
IPSJ SIG Technical Report

High-Accuracy and Cost-Effective
Neural Networks for Embedded Systems

Jiajun Guo1,a) Amr Ashmawy1,b) Thiem Van Chu1,c) Kiyofumi Tanaka1,d)

Abstract: Binarized Neural Network (BNN) is a promising technique for embedded inference hardware due
to the small hardware cost, but the inference accuracy is degraded compared to a full-precision CNN. In
this study, we show that the inference accuracy can be improved by using an ensemble of a few BNNs. In
addition, we report our implementation on an FPGA.

1. Introduction

In the last few years, Convolutional Neural Networks

(CNNs) have become the state-of-the-art technology in a

wide range of fields such as computer vision, speech recog-

nition, and natural language processing. However, CNNs

require a considerable amount of computation and power

since they use large training sets and models which lead to

millions of floating-point parameters and billions of opera-

tions. This makes it difficult to deploy CNNs on embedded

systems which have very limited power envelopes.

High-end Graphics Processing Units (GPUs) with great

computational speed are strong candidates for implement-

ing CNNs. However, they consume a lot of energy, up to 200

Watts. Mobile GPUs designed for embedded systems and

mobile devices have a power consumption of a few Watts,

at the expense of a severely degraded computational speed.

Recent studies have shown that Field-Programmable Gate

Arrays (FPGAs) can provide competitive performance to

high-end GPUs in many applications while having similar

power envelopes to mobile GPUs, making them an ideal

choice for embedded systems. However, conventional CNNs

require a large number of floating-point operations along

with a large memory for storing floating-point weights and

inflight processed data, which FPGAs generally do not han-

dle well. Fortunately, recent trends have made FPGAs more

attractive. Courbariaux et al. [1], [2] have shown that CNNs

with binary weights and activations (Binarized Neural Net-

works – BNNs) can deliver a comparable degree of accuracy

compared with full-precision CNNs. In BNNs, weights and

activations have only two possible values (e.g., -1 or +1), so

floating-point operations are reduced to binary operations

1 Japan Advanced Institute of Science and Technology
JAIST, Asahidai 1-1, Nomi, Ishikawa 923–1292, Japan

a) jiajun-guo@jaist.ac.jp
b) a.ashmawy@jaist.ac.jp
c) thiem@jaist.ac.jp
d) kiyofumi@jaist.ac.jp

which can be efficiently implemented on FPGAs. Moreover,

binary weights and inflight processed data can fit into the

FPGA on-chip memory with very low access latency and

high bandwidth, which can lead to dramatic performance

improvements.

While BNNs can be implemented very efficiently on FP-

GAs, they may fail to deliver an acceptable level of accuracy

in certain cases due to the low precision of weights and acti-

vations. As an attempt to improve the prediction/inference

accuracy, ensemble methods which train several CNNs and

combine them [3] in the inference phase have been proposed.

It has been revealed that these methods are effective for full-

precision CNNs. They, however, have not been fully inves-

tigated for BNNs.

The objective of this work is to raise the prediction accu-

racy of BNNs with ensemble methods. In addition, we show

an implementation approach to achieve high prediction ac-

curacy and cost-effective BNNs for FPGAs.

2. Related Work

In this section, we briefly review CNNs, BNNs, and en-

semble methods.

2.1 Convolutional Neural Networks (CNNs)

Since AlexNet [4] competed in the ImageNet Large Scale

Visual Recognition Challenge [5] in 2012, CNNs have be-

come the state-of-the-art technology in a wide range of tasks,

especially those in computer vision. CNNs are feed-forward

neural networks which use convolution operations in place

of general matrix multiplications. Figure 1 shows a typical

CNN which consists of convolution layers, pooling layers,

and fully connected layers.

