be con-
figured with multiple SDR nodes located within a building. They
connect the sampling device of the LAN to the computer. COR-
NET3D uses the GR in CORNET to plot the spectral data pro-

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

cessed by the spectrum sensor application. The spectrum sensing
parameter can be adjusted in the web UI. However, parameters
cannot be updated by the user during SDR App execution. All
communication, such as spectral data and parameter adjustment,
is done via WebSocket communication (described below). The
functions of the SDR are predetermined for spectrum sensing.
Further, the remote functionality does not include changing the
configuration of the SDR App. Considering the purpose of COR-
NET3D, however, the implemented features are sufficient.

Although it is not directly related to UI separation, remote SDR
execution has been proposed by the GRC Working Group [12]
(GRCWG), who also described the work that is needed for GUI
integration. Specifically, remote SDR execution is presumed to
refer to deploying SDR App remotely, executing and controlling
it over GRC, and providing the GUI of a remotely executing SDR
App to users.

In Google Summer of Code 2017, gr-bokehgui, a web-
based display mechanism for GNU radio flowgraphs was devel-
oped [13]. It provides a web-based plot environment and an inter-
active environment using the SDR App instead of the Qt frame-
work based GUI of GR. This enables the constraints of a fixed
GUI environment for GR’s SDR App running on a local system
to be avoided. Gr-bokehgui uses the WebSocket protocol to ex-
change data between the SDR App and the web UI. It also does
support dynamic parameter update during the SDR App execu-
tion. It can be considered one solution to the GRCWG’s proposal.

2.3 Attempts at Distributed Processing
In Ref. [3], it is noted that conflicts in the memory bandwidth

of the SDR system caused by shared memory limit scalabil-
ity. Therefore, [3] proposed a data PDC framework, called GR-
Router, that enables distributed processing across multiple com-
puters for the GR flowgraph in the block unit. Blocks executed in
parallel are connected via TCP.

2.4 Proposed Concept
Although CORNET3D [10] and gr-bokehgui [13] succeeded in

separating the UI from the SDR App running on the local sys-
tem, for reconfiguring a remote SDR App, it is required to log in
to a remote host or to deploy a reconfigured SDR. In this study,
our implementation manages the deployment and execution of
the SDR App remotely by implementing a usable development
environment on the cloud. This is achieved by separating the UI
from the standalone environment of GRC. It also provides dy-
namic parameter update functionality for the cloud-based SDR
App just like gr-bokehgui [13]. One form of implementation is
described for the remote SDR execution proposed in GRCWG.
Gr-router [3] focuses on simultaneously avoiding memory band-
width constraints and improving processing performance. We in-
troduce task PDC of the SDR App between the cloud and client,
allowing the client PC to execute the SDR App without depend-
ing on its own computational resource. We are dealing with the
avoidance of single host’s GPP performance constraints such as
clock frequency and number of cores by using the cloud computa-
tional resources, and although we do not focus on improvement of
processing performance by task-level parallelization, we are con-

sidering this possibility. Task PDC can partially alleviate mem-
ory bandwidth constraints. Because gr-bokehgui and gr-router
are targeted at GNU Radio, they have compatibility with imple-
mentation and can be incorporated into the system proposed in
this study.

3. System Design and Implementation

Taking the software structure of the GRC and the challenges
in this work into account, we describe the design and implemen-
tation of the proposed system after defining the function require-
ments. To separate the UI, all functions except for the UI of the
GRC must be deployed on the remote host in a development en-
vironment. For the function that generates the SDR App, we add
split generation functions for the SDR App to the cloud-side de-
velopment environment and the user-side client considering UI
separation. This function includes the communication function
between both generated SDR Apps.

3.1 Functional Requirements
This section describes the four functional requirements for

SDR App configuration and SDRDE needed for the UI separa-
tion.
3.1.1 API for the UI Functions

We separate the UI from GRC and replace it with a UI opera-
tion API to move the SDR configuration and operation functions
to the cloud side. The API provides remotely accessible functions
available on the GRC UI such as flowgraph editing and SDR App
execution management. In the client software, the API function
corresponding to the user’s operation is called.
3.1.2 Communication Functions of Data and Instructions

In this implementation, the user skills needed to operate the
program and software assets should remain as similar as possible.
When the cloud-based SDR App must perform real-time output
or plotting, it is necessary to send the data from the cloud to the
client side and output the data there. To reuse the previous code,
we use the existing GR GUI widget for plotting on the client side.
We also reuse the GUI widgets (sliders, choosers, check boxes,
and text boxes) of the existing GR to change the parameters of
the current SDR App. To do this, the client side must have the ex-
ecution environment of the GR. The client’s PC can be regarded
as part of the SDR App processing resources. As mentioned in
Section 3.1.1, client software is needed for the function to call the
API in the cloud. When running an SDR App that needs plots, the
cloud side has a remote development environment and runs part
of the SDR App, and the client side has the client software and
runs the rest of the SDR App. Therefore, it is necessary to im-
plement three communication functions. The first function sends
the data that will be processed by the SDR App from the cloud
to the client, i.e., in-processing-data communication. The second
function changes the parameters of the cloud-based SDR App us-
ing the GUI widget of the client-side SDR App, i.e., parameter-
update communication. The third function is an API between the
client software and the development and execution environment
on the cloud, i.e., API communication.
3.1.3 Selecting Block Execution Location

