WEKO3
アイテム
Efficient (nonrandom) Construction and Decoding for Non-adaptive Group Testing
https://ipsj.ixsq.nii.ac.jp/records/195399
https://ipsj.ixsq.nii.ac.jp/records/195399e31cc1ce-1e1d-4505-bafb-9ed0fccb7cce
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright (c) 2019 by the Information Processing Society of Japan
|
|
オープンアクセス |
Item type | Journal(1) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2019-03-15 | |||||||||||||||
タイトル | ||||||||||||||||
タイトル | Efficient (nonrandom) Construction and Decoding for Non-adaptive Group Testing | |||||||||||||||
タイトル | ||||||||||||||||
言語 | en | |||||||||||||||
タイトル | Efficient (nonrandom) Construction and Decoding for Non-adaptive Group Testing | |||||||||||||||
言語 | ||||||||||||||||
言語 | eng | |||||||||||||||
キーワード | ||||||||||||||||
主題Scheme | Other | |||||||||||||||
主題 | [特集:若手研究者] non-adaptive group testing, Nonrandom construction, Efficient decoding, Combinatorics | |||||||||||||||
資源タイプ | ||||||||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||||||||||
資源タイプ | journal article | |||||||||||||||
著者所属 | ||||||||||||||||
SOKENDAI (The Graduate University for Advanced Studies) | ||||||||||||||||
著者所属 | ||||||||||||||||
Graduate School of Natural Science and Technology, Okayama University | ||||||||||||||||
著者所属 | ||||||||||||||||
National Institute of Technology, Tokyo College | ||||||||||||||||
著者所属 | ||||||||||||||||
New Jersey Institute of Technology | ||||||||||||||||
著者所属 | ||||||||||||||||
National Institute of Informatics | ||||||||||||||||
著者所属(英) | ||||||||||||||||
en | ||||||||||||||||
SOKENDAI (The Graduate University for Advanced Studies) | ||||||||||||||||
著者所属(英) | ||||||||||||||||
en | ||||||||||||||||
Graduate School of Natural Science and Technology, Okayama University | ||||||||||||||||
著者所属(英) | ||||||||||||||||
en | ||||||||||||||||
National Institute of Technology, Tokyo College | ||||||||||||||||
著者所属(英) | ||||||||||||||||
en | ||||||||||||||||
New Jersey Institute of Technology | ||||||||||||||||
著者所属(英) | ||||||||||||||||
en | ||||||||||||||||
National Institute of Informatics | ||||||||||||||||
著者名 |
Thach, V. Bui
× Thach, V. Bui
× Minoru, Kuribayashi
× Tetsuya, Kojima
× Roghayyeh, Haghvirdinezhad
× Isao, Echizen
|
|||||||||||||||
著者名(英) |
Thach, V. Bui
× Thach, V. Bui
× Minoru, Kuribayashi
× Tetsuya, Kojima
× Roghayyeh, Haghvirdinezhad
× Isao, Echizen
|
|||||||||||||||
論文抄録 | ||||||||||||||||
内容記述タイプ | Other | |||||||||||||||
内容記述 | The task of non-adaptive group testing is to identify up to d defective items from N items, where a test is positive if it contains at least one defective item, and negative otherwise. If there are t tests, they can be represented as a t × N measurement matrix. We have answered the question of whether there exists a scheme such that a larger measurement matrix, built from a given t × N measurement matrix, can be used to identify up to d defective items in time O(t log2 N). In the meantime, a t × N nonrandom measurement matrix with $t = O \left(\frac{d^2 \log_2^2{N}}{(\log_2(d\log_2{N}) - \log_2{\log_2(d\log_2{N})})^2} \right)$ can be obtained to identify up to d defective items in time poly(t). This is much better than the best well-known bound, $t = O \left(d^2 \log_2^2{N} \right)$. For the special case d = 2, there exists an efficient nonrandom construction in which at most two defective items can be identified in time $4\log_2^2{N}$ using $t = 4\log_2^2{N}$ tests. Numerical results show that our proposed scheme is more practical than existing ones, and experimental results confirm our theoretical analysis. In particular, up to 27 = 128 defective items can be identified in less than 16 s even for N = 2100. ------------------------------ This is a preprint of an article intended for publication Journal of Information Processing(JIP). This preprint should not be cited. This article should be cited as: Journal of Information Processing Vol.27(2019) (online) DOI http://dx.doi.org/10.2197/ipsjjip.27.245 ------------------------------ |
|||||||||||||||
論文抄録(英) | ||||||||||||||||
内容記述タイプ | Other | |||||||||||||||
内容記述 | The task of non-adaptive group testing is to identify up to d defective items from N items, where a test is positive if it contains at least one defective item, and negative otherwise. If there are t tests, they can be represented as a t × N measurement matrix. We have answered the question of whether there exists a scheme such that a larger measurement matrix, built from a given t × N measurement matrix, can be used to identify up to d defective items in time O(t log2 N). In the meantime, a t × N nonrandom measurement matrix with $t = O \left(\frac{d^2 \log_2^2{N}}{(\log_2(d\log_2{N}) - \log_2{\log_2(d\log_2{N})})^2} \right)$ can be obtained to identify up to d defective items in time poly(t). This is much better than the best well-known bound, $t = O \left(d^2 \log_2^2{N} \right)$. For the special case d = 2, there exists an efficient nonrandom construction in which at most two defective items can be identified in time $4\log_2^2{N}$ using $t = 4\log_2^2{N}$ tests. Numerical results show that our proposed scheme is more practical than existing ones, and experimental results confirm our theoretical analysis. In particular, up to 27 = 128 defective items can be identified in less than 16 s even for N = 2100. ------------------------------ This is a preprint of an article intended for publication Journal of Information Processing(JIP). This preprint should not be cited. This article should be cited as: Journal of Information Processing Vol.27(2019) (online) DOI http://dx.doi.org/10.2197/ipsjjip.27.245 ------------------------------ |
|||||||||||||||
書誌レコードID | ||||||||||||||||
収録物識別子タイプ | NCID | |||||||||||||||
収録物識別子 | AN00116647 | |||||||||||||||
書誌情報 |
情報処理学会論文誌 巻 60, 号 3, 発行日 2019-03-15 |
|||||||||||||||
ISSN | ||||||||||||||||
収録物識別子タイプ | ISSN | |||||||||||||||
収録物識別子 | 1882-7764 |