2.1.1 Convolution Layer

The layers which apply convolution operations are called

convolution layers (ConvLayers). A convolution operation

has two inputs: input features and kernels. In mathematics,

it can be defined as:

c⃝ 2019 Information Processing Society of Japan 1

Vol.2019-ARC-235 No.36
Vol.2019-SLDM-187 No.36

Vol.2019-EMB-50 No.36
2019/3/18



IPSJ SIG Technical Report

Fig. 1 A typical CNN.

h(x) = (f ∗ g)(x) (1)

where f represents the input features, g represents the ker-

nels (also called filters), the asterisk denotes the convolution

operator, and h represents the output features.

In image recognition, inputs are, in most cases, high-

dimensional matrices. When inputs are two-dimensional

(2D) images, 2D kernels are used.

Figure 2 shows an example of convolution operations in

CNNs. The input feature here is a 4×4 matrix and the ker-

nel is a 3×3 matrix. We slide the kernel across the width

and height of the input feature and compute the dot prod-

ucts to obtain a 2×2 output feature. The number of colums

or rows by which the kernel is slided in every step is called

stride. In Fig. 2, stride is equal to 1 since the kernel is slided

one column/row at a time.

The example in Fig. 2 considers only one input feature. In

general, an output feature may be produced from multiple

input features. To produce an output feature from M input

features, a set of M kernels are required for each input fea-

ture. To produce N output features, we need N sets of M

kernels.

a b c d

e

z
i

m

g h

j k

n o

l

p

wv

y

f

Input feature

Kernel

Output feature

x

s

u

tr

Fig. 2 An example of convolution operations. Here, the input
feature is a 4×4 matrix and the kernel is a 3×3 ma-
trix. The kernel is slided across the input feature one
column/row at a time (stride = 1).

2.1.2 Padding

In CNNs, padding is a basic operation for preserving as

much information about the input features as possible in the

output side. If padding is not used, there are two problems.

First, every time a convolution operation is done, the size

of the input to the next layer is reduced. For example, in

Fig. 2, the size of the input feature is 4×4 while the size of

the output feature is just 2×2. This way, after only a few

convolutions, the input features to the next layer become

very small. The second problem can be observed in Fig. 2,

element a at the upper left corner of the input feature is

used only once in producing the output feature while some

other elements like f are used four times. Therfore, infor-

mation of element a may not be well reflected in the output

feature.

The above problems are solved by padding zeros to the

edges of the input feature like in Fig. 3. We can see now

that the size of the output feature is 4×4 which is the same

as size of the input feature. The elements at the corners of

the input feature are now used four times in producing the

output feature.

2.1.3 Pooling Layer

A pooling layer downsamples the dimensions of the input

to reduce the number of parameters and computations in

the following layers. One of the common pooling functions is

max pooling among others as average pooling and L2-norm

pooling. The max pooling function returns the maximum

value within a rectangular region. Figure 4 shows max

pooling with a 2×2 filter and a stride of 2. Each max pool-

ing operation in this case takes the maximum value over 4

a b c d

e

z
i

m

g h

j k

n o

l

p

wv

y

f

Input feature

Kernel

Output feature

x

s

u

tr

0 0 0 0

0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

Fig. 3 An example of padding.

c⃝ 2019 Information Processing Society of Japan 2

Vol.2019-ARC-235 No.36
Vol.2019-SLDM-187 No.36

Vol.2019-EMB-50 No.36
2019/3/18



IPSJ SIG Technical Report

8 364

1 -5111

7 539

2 219

8 11

9 5

Max Pooling

Fig. 4 Max pooling with a 2×2 filter and a stride of 2.

numbers (in a 2×2 region).

2.1.4 Batch Normalization

Batch Normalization (BN) [6] is widely used in neural net-

works. BN reshapes the distribution of inputs of each layer

to a mean of 0 and variance of 1 improving the stability of

neural networks. In addition, BN makes a larger learning

rate possible, which speeds training a neural network.