As mentioned in Section 3.1.2, the client’s PC can be regarded

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

as part of the processing resources for the SDR App. When using
the GUI widget, the client PC inevitably becomes a partial ex-
ecution host for the SDR App. Hence, we introduce task PDC
between the client and cloud. Task PDC is used because the
blocks constituting a flowgraph are executed as an SDR App us-
ing a thread-per-block scheduler. The flowgraph is divided using
blocks as the units, that is, the SDR App is divided into units of
threads and rearranged to multiple hosts. Setting the execution
location for each block enables the computational resource con-
sumption of the client’s PC to be configured flexibly by enabling
some resources to be consumed in the task PDC of the SDR App.
It is possible to mitigate the cost of the computational resources
on the cloud by using a reasonable amount of computational re-
sources of the client’s PC.

Introducing the Task PDC to the SDR App has two require-
ments. First, the dependency relationships among the blocks in
the flowgraph before split must be maintained in the distributed
SDR App. Second, setting and identifying the split positions of
the flowgraphs to be split must be possible. With regard to the
first requirement, among the blocks constituting the flowgraph,
some blocks are responsible for the functions of parameters and
variables, which are referenced from one or more blocks, and
have dependencies. Handling this parameter block is a hurdle
in splitting the flowgraph and realizing the Task PDC. We must
have the function of synchronizing the parameters and the func-
tion of identifying the parameter block having the dependency.
The former has already been mentioned as a parameter-update
communication function in Section 3.1.2. For the second case,
when designating which cloud side or client PC side to execute
on each block constituting the flow is specified, a function capa-
ble of identifying the boundary of split is required. When speci-
fying the execution location for each block, it is necessary to be
able to identify in advance the block on which the execution on
the client PC side having the GUI environment is a prerequisite
like the block having the GUI plot function.
3.1.4 SDR App Split Generation by Flowgraph Split

Flowgraph split is processed using the execution location set-
tings of each block. It is hence necessary to generate an SDR
App that contains the essential functions for communication. The
communication functions to be included in the split-generated
SDR App are the in-processing-data communication and the
parameter-update communication mentioned in Section 3.1.2.
However, it is not preferable to force the user to add this function
during flowgraph editing. The communication function between
the split SDR Apps should always be automatically incorporated
so that it does not need to be consciously added from the flow-
graph side.

3.2 System Design and Implementation
This section describes the design and the implementation of

each functional requirement. Figure 2 shows an overview of the
entire implementation. We changed GNU Radio v3.7.9’s GRC
based on functional requirements, and we call the cloud side the
“Server GRC” and the client side the “Client GRC.” We devel-
oped the proposed system using Python 2.7, which was also used
to implement GRC. The Server GRC provides an API through

Fig. 2 Implementation overview of the Server and Client GRCs.

WebSocket by replacing the GUI function. Flowgraphs being
edited are shared between the Server GRC and Client GRC. The
flowgraph is split between the Server GRC and Client GRC when
Python code is generated during SDR App execution. Parame-
ter changes due to the operation of the GUI widget for the flow-
graph running on the client side are reflected interactively in the
SDR App on the cloud side using a WebSocket connection. In-
processing data for the SDR App running on the cloud side is sent
to the SDR App running on the client side via TCP communica-
tion. Because various communication functions for SDR Apps
are added during the split processing of the flowgraph, the user
need not be aware of this when editing it.
3.2.1 API for the UI Functions

GRC is composed of three packages: “base,” “python,” and
“gui.” We implemented the server package with the gui package
replaced. The basic processing structures and data structures of
other packages have not been changed when replacing the pack-
age. The main function of the server package is to provide the
API. API functions have an almost one-to-one correspondence
with the actions of GRC’s UI action handler. For each object on
the flowgraph, we implement a unique ID with a hash value of
the memory address of the internal object of each element using
SHA-1. This unique ID is used when manipulating each element
in the flowgraph using the API.
3.2.2 Communication Functions for Data and Instructions

As mentioned in Section 3.1.2, the proposed implementa-
tion had three communication functions: in-processing data,
parameter-update, and API communication.
in-processing data communication

It is used in the Task PDC of the SDR App. This communi-
cation function is used to transmit and receive signal sample
data being processed between the distributed and executed
SDR App. Use the existing TCP source/sink block of the
GNU Radio. It is the same as Ref. [3] using TCP communi-
cation. These blocks are an implementation of a simple TCP
socket by the asynchronous communication library of Boost
C++ Libraries. The in-processed data are always transmit-
ted only in one direction from the cloud side to the client PC
side.

parameter-update communication
It is used in the Task PDC of the SDR App. Parameter-
update communication is used for the parameter syn-
chronous communication between the SDR Apps, which are

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

divided and executed on both sides of the server/client when
the parameter change is made from the widget of the SDR
App under execution by user operation. This communication
function was implemented using WebSocket as the commu-
nication protocol and JSON-RPC 2.0 [14] as the messaging
protocol.