Algorithm 1 (from [6]) shows the process of batch nor-

malization. B is a mini-batch that has m elements. ϵ is a

constant added to the variance. γ and β are parameters to

be learned. µB and σ2
B are mean and variance of B. The

mean and the variance obtained from the training phase are

used in the inference phase, so the neural networks only have

to execute steps 3 and 4.

2.2 Binarized Neural Networks (BNNs)

Binarized Neural Networks (BNNs) [1], [2] are CNNs

whose weights and activations are +1 or -1 as shown in

Fig. 5. In BNNs, bitwise operations (e.g., XNOR) can be

used instead of multiplications. Implementations of ded-

icated hardware greatly benefit from the fact that BNNs

require much smaller memory and lower computational re-

quirements. In the literature [2], BNNs are 7× faster than

full-precision CNNs on GPUs.

2.2.1 Binarization Function

Real values are transformed into binary values (-1 or +1)

by using one of the following two functions [2]. The first one

is a deterministic function:

xb = Sign(xr) =

{
+1 if xr ≥ 0

−1 otherwise,
(2)

Algorithm 1 Batch Normalization.

Input: Values of x over a mini-batch: B = {x1···m};
Parameters to be learned: γ, β

Output: {yi = BNγ,β(xi)}
1: µB ←− 1

m

∑m
i=1 xi //mini-batch mean

2: σ2
B ←−

1
m

∑m
i=1(xi − µB)2 //mini-batch variance

3: x̂i ←− xi−µB√
σ2

B+ϵ
//normalize

4: yi ←− γx̂i + β ≡ BNγ,β(xi) //scale and shift

Fig. 5 Binary convolution.

where xr is a real value and xb is its binarized value. The

second one is a stochastic function:

xb =

{
+1 with probability p = σ(xr)

−1 with probability 1− p,
(3)

where σ is the hard sigmoid function [2].

The stochastic function is harder to implement in hard-

ware than the deterministic function since the former needs

to generate some random bits. On the other hand, Sign

function has only to extract the sign bit from the real value.

Our hardware implementation uses the Sign function for

binarization.

2.2.2 The First and Last Layers

In BNNs, only binarized values are used in convolution

operations, except for the first layer. Inputs to this layer

are RGB (Red, Green and Blue) images which cannot be

binarized. This, however, is not serious since there are only

three input features (channels), R, G, and B. The inputs

to the later hidden layers have much more channels (up to

512), and therefore, these layers have higher computational

requirements than the first layer.

The last layer outputs a score vector for each target

class/label, while the output of other layers is binarized

data.

2.3 Ensemble Methods

Ensemble methods train some baseline models then com-

bine them to make predictions using some rules in the in-

ference phase (Fig. 6). In [3], Ju et al. applied several

ensemble methods including Unweighted Average, Majority

Voting, Bayes Optimal Classifier, and Super Learner [7]) to

some popular CNNs such as Network in Network (NiN) [8],

GoogLeNet [9], VGG Net [10], and Residual Network [11].

It was shown that these ensemble methods improved the

overall prediction accuracy of the neural networks.

While the binarization in BNNs degrades the prediction

accuracy, it is expected that ensemble methods compensate

for the losses. In [3], although Super Learner works best, it

is too complex and not suitable for hardware implementa-

tions. Therefore, we select the second-best one, Unweighted

Average, 1% to 2% lower accuracy. The computation of

Unweighted Average is simple enough for hardware imple-

mentation.

Unweighted Average just takes an average of the scores

or probabilities output of all the neural network models. In

general, probabilities are obtained after a softmax function

is applied. The softmax function is formulated as:

Fig. 6 Ensemble methods.

c⃝ 2019 Information Processing Society of Japan 3

Vol.2019-ARC-235 No.36
Vol.2019-SLDM-187 No.36

Vol.2019-EMB-50 No.36
2019/3/18



IPSJ SIG Technical Report

pij = softmax(s⃗i)[j] =
exp(s⃗i[j])∑K

k=1 exp(s⃗i[k])
, (4)

where s⃗i is the score vector output from the last layer of

the i-th neural network, K is the number of classes/labels,

and pij is the probability of neural network i predicting

class/label j.

The average of output scores called “Before Softmax”. On

the other hand, “After Softmax” is the average of probabil-

ities. Before Softmax computes the average score vector as

follows:

s⃗avg =

∑N
i=1 s⃗i
N

, (5)

where N is the number of neural networks used and s⃗i is

the score vector output from the last layer of the i-th neural

networks. On the other hand, After Softmax computes the

average probability of predicting class/label j as follows:

pavg[j] =

∑N
i=1 pij
N

, (6)

where pij is the probability of neural network i predicting

class/label j calculated by formula (4). In our evaluation,

the performances of these two Unweighted Average methods

were almost the same.

3. Software Implementation and Evalu-

ation

In this section, we show our implementation on software

and evaluate the prediction accuracy.

3.1 Experimental Environment

3.1.1 Dataset

We use the CIFAR-10 dataset [12]. It is an RGB image

dataset that has been widely used for testing image classifi-

cation.

CIFAR-10 contains 60,000 32 × 32 RGB images that are

divided into 10 classes, each has 6,000 images. The whole

dataset is split into two parts: 50,000 images for training

and 10,000 images for testing (inference).

To increase the size of training dataset, we randomly

flipped and changed the brightness and contrast of the train-

ing images. We did not preprocess the test images and just

used the original ones.

3.1.2 Deep Learning Software Library

There are several popular deep learning environments

such as Caffe2, PyTorch, and TensorFlow. TensorFlow is

the most popular one [13]. Hence, we selected TensorFlow

as our software environment.

3.2 Network Architecture

This section shows the architecture of our BNNs and

a full-precision CNN that we created for comparison with

BNNs. These neural networks use the same basic model ar-

chitecture. The only difference is the activation function. In

BNNs, the activation function is the binarization function

that we described in Section 2.2.1. On the other hand, the

Rectified Linear Unit (ReLU) function [14] is applied to full-

precision CNN. We choose this activation function because

it does not saturate (in positive region) and is computation-

ally efficient. ReLU is formulated as follows:

ReLU = max(0, x). (7)

Figure 7 and Table 1 show the basic architecture and

parameter settings.

3.3 Evaluation

We created four BNNs and combined them using the Un-

weighted Average method. We also created a full-precision

CNN having the same structure as the BNNs.

We selected the mini-batch gradient descent [15] to ac-

celerate the training, with size 128. We also applied the

learning rate decay to make the training faster. The follow-

ing formula is used to update the learning rate α:

αn = αn−1 × decay rate
n, (8)

where decay rate is equal to 0.9 and n is the number of

epochs. One epoch indicates one pass through the whole

training set. αn is the learning rate of the n-th epoch.

Fig. 7 Network architecture.

c⃝ 2019 Information Processing Society of Japan 4

Vol.2019-ARC-235 No.36
Vol.2019-SLDM-187 No.36

Vol.2019-EMB-50 No.36
2019/3/18



IPSJ SIG Technical Report

Table 1 Architecture of our constructed BNNs and CNN.