API communication
It is used for API communication between the server/client
GRC. This communication function is used for API com-
munication between the client and server GRCs. This com-
munication function has the same implementation as the
parameter-update communication function and implemented
using WebSocket and JSON-RPC 2.0.

We describe WebScoket and JSON-RPC used for implement-
ing parameter-update communication and API communication as
follows:
• WebSocket is suitable for editing flowgraphs where frequent

communication is needed because it does not incur HTTP
overhead. WebSocket was also adopted in Refs. [10] and
[13]. We used the Autobahn|Python WebSocket library [15].
This library is also used for implementations in Java (An-
droid), C++ and JavaScript, and it provides a test suite.
The Autobahn|Python WebSocket must be used with asyn-
chronous I/O or an event-loop library. Hence, we used trol-
lius, a backport library for Python 2.7.

• JSON-RPC is a simple and lightweight text-based protocol.
This is a communication protocol that supports text-based
protocols including WebSocket.
Figure 3 shows an example of JSON request/response used
in JSON-RPC 2.0. The members of JSON based on the spec-
ification of JSON-RPC 2.0 are described below:
jsonrpc (request/response): This is a version of the
JSON-RPC protocol.

id (request/response): This is the request ID specified by
the client. In our implementation, it consists of the API

Fig. 3 Examples of request/response JSON object.

method name +@ + integer random number.
method (request): This is an API method name.
params (request): This is represented as an array or dic-
tionary type specified for each API.

result (response): This is required if processing suc-
ceeded. If the return value is necessary, it is held in dic-
tionary type. In our implementation, if it is unnecessary,
the character string is set to “Success.”

error (response): This is a dictionary-type member added
instead of “result” only if it failed to process the request. It
holds an error code in “code,” an error message in “mes-
sage,” and error additional information in “data.”

We describe the initialization processing of the client-side pro-
gram (Client GRC, SDR App on the Client PC side) at the
time of connection in the API communication and parameter-
update communication function. First, when the client side
program establishes the connection of WebSocket, execute the
list_methods method with JSON-RPC to obtain the method
list of the API prepared by the server side program, then reg-
ister it in the client-side program. Particularly on the parameter-
update communication function used in the SDR App, in the SDR
App on the cloud side, a parameter-update request must be asso-
ciated from the SDR App in the Client PC side with any num-
ber of blocks and any number of parameters. Calling the regis-
tered API method with the parameter-update communication is
based on the callback method, and it operates when the GUI wid-
get (setter method) operates the same block name in the cloud-
side SDR App. In the API communication function used in the
Client GRC, execute export_available_block_key_list af-
ter list_methods to obtain a list of available blocks and register
them in the client. After completion of the initialization process-
ing, various operations can be executed on the Task PDC SDR
App and Server/Client GRC using the registered API method.
3.2.3 Selecting Block Execution Location

In introducing the Task PDC of the SDR App, the new config-
uration value RunningMode is added to the block-definition file.
RunningMode is introduced for the following purposes:
• identify the execution location of each block and identify the

boundary when the user arbitrarily designates the split posi-
tion of the flowgraph;

• identify the parameters to be synchronized by dependency
among the flowgraphs constituting the SDR App to be dis-
tributed and executed (the actual synchronization function
has already been explained in Section 3.2.2); and

• identify a static execution place by identifying a block with
a restricted execution environment (e.g., a GUI block on
which execution on the Client PC with the GUI environment
is premised).

The configuration value of RunningMode is set by one of
“Server,” “Client,” and “Variable.”

The value “Server” is attached to a block to be executed on
the cloud side. The value “Client” is added to the block to be
executed on the client PC side. In the case of a sink block hav-
ing a GUI function that is restricted in the execution environ-
ment, “Client” is set as a fixed value of RunningMode. The
value “Variable” is statically specified in advance in the block

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Fig. 4 Overview of Flowgraph Splitting.

that plays the role of the parameter and the variable. In the
block where the characteristics of the GUI and variables coex-
ist like QT GUI Chooser and QT GUI Check Box, the setting
of “Variable” takes precedence over “Client”. The field value of
the block, in which the value of RunningMode is set, is always
identified by the split generation function as the block having
the field value to be synchronized in the distributed computing
of the SDR App. For blocks that do not correspond to the static
RunningMode configuration, the user can arbitrarily specify any
value of “Server” or “Client.” The split position is identified from
the setting value of RunningMode of the block at both ends of the
connection between the blocks. The split position is identified
as the connection whose setting value of the source side block
is “Server” and the setting value of the block of “sink” side is
“Client” by the split generation function.
3.2.4 Split SDR App Generation using Flowgraph Split

A function for generating a split SDR App was implemented
on the Server/Client GRC by the modifying the generator module
in GRC’s “python” package and the Cheetah template for flow-
graph generation. Figure 4 shows an overview of the process
for flowgraph split and SDR App generation for the Server/Client
GRC, which is described in simplified steps below.
(1) When a generation is requested, using the RunningMode val-

ues, two SDR Apps are generated: one on the client side with
the blocks whose RunningMode setting is “Client,” and one
on the cloud side with the blocks whose RunningMode set-
ting is “Server.”

(2) The TCP source block is connected to the beginning of the
client-side flowgraph. On the cloud-side flowgraph, the TCP
sink block is connected to the end of the flowgraph.

(3) The blocks with a RunningMode setting of “Variable” are
copied to both flowgraphs. Here, the GUI widget block
whose RunningMode setting is “Variable” is converted into
a variable block and copied.

(4) The parameter-update block is added to both flowgraphs.
The green block shown in Fig. 4 is the block inserted as the
parameter-update block.

4. Evaluation

4.1 Compatibility of User Skills and Software Assets
To ensure the compatibility of software assets, we evaluated

the compatibility of the proposed system with GRC and GR. We
sought to determine whether changes were required to the mod-
ule and file format and whether these changes were compatible.
Specifically, we evaluated the compatibility of the blocks, the
OOT modules, the .grc file, and the block-definition file. Existing
blocks such as the output destination file or externally connected
devices are restricted from executing to prevent unintended op-
erations on the cloud side. When installing the GRC and the
GR from the source code, with the exception of some of the
essential libraries, only the block that corresponds to the avail-
able libraries on the system is built and installed. Specifically,
476 blocks were installed in the implementation environment, of
which 65 blocks were restricted to prevent unintended operations
in the cloud. In other words, 86.34% of the blocks maintained
compatibility with GRC in both the Server and Client GRCs. In
the OOT modules, the compatibility of a block is the same as the
existing blocks. There is the same risk of the blocks being re-
stricted in the cloud so that OOT modules will have unintended
operations. It is difficult to confirm automatically whether the
OOT module is compatible or which RunningMode value should
be set for the OOT module’s block when the user is free to deploy
OOT modules they create to the client and the cloud. Therefore,
the OOT modules do not have sufficient compatibility. The orig-
inal block-definition file is not compatible with the Server/Client
GRC because the block-definition file in the proposed implemen-
tation uses the additional RunningMode setting In regard to the
.grc file, its compatibility is not affected because the original GRC
ignores that the setting of RunningMode described in the .grc file.
When the RunningMode setting is not described in the .grc file
used by the Server/Client GRCs, both GRCs refer to the default
RunningMode values in the block-definition file.

To evaluate the compatibility of the users’ skill sets, we eval-
uated whether the implemented system can be operated using
users’ existing skills, and whether existing users require new
knowledge for operating the proposed system. We did not change
the UI of the Client GRC with respect to the UI of the original
GRC. No significant changes were made to the functions as-
signed to each UI element. In addition, the user does not need
to be aware of the communication functions between the client
and the cloud regarding the split flowgraph and SDR App gener-
ation; almost no new knowledge is required for flowgraph edit-
ing except for RunningMode settings. The following knowledge
about RunningMode settings is required: the RunningMode val-
ues for all blocks that constitute a loop must be kept together on
either the server or client side. This is because processing data
communications can occur in only one direction: from the cloud
side to the client side. Although knowledge of the RunningMode
settings is necessary, the compatibility of users’ skill sets in the
proposed implementation has been confirmed.

4.2 Response Time to User Operation
We measured the response time needed to complete processing

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Fig. 5 Response time for each user operation for three flowgraphs.

when a user operated the UI in the Original GRC and Client GRC.
We then compared them with the response time required for client
software. We measured six operations used to edit and execute
flowgraphs in the GRC: “block move,” “connect” (connect the
connectors of the two blocks), “undo,” “open flowgraph” (open
a .grc file), “flowgraph execute,” “flowgraph generate” (generate
a .py file). These operations include minor interactions, file I/O,
and take time to process the GRC internal flowgraph object. Mea-
surements were made on three flowgraphs, which are the same as
the flowgraphs used for the measurement In Section 4.3. The re-
sponse time of the Original GRC and our implementation was
calculated from the timestamp from when the handler of the GUI
captured the user operation until the operation was returned to
the user after the drawing update was complete. In our imple-
mentation, response time is the total processing time of Client
and Server excluding network delay. We added source code to
the Original/Server/Client GRCs to record timestamp in GUI/API
event handler.