Layer Type Kernel Size Output Shape #Parameters

InputLayer (32, 32, 3) 0
ConvLayer 1 3× 3 (32, 32, 64) 1728
BatchNorm 1 (32, 32, 64) 64
Activation 1 (32, 32, 64) 0
ConvLayer 2 3× 3 (32, 32, 64) 36,846
MaxPooling 1 2× 2 (32, 32, 64) 0
BatchNorm 2 (16, 16, 64) 64
Activation 2 (16, 16, 64) 0
ConvLayer 3 3× 3 (16, 16, 128) 73,728
BatchNorm 3 (16, 16, 128) 128
Activation 3 (16, 16, 128) 0
ConvLayer 4 3× 3 (16, 16, 128) 147,456
MaxPooling 2 2× 2 (8, 8, 128) 0
BatchNorm 4 (8, 8, 128) 128
Activation 4 (8, 8, 128) 0
ConvLayer 5 3× 3 (8, 8, 256) 294,912
BatchNorm 5 (8, 8, 256) 256
Activation 5 (8, 8, 256) 0
ConvLayer 6 3× 3 (8, 8, 256) 589,824
MaxPooling 3 2× 2 (4, 4, 256) 0
BatchNorm 6 (4, 4, 256) 256
Activation 6 (4, 4, 256) 0
FullyConnected 1 (1024) 4,194,304
BatchNorm 7 (1024) 1,024
Activation 7 (1024) 0
FullyConnected 2 (1024) 1,048,576
BatchNorm 8 (1024) 1,024
Activation 8 (1024) 0
FullyConnected 3 (10) 10,240
BatchNorm 9 (10) 10

Total trainable parameters: 6,400,568

We also need an optimizer algorithm that is in charge of

updating the parameters. There are several candidates such

as Momentum [16], RMSprop [17], and Adam [18]. We se-

lected Adam Optimizer which was found to be the best by

testing.

We trained all the neural networks for 100 epochs and

tested them with the CIFAR-10 test dataset. The accuracy

of each BNN in the 100th epoch is shown in Table 2. The

best one is Network 4 has 0.814 accuracy. The accuracy of

the full-precision CNN is 0.868 as shown in Table 3. It is

obviously higher than all the BNNs.

We used the Unweighted Average method to combine the

baseline BNNs. The test results are shown in Table 4. The

accuracy of Before Softmax and that of After Softmax are

close. The accuracy is improved compared to that without

ensemble and is quite close to that of full-precision CNN.

Table 2 Accuracy of each baseline BNN.

Accuracy

Network 1 0.810
Network 2 0.813
Network 3 0.802
Network 4 0.814

Table 3 Accuracy of the full-precision CNN.

Accuracy

full-precision 0.868

Table 4 Accuracy of ensemble of BNNs.

Accuracy

before softmax 0.861
after softmax 0.860

4. Hardware Implementation and Eval-

uation

We designed the BNN described in Section 3 with VHDL

RTL code and simulated it using Synosys VCS. Then, Xil-

inx Vivado 2018.3 is used for synthesizing and implementing

the design. The target FPGA device is Virtex-7 VX485T.

This section describes the details of the implementation and

reports the utilization of FPGA resources as well as the ex-

ecution time for processing a 32× 32 RGB image.

4.1 Hardware Implementation

The BNN hardware that we designed is only for the in-

ference phase. Its organization is shown in Fig. 8. Layer1,

Layer3 and Layer5 include ConvLayer, BatchNorm, and bi-

narization. Layer2, Layer4 and Layer6 include ConvLayer,

max-pooling, BatchNorm, and binarization. FC1 and FC2

include fully-connected layer, BatchNorm and binarization.

FC3 includes fully-connected layer only.

Between each two layers, there is an input buffer which

stores the output of the previous layer. When the process-

ing of a layer is finished, the following layer starts. The first

input buffer stores the values read from the input images.

The weights memory stores the weights required by the

ConvLayers and fully-connected layers. The BN memory

stores the parameters required by the batch normalization

processing.

4.1.1 Convolution

If the number of input features of a convolution layer is

M, that convolution layer is said to have M input channels.

In this case, to calculate an output feature, M kernels are

required. In our design, the size of each kernel is fixed to

3× 3 for every convolution layer.

In each clock cycle, as shown in Fig. 9, we perform the

channel-wise dot-products of the kernels and a portion of the

input features and then sum up all of the values to generate

a value in the output feature. We call this operation single

step convolution.

In BNNs, input features and kernels are composed of bi-

nary values. In theory, the binary values are +1 or -1. How-

ever, in hardware, one bit can have only two values 0 or 1.