The reason for excluding the network delay is as follows: the
network delay depends on the geographical arrangement of the
Server and Client GRCs. In addition, the environment used for
the measurement is a private cloud in the local area; both hosts
are geographically very close; and the network latency becomes
a measurement value, which is negligibly small. The general net-
work latency is a minimum of 10 ms and a maximum of 300 ms
depending on the geographical arrangement. In particular, the
network latency at domestic and neighboring countries is 10 ms
to 50 ms [16], [17]. Depending on the size of the sum of the pro-
cessing time on both hosts against this network latency, whether
the network latency or processing time becomes dominant in re-
sponse time is different. In the evaluation of this measurement
result, both hosts were assumed to be within domestic or neigh-
boring countries. The abovementioned 10 ms to 50 ms was also
used as a reference value of the network latency and evaluated.

Studies in human–computer interaction have found that when
the response time is below 150 ms, the productivity of the user
is not affected [18]. For delays of 150 ms to 1s, users gradually
become aware of the delay. Delays above 1s cause users to feel
frustrated, which affects their productivity. Hence, we regard 1s
as the maximum acceptable response time for the client software.

Figure 5 shows the average measured response time of five

trials. For “block move,” “connect,” and “undo,” our imple-
mentation takes nearly double the response time compared with
the Original GRC. Because the Client GRC and Server GRCs
process synchronously, this is a predictable result. In con-
trast, for “open flowgraph,” “flowgraph execute,” and “flow-
graph generate” take much longer to complete (almost dou-
ble) than in the Original GRC. It took time to complete the
“open flowgraph” operation in the Client GRC, because it takes
time to generate unique IDs on the Server GRC side and as-
sign it to each element on the Client GRC side. With regard
to the “flowgraph execute” operation, it is necessary to listen to
the socket of the SDR App on the cloud side; hence, the client
side must wait for the startup of the SDR App on the cloud side
to complete. The “flowgraph generate” operation had a partic-
ularly slow response time. This is because it takes time for the
flowgraph to be divided, as shown in Section 3.2.4, including
verification of the RunningMode values of each block and op-
eration such as addition and deletion of blocks based on the ver-
ified values. All user operations except for “flowgraph execute”
are linear time operations on the internal flowgraph object, and
their response time is roughly proportional to the flowgraph size.
The size of a flowgraph is determined by the number of blocks,
connections, and parameters. When the operation response times
are evaluated, the operations for the Original GRC are all within
1s. In contrast, in our implementation, the operation of “flow-
graph generate” greatly exceeds 1s, which could affect the user.

For lightweight operations that change one or two flowgraph
elements such as “block move” and “connect,” which are fre-
quently used, we found the response times even including net-
work latency to be around 100 ms. This value is acceptable con-
sidering the response time as the client software. In contrast, ex-
cept for lightweight flowgraph editing operations, the latency of
the application dominates that of the network. Especially when
the size of the flowgraph becomes large, the user’s waiting time
becomes long. Because GRC has no visual feedback until the
processing is complete, some visual feedback to the user would
be required if the response time of 1s or more is expected.

4.3 Distributed SDR Processing
We conducted another set of experiments to investigate the

effect of SDR App task PDC, realized by flowgraph splitting.

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Fig. 6 Three flowgraphs used for evaluation and their split patterns.

We investigated the computational resource utilization of several
flowgraphs with different split patterns, adjust the computational
resource consumption for a single computer, and confirm that
computational resource constraints can be avoided. It is possi-
ble to provide an SDR App execution environment that does not
depend on the computational resources available to a user local
by adjusting the computing resources used by a single computer.

The scenario of the investigation assumes that the user cre-
ates and executes the SDR App including some plotting (e.g.,
a waveform, spectrogram, or constellation diagram) as out-
put, which means that the termination of the data flow in the
flowgraph is always on the user’s client PC. Three flow-
graphs (mpsk rx.grc [19], mpsk stage6.grc [20], and channel-
izer demo.grc [21]) were selected from GR examples assuming
use for simulation, prototyping, sampling data analysis. We mea-
sured performance and computational resource utilization for the
three split patterns with varying ratios of client to cloud blocks.
Figure 6 shows three selected flowgraphs and three division pat-
terns displayed on the GRC. (a) is the signal reception process
of decoding a signal and rendering a constellation. (b) is the
transmission/reception simulation, including the processing of a
propagation model from signal generation. (c) is the simulation
of a channelizer that divides the input signals into single sub-

band signals through the polyphase filter bank. Particularly in
(b), rich calculation resources are required, especially for com-
plicated serial processing for signal generation and propagation
model calculation. (c) has a large number of sample data; hence,
the memory bandwidth becomes a bottleneck on the shared mem-
ory system, and communication between the cloud and the client
PC becomes a bottleneck at the time of distributed processing.