In our BNN hardware, +1 and -1 are mapped to 1 and 0,

Fig. 8 The organization of our BNN hardware.

c⃝ 2019 Information Processing Society of Japan 5

Vol.2019-ARC-235 No.36
Vol.2019-SLDM-187 No.36

Vol.2019-EMB-50 No.36
2019/3/18



IPSJ SIG Technical Report

Fig. 9 Single step convolution.

respectively. To adapt to the change of binary values, we

calculate the dot-product of two bit vectors as below [19].

a · b = C− 2× bitcount(a XOR b) (9)

where function bitcount takes a bit vector as an input and

outputs the number of ones in that bit vector. C is the bit-

width of a and b. For example, if a and b are 9-bit vectors,

then C is equal to 9.

Figure 10 shows the computation of a single step con-

volution operation in our hardware design. Here, xi and wi

(i = 1, 2, · · · , M where M is the number of input channels)

are respectively a 9-bit portion of the input feature in the

i-th input channel and the 9-bit kernel for this channel. xi

and wi are 9-bit vectors since the kernel size is 3 × 3. The

operation OP is the dot-product defined in Equation 9. The

final output is a single integer number.

An output feature is obtained by repeating the single step

convolution operation on different portions of the input fea-

tures. In Fig. 9, the kernel is slided from the top left to

the bottom right of the input features and the single step

convolution operation is performed at each position.

We perform padding for the input features as described

in Section 2.1.2. Note that the padded numbers are real

zeros while the zeros within the input features indicate -1.

Because of this, Equation (9) must be modified for the cases

involving padded data. We have nine patterns as shown in

Fig. 11. In this figure, the yellow cells contain padded ze-

ros. Pattern P4 does not involve any padded data and thus

Equation (9) can be applied without any modifications (C

is equal to 9 and the XOR operation is performed normally).

Fig. 10 Computation in the single step convolution operation.

Fig. 11 Nine patterns when performing the single step convolu-
tion operation.

However, this is not the case for the other patterns. The XOR

operation is modified so that the result bits at the padded

positions are zeros regardless of the values in the kernel. In

patterns P0, P2, P6, and P8, C is set to 4 since there are 5

padded cells. Similarly, in patterns P1, P3, P5, and P7, C

is set to 6 since there are 3 padded cells.

4.1.2 Max Pooling

The input data of a pooling layer are integer numbers gen-

erated by the previous ConvLayer. In our design, pooling

layers are max-pooling which extracts the maximum values

from four values generated one at a time from the single

step convolution. A pooling layer outputs a value to the

next layer every four clock cycles since it takes one clock

cycle for the previous ConvLayer to output each value.

4.1.3 Batch Normalization and Activation

Batch normalization (BatchNorm) is applied to the out-

puts of pooling layers (or convolution layers if they are not

followed by a pooling layer) and fully connected layers. The

inputs of BatchNorm are integer numbers. The outputs of

BatchNorm are passed through an activation function. We

use the Sign activation function which does not care about

the absolute value of the input but only whether it is a pos-

itive or negative number. Based on this observation, we

approximate BatchNorm as below.

We combine Step 3 and Step 4 in the Algorithm 1 as:

yi ←− γ
xi − µB√
σ2
B + ϵ

+ β (10)

where γ is equal to 1 in our design. µB, σ
2
B, ϵ, and β are

constants obtained from training. Therefore, we transform

Equation 10 as:

yi ←−
xi + (β

√
σ2
B + ϵ− µB)√

σ2
B + ϵ

. (11)

Since
√

σ2
B + ϵ is positive, we only need to determine the

sign of xi+(β
√

σ2
B + ϵ−µB). We compute β

√
σ2
B + ϵ−µB

c⃝ 2019 Information Processing Society of Japan 6

Vol.2019-ARC-235 No.36
Vol.2019-SLDM-187 No.36

Vol.2019-EMB-50 No.36
2019/3/18



IPSJ SIG Technical Report

by software in advance. The results are then rounded to in-

tegers using floor function (also by software). BatchNorm

is now transformed as:

cB = floor(β
√

σ2
B + ϵ− µB), (12)

yi = xi + cB. (13)

We use the two’s complement binary expression to denote

cB and store it in FPGA on-chip memory (BN Memory in

Fig. 8).