Performance evaluation criteria are throughput, which is the
Mega number of samples processed per second (M samples/s),
and latency, which is the time interval it takes for a sample to be
processed from a source block to a sink block. Throughput was
measured on the flowgraph by adding a measurement block to
the end located farthest from the source block, and the latency as
a time interval was calculated from the time stamp given to the
sample in the block added just after source to the time stamp at
the same position as the throughput measuring block. Latency is
the sum of latency in each of the SDR Apps divided into the client
and the cloud. Note that the latency does not include the latency
of TCP communication between the client and the cloud. The
client PC was equipped with an Intel Core i5-2400 4-core (four
threads) 3.10 GHz CPU and 8 GB RAM running Debian 9.1. The
cloud was equipped with an Intel Xeon E5-2643v4 3.40 GHz 6-
core (12 threads) CPU and 126 GB RAM running Ubuntu 14.04
LTS. Virtualization was not used. These machines were con-
nected by the laboratory’s Gigabit Ethernet network. We used the
“pidstat” Linux command to acquire %user (the CPU utilization
of the user program (SDR App)) and %system (the CPU utiliza-
tion of the kernel) for each thread. In addition, we used the “top”
command to obtain the memory usage of the SDR App and the
“tiptop” command to obtain the instructions per cycle (IPC).

Table 1 shows the measurement results for each split pattern of
each flowgraph. The measurement results for %user, %system,
RSS, VSZ, and IPC are the average values for attempts to acquire
data for 10 trials during SDR App execution. The CPU utilization
(%user) is allocated between the cloud and the client as intended
in each split pattern. Regarding RSS and VSZ, significant re-
sults were not obtained because most memory was occupied by
the GUI library. In addition, because the JSON-RPC client and
server used for parameter-update communication in the SDR App
used about 65 MiB RSS and 850 MiB VSZ respectively, the ac-
tual usage increases. The buffer size between blocks in the GNU
Radio is equal to the OS page size (32 KB or 64 KB); thus, a large
difference in memory usage does not follow. However, we believe
that the shared memory state is eliminated by the SDR App exe-
cution host distribution, and we think that the memory bandwidth
constraint is partially improved. We were successfully able to
adjust the computational resource (CPU) utilization on a single
computer.

We describe the performance at runtime of task PDC according
to the flowgraph split. Improvement in throughput can hardly be
expected. Table 1 (a) shows a slight improvement in through-
put when splitting the flowgraph, whereas Table 1 (c) shows
that the throughput is substantially lowered because of network
bandwidth restriction. Latency is suppressed after splitting the
flowgraph. Table 1 (a) shows an improvement of up to about
0.00265 s, Table 1 (b) has deferent scale, but does not show im-

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Table 1 CPU utilization, throughput, and latency of each SDR App for each split pattern.

(a) mpsk rx.grc

Split pattern Execute on %user %system RSS (KiB) VSZ (KiB) Throughput (M samples/s) Latency (s) IPC

1 Client PC 188.5 4.8 142,208 1,314,016 1.20288 0.004015 1.25

2
Client PC 100.3 9.9 141,888 1,166,028

1.29864 0.001726
1.21

Cloud 116.3 13.6 93,564 1,169,552 1.42

3
Client PC 5.8 8.6 140,964 944,920

1.27740 0.001367
0.65

Cloud 236.8 19.2 94,512 1,391,292 1.43

(b) mpsk stage6.grc

Split pattern Execute on %user %system RSS (KiB) VSZ (KiB) Throughput (M samples/s) Latency (s) IPC

1 Client PC 160.3 51.9 146,116 2,133,300 0.02516 18.8496 0.88

2
Client PC 4.9 0.7 142,784 1,240,392

0.02489 18.8511
1.10

Cloud 141.7 69.4 99,460 1,915,032 0.90

3
Client PC 1.5 0.6 142,260 1,093,152

0.02497 18.8499
1.24

Cloud 145.0 70.9 101,836 2,210,616 0.95

(c) channelizer demo.grc

Split pattern Execute on %user %system RSS (KiB) VSZ (KiB) Throughput (M samples/s) Latency (s) IPC

1 Client PC 294.4 32.6 141,788 1,968,344 11.27090 0.002151 2.03

2
Client PC 87.2 26.4 151,196 1,839,268

2.31227 0.001379
1.45

Cloud 31.8 9.9 93,348 1,317,080 2.42

3
Client PC 17.5 27.8 150,456 1,395,328

2.00368 0.001878
0.63

Cloud 159.4 27.0 100,764 2,056,628 1.71

provement, and Table 1 (c) shows an improvement of up to about
0.00077 s. Table 1 (b), which does not show much improvement
in latency compared with the unsplit SDR App, the value of IPC
at runtime is 0.88 that is less than 1, and the value of %system at
runtime is large. This also has no change in split patterns 2 and
3, where the main processing was moved to the cloud. Hence, in
the case of %system is high and IPC is less than 1, the SDR App
includes a process of stalling, which is considered to be a poor im-
provement in latency. Performance improvement on latency can
be expected in thread-level task PDC, but it depends on the imple-
mentation of the SDR App itself. Moreover, a SDR App that can
expect the effect of task PDC can be determined from the trend
of resource utilization such as CPU utilization as well as IPC dur-
ing the run time. In the case where each step of the serialized
wireless signal processing is executed in parallel by a plurality of
CPU cores of the cloud, like a (c), as a step becomes a bottle-
neck, the whole process is rated-limiting. As shown in (b), the
network bandwidth becomes a throughput constraint. Therefore,
in the SDR Task PDC using the cloud, an application composed
of blocks (implementation of steps) that can provide processing
performance according to the CPU performance is suitable, and
it is good when the split position is not subject to the restriction
by the network bandwidth.

5. Conclusion

In this paper, we proposed an implementation of a remote
SDRDE based on the GRC to realize a cloud-based platformiza-
tion of an SDR environment. The proposed system provides an
SDR environment to an unspecified number of users because the
UI is separated from the GRC, and it enables the constraints of
computational resources to be avoided by transferring the SDR
App execution platform to the cloud and utilizing task PDC.

Our evaluation results showed that the remote SDR execu-
tion proposed by the GRCWG could be implemented. With this

implementation, it was challenging to ensure software compati-
bility and flexibility for diverse computer configurations. With
this implementation, maintaining compatibility of software asset
and user skill sets, and avoiding computational resources con-
straints on a single host, was our challenge. Although there are
restrictions designed to prevent unintentional operations on some
blocks, compatibility of software asset was generally maintained.
We confirmed that the proposed implementation is compatible
with the current user skill set. Using existing software assets,
to avoid the limits of computational resources available to the
user on a single computer, we developed task PDC to allocate
resources between the client and cloud at the user’s discretion.
Task PDC has the potential to improve latency, and from the rela-
tionship between CPU utilization and IPC values at runtime, the
trend of the performance of the SDR App which this is generally
effective was found.

One of the limitations of this study is that the user is restricted
from freely introducing OOT modules. An enhanced OOT man-
agement function tailored to the platform is required. Although,
in this paper, we focused on the development and execution en-
vironment of SDR within the whole platform, by realizing our
other platform function, the proposed SDR system will contribute
to open innovation.

Acknowledgments This work was supported by JSPS
KAKENHI Grant Numbers 16K16042 and the MIC/SCOPE
#155003007.

References

[1] Uehara, K.: Research and Development of Software Defined Radio
and Cognitive Radio Technologies, IEICE Trans. Communications,
Vol.J100-B, No.9, pp.693–704 (2017).

[2] Sugano, H., Miyamoto, R. and Okada, M.: Fully Software-Based
Real-Time Digital Terrestrial Boradcasting Receiver Using a GPU,
IEICE Trans. Information and Systems, Vol.J95-D, No.5, pp.1216–
1224 (2012).

[3] Tracy II, T. and Stanand, M.: GR-Router: A Distributed GNU Radio

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Framework (online), available from 〈https://github.com/tjt7a/GR-
Router/blob/experimental/docs/GR Con Presentation tracy.pdf〉
(accessed 2017-11-13).

[4] Checko, A., Christiansen, H.L., Yan, Y., Scolari, L., Kardaras, G.,
Berger, M.S. and Dittmann, L.: Cloud RAN for Mobile Networks
—A Technology Overview, IEEE Communications Surveys Tutorials,
Vol.17, No.1, pp.405–426 (2015).

[5] Suzuki, H., Kawakita, Y. and Ichikawa, H.: Remote Implementation
of GNU Radio-based SDR Development Environment, Proc. 22nd
Asia-Pacific Conference on Communications (APCC 2016), pp.355–
360 (online), DOI: 10.1109/APCC.2016.7581497 (2016).

[6] Miller, R., Xu, W., Kamat, P. and Trappe, W.: Service Discovery and
Device Identification in Cognitive Radio Networks, 4th Annual IEEE
Communications Society Conference on Sensor, Mesh and Ad Hoc
Communications and Networks, SECON ’07, pp.670–677 (2007).

[7] Mizutani, Y., Sato, M., Kawakita, Y. and Ichikawa, H.: Dynamic
Spectrum Sensing for Energy Harvesting Wireless Sensor, 2013 IEEE
11th International Conference on Dependable, Autonomic and Secure
Computing (DASC), pp.427–432 (2013).

[8] Katti, S., Gollakota, S. and Katabi, D.: Embracing Wireless Interfer-
ence: Analog Network Coding, SIGCOMM Computer Communica-
tion Review, Vol.37, No.4, pp.397–408 (2007).