As mentioned before, the output of BatchNorm is passed

through the Sign activation function. The output bit value,

abi , is computed as:

abi = Sign(yi). (14)

Sign just takes the highest bit of the input yi and reverses

it since yi is denoted by the two’s complement binary ex-

pression.

4.1.4 Fully Connected Layers

Figure 12 shows the structure of the fully-connected lay-

ers. Weights are called neurons in these layers. Each neuron

is a vector whose width is the same as the input. They are

stored in the Weights Memory (Fig. 8).

In Fig. 12, the operation OP is the dot-product defined in

Equation 9. The output of this operation is an integer num-

ber. This number is passed through BatchNorm and then

binarization (except for the last fully connected layer) to

produce one output bit (forming one integer number from

the last fully connected layer).

4.2 Evaluation

We performed RTL simulations of our BNN hardware by

using Synopys VCS. CIFAR-10 images were used. We con-

firmed the correctness of our hardware by comparing its out-

put results with those reported by TensorFlow.

We synthesized and implemented the VHDL design of a

single BNN with Xilinx Vivado 2018.3. The target FPGA

device is Virtex-7 VX485T (xc7vx485tffg1761-2).

Table 5 shows the utilization of resources. The BNN

requires 57.68% LUTs, 28.04% FFs, and 23.45% BRAM of

the FPGA. Focusing on the usage of LUTs and FFs, we can

see that it is not possible to implement an ensemble of four

BNNs using the current FPGA. For this purpose, a larger

FPGA is required.

On the other hand, BRAMs’ capacity is enough to store

Fig. 12 Structure of the fully connected layers.

Table 5 Utilization of hardware resources for a single BNN.

Resource Utilization Available Utilization %

LUTs 175,111 303,600 57.68
FFs 170,251 607,200 28.04
BRAMs 241.50 1030 23.45

all the parameters for four BNNs. In our design, the four

BNNs have the same structure. Therefore, it is possible to

emulate the ensemble of four BNNs by operating a BNN

four times with different memory addresses, so that differ-

ent parameters are used in each time. A single BNN spends

231,452 clock cycles to process an image. Executing 4 times

needs 925,808 clock cycles. Considering the current imple-

mentation in which the BNN runs at 10Mhz frequency, it

can process about 10.8 CIFAR-10 images per second.

5. Conclusion

BNNs provide an approach to implement a neural net-

work on dedicated hardware easily and efficiently. But the

prediction accuracy is lower than full-precision CNNs.

In this work, we proposed an approach to design a high-

accuracy and cost-efficient neural networks through ensem-

ble methods. We trained and tested four BNNs and a full-

precision CNN which has the same structure for the CIFAR-

10 dataset. We combined the four BNNs with unweighted

average methods and compared the inference accuracy with

the full-precision CNN. It was shown that the accuracy is ob-

viously improved compared to without the ensemble meth-

ods and quite close to the full-precision CNN.

In addition, we designed a BNN in VHDL and imple-

mented it on an FPGA. Form the implementation reports,

it is found that our current BNN design cannot be extended

to an ensemble of four BNNs and implemented on an FPGA

of moderate capacity. An alternative method is to emulate

an ensemble of four BNNs by time-multiplexing on a single

BNN.

In the future, we will optimize the resource requirements

and performance of our hardware design and try to imple-

ment an ensemble of a few BNNs on an FPGA.

References

[1] M. Courbariaux, Y. Bengio, J-P. David, “BinaryConnect:
Training Deep Neural Networks with Binary Weights during
Propagations,” Advances in Neural Information Processing
Systems 28, Curran Associates, Inc, pp.3123–3131, 2015.

[2] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, Y. Ben-
gio, “Binarized Neural Networks: Training Deep Neural Net-
works with Weights and Activations Constrained to +1 or -
1,” arXiv e-prints, 2016. (https://arxiv.org/abs/1602.02830)

[3] C. Ju, A. Bibaut, M. J. van der Laan, “The Relative Perfor-
mance of Ensemble Methods with Deep Convolutional Neu-
ral Networks for Image Classification,” Journal of Applied
Statistics, Vol.45, No.15, pp.2800–2818, 2018.

[4] A. Krizhevsky, I. Sutskever, G. E. Hinton, “ImageNet Clas-
sification with Deep Convolutional Neural Networks,” Proc.
of Intl. Conf. on Neural Information Processing Systems
(NIPS), Vol.1, pp.1097–1105, 2012.

[5] http://www.image-net.org/challenges/LSVRC/

[6] S. Ioffe, C. Szegedy, “Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate
Shift,” Proc. of Intl. Conf. on Machine Learning, Vol.37,
pp.448–456, 2015.

[7] M. J. van der Laan, E. C. Polley, A. E. Hubbard, “Super

c⃝ 2019 Information Processing Society of Japan 7

Vol.2019-ARC-235 No.36
Vol.2019-SLDM-187 No.36

Vol.2019-EMB-50 No.36
2019/3/18



IPSJ SIG Technical Report

Learner,” Statistical Applications in Genetics and Molecular
Biology, Vol 6, No, 1, Article 25, 2007.

[8] M. Lin, Q. Chen, S. Yan, “Network in Network,” CoRR, vol.
abs/1312.4400, 2013. (http://arxiv.org/abs/1312.4400)

[9] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D.
Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, “Going
Deeper with Convolutions,” Proc. of IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR), pp.1–9, 2015.

[10] K. Simonyan, A. Zisserman, “Very Deep Convolutional Net-
works for Large-Scale Image Recognition,” Proc. of Intl.
Conf. on Learning Representations (ICLR), pp.1–14, 2015.

[11] K. He, X. Zhang, S. Ren, J. Sun, “Deep Residual Learning
for Image Recognition,” Proc. of IEEE Conf. on Computer
Vision and Patter Recognition (CVPR), pp.770–778, 2016.

[12] https://www.cs.toronto.edu/~kriz/cifar.html

[13] M. Abadi, et al., “TensorFlow: A System for Large-Scale
Machine Learning,” Proc. of USENIX conf. on Operating
Systems Design and Implementation, pp.265–283, 2016.

[14] X. Glorot, A. Bordes, and Y. Bengio, “Deep Sparse Rectifier
Neural Networks,” Proc. of Intl. Conf. on Artificial Intelli-
gence and Statistics, pp.315–323, 2011.

[15] G Hinton, N Srivastava, K Swersky, “Neural Networks for
Machine Learning,” Coursera, video lectures 264, 2012.

[16] B. T. Polyak, “Some methods of speeding up the convergence
of iteration methods,” USSR Computational Mathematics
and Mathematical Physics, Vol.4, NO.5, pp.1–17, 1964.

[17] T. Tieleman, G. Hinton, “Lecture 6.5-rmsprop: Divide the
Gradient by a Running Average of Its Recent Magnitude,”
COURSERA: Neural Networks for Machine Learning, Vol.4,
No.2, pp.26–31, 2012.

[18] D. P. Kingma, J. Ba, “Adam: A Method for Stochastic Opti-
mization,” Proc. of Intl. Conf. on Learning Representations,
2015.

[19] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, Y. Zou,
“Dorefa-net: Training Low Bitwidth Convolutional Neural
Networks with Low Bitwidth Gradients,” arXiv preprint
arXiv:1606.06160, 2016.

c⃝ 2019 Information Processing Society of Japan 8

Vol.2019-ARC-235 No.36
Vol.2019-SLDM-187 No.36

Vol.2019-EMB-50 No.36
2019/3/18