[9] Gollakota, S. and Katabi, D.: Zigzag Decoding: Combating Hidden
Terminals in Wireless Networks, Proc. ACM SIGCOMM 2008 Con-
ference on Data Communication, SIGCOMM ’08, pp.159–170, ACM
(2008).

[10] Sharakhov, N., Marojevic, V., Romano, F., Polys, N. and Dietrich,
C.: Visualizing Real-time Radio Spectrum Access with CORNET3D,
Proc. 19th International ACM Conference on 3D Web Technologies,
Web3D ’14, pp.109–116, ACM (2014).

[11] Newman, T., Shajedul Hasan, S., DePoy, D., Bose, T. and Reed,
J.: Designing and deploying a building-wide cognitive radio network
testbed, IEEE Communications Magazine, Vol.48, No.9, pp.106–112
(2010).

[12] GNU Radio: GRCroadmap - gnuradio.org (online), available from
〈https://wiki.gnuradio.org/index.php/GRCroadmap〉 (accessed 2017-
11-06).

[13] Google: Google Summer of Code Archive - gr-bokehgui: A Web
based GUI for GNU Radio applications (online), available from
〈https://summerofcode.withgoogle.com/archive/2017/projects/
5129007263645696/〉 (accessed 2017-11-06).

[14] JSON-RPC Working Group: JSON-RPC 2.0 Specification, available
from 〈http://www.jsonrpc.org/specification〉 (accessed 2018-09-18).

[15] Crossbar.io: Autobahn|Python — AutobahnPython 0.10.7 documen-
tation (online), available from 〈http://autobahn.ws/python/〉 (accessed
2017-11-13).

[16] AT&T: Global Network Latency Averages (online), available from
〈http://ipnetwork.bgtmo.ip.att.net/pws/global network avgs.html〉
(accessed 2018-09-18).

[17] Verizon: IP Latency Statistics (online), available from 〈http://www.
verizonenterprise.com/about/network/latency/〉 (accessed 2018-09-
18).

[18] Tolia, N., Andersen, D.G. and Satyanarayanan, M.: Quantifying inter-
active user experience on thin clients, Computer, Vol.39, No.3, pp.46–
52 (online), DOI: 10.1109/MC.2006.101 (2006).

[19] Rondeau, T.: An Approach to Digital Demodulation (online), avail-
able from 〈https://static.squarespace.com/static/543ae9afe4b0c3b808
d72acd/543aee1fe4b09162d08633d9/543aee20e4b09162d0863523/
1409511797677/rondeau-03-digital demodulation.pdf〉 (accessed
2017-11-13).

[20] Rondeau, T.: GNU Radio: digital demodulation example scripts (on-
line), available from 〈https://static.squarespace.com/static/
543ae9afe4b0c3b808d72acd/543aee1fe4b09162d08633d9/
543aee20e4b09162d0863524/1409511836183/03-digital
demodulation.tar.gz〉 (accessed 2017-11-13).

[21] GNU Radio: Github.com - gnuradio/channelizer demo.grc at master
·gnuradio/gnuradio (online), available from 〈https://github.com/
gnuradio/gnuradio/blob/master/gr-filter/examples/channelizer demo.
grc〉 (accessed 2017-11-01).

Hirotaka Suzuki received his B.Eng. de-
gree from the University of Electro-
Communications in 2016. He is a Mas-
ter’s student at the University of Electro-
Communications. His current research in-
terests are software-defined radio and in-
formation technology.

Haruhisa Ichikawa received his B.S.,
M.S., and Dr. Eng. degrees in electri-
cal engineering from the University of
Tokyo in 1974, 1976, and 1989, respec-
tively. He joined NTT Laboratories in
1976, where he was engaged in funda-
mental research on communications soft-
ware and distributed computing. He cre-

ated and conducted many R&D projects for software, Internet,
information sharing platform, and ubiquitous networks, including
business incubation. He was Executive Director of NTT Science
and Core Technology Laboratory Group till 2007, and is currently
Professor Emeritus at the University of Electro-Communications,
Tokyo.

Jin Mitsugi received his B.S. degree
from Nagoya University in 1985, and his
M.S. and Ph.D. degrees from Tokyo Uni-
versity in 1987 and 1996, respectively. He
was with NTT Laboratory from 1987 pur-
suing research and development on satel-
lite communication systems. He has been
with the Auto-ID Laboratory, at Keio Uni-

versity, Japan, since 2004. His research interests are network
RFID, sensor network systems, satellite communications, and op-
erations research.

Yuusuke Kawakita received his B.A.,
M.A. degrees and Ph.D. from Keio Uni-
versity in 2000, 2002 and 2008, respec-
tively. He is an associate professor at
Kanagawa Institute of Technology. His
present research interests focus on the
ubiquitous sensing and its platform archi-
tecture.

c© 2019 Information Processing Society of Japan

