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概要：Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) is considered as one of the most effective
method for black-box optimization issue. In this paper, we apply CMA-ES to the neuron model parameter opti-
mization problem, and compare it with genetic algorithm (GA) and the Nelder-Mead method which are the widely
used approaches. To enhanced robustness of CMA-ES, we extend it by making an aggregation of evolution. We
analyze a public dataset recorded from a rat neocortical neuron, which shows that the proposed approach achieves
higher performance than the conventional methods.

1. Introduction

In this paper we investigate the performance of CMA-ES by

comparing it with conventional methods, including genetic al-

gorithm (GA) and the Nelder-Mead method. We found that the

performance of CMA-ES highly depends on the initial condi-

tion, i.e., CMA-ES performs better than GA on average, how-

ever it sometimes performs worse than GA. To overcome this

drawback, we propose to make an aggregation of CMA-ES for

the optimization.

2. CMA evolution strategy

2.1 Covariance matrix adaptation evolution strategy
Covariance matrix adaptation evolution strategy (CMA-ES)

is an evolution strategy. It uses a multivariate Gaussian distri-

butionN(x|θ) having a parameter set θ = {µ,Σ} to represent a

gene distribution, where x is the real-valued vector represent-

ing a gene, µ is a D-dimensional mean vector, Σ is a D × D-

dimensional covariance matrix, and D is the gene size. Instead

of directly maximizing the fitness f (x), CMA-ES maximizes

an expected value of the fitness E[ f (x)|θ] under the Gaussian

distribution. Higher expectation means the Gaussian distribu-

tion generates good genes with high probability.

2.2 Aggregated CMA-ES
The results of CMA-ES largely vary for different trials, that

is, the performance highly depends on the initialization. This
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is maybe because the landscape of the objective function in the

gene space is fitted by a Gaussian distribution, which only de-

scribes a symmetric distribution with a single peak.

To improve CMA-ES for achieving near global optimum re-

sult, we propose an approach that runs CMA-ES for multiple

trials with different initialization and finds the best individual

among all the trials. We refer to this strategy as aggregated

CMA-ES, and the number of trials as aggregation size. The

original CMA-ES is a special case of the aggregated CMA-ES

whose aggregation size is 1. In this way, we have multiple

Gaussian distributions in an aggregated evolution process, and

can represent complex divergence as a whole.

3. Neuron model

We considered the parameter optimization problem of Multi-

timescale Adaptive Threshold (MAT) model [1]. The neuron

model generates spikes when the potential exceed the spike

threshold. There are 5 threshold parameters that need a black-

box optimization and we apply GA and CMA-ES.

We evaluate the model performance by the coincidence fac-

tor, which is defined by Equation (1).

Γ =
Nc − 2 fmNd∆

Nd + Nm
× 2

1 − 2 fm∆
, (1)

where Nc is the number of coincident spikes with precision

∆ = 4 (ms), Nd (Nm) is the number of spikes of the real (model)

neuron, and fm is the spike frequency of the model neuron. The

maximum value of Λ = 1 is achieved only if all the spikes co-

incide with precision ∆.
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表 1: Optimization by grid search and Nelder-Mead method.
Strategy Grid Search Nelder-Mead

Coincidence factor (Γ) 0.580 0.618
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図 1: Results of GA using several population sizes.
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図 2: Results of CMA-ES using several population sizes.

4. Experiment and Results

We analyzed a public dataset from the International Com-

petition on Quantitative Single-Neuron Modeling 2009 [2], [3]

(Challenge A). The data consists of the stimulus and the volt-

age recorded from a rat neocortex neuron. Five threshold pa-

rameters are optimized by applying GA and CMA-ES to the

dataset between 17.5 sec and 39 sec. We generated these ini-

tial genes by random sampling from a multidimensional uni-

form distribution over an interval. The fitness is evaluated by

the model performance Γ. Because the results involve random-

ness, we repeated the experiments multiple times using inde-

pendently sampled genes for the initialization.

For a comparison purpose, Table 1 shows results obtained by

using the grid search and the Nelder-Mead method [4], which

is one of the state-of-art optimization methods for neuron mod-

els. Figure 1 and Figure 2 shows the averaged performance of

GA and CMA-ES with several population sizes. The horizontal

axis is the generations and the vertical axis is the coincidence

factor Γ. The experiments were repeated 50 times with differ-

ent random initialization to obtain the averaged results. GA

needs larger population size to obtain higher Γ. Γ improves

with the generations until 150-th generation. When the pop-

ulation size was 100, Γ was 0.598 at 100-th generation and it

was 0.599 at 150-th generation. CMA-ES can obtain higher Γ
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図 3: Distribution of Γ when aggregated GA and CMA-ES

were used. The population size and the number of generations

were 100 and 150 for GA, and 50 and 100 for CMA-ES.

than GA with smaller population size and converge faster (Be-

fore the 100-th generation, CMA-ES converged in most of the

cases) At the 100-th generation, Γ by CMA-ES with 50 popu-

lation size was 0.602.

Figure 3 shows the results of aggregated CMA-ES with dif-

ferent aggregation sizes and that of aggregated version of GA.

As can be seen, aggregated CMA-ES provides higher Γ than

the aggregated GA when we choose the aggregation size larger

than 5. The best Γ was 0.617 by GA and 0.630 by CMA-ES

when the aggregation size was larger than 5.

5. Conclusion

We have applied CMA-ES to a neuron model optimiza-

tion problem for a public dataset recorded from rat neocor-

tex, and have demonstrated that its averaged performance out-

performs conventional optimization approaches based on GA

and Nelder-Mead methods. The fitness obtained by CMA-

ES largely depends on the initial condition. To address the

problem, we tried a simple strategy that makes the aggrega-

tion of CMA-ES for the optimization, which we referred to

as aggregated CMA-ES. Experimental results show that aggre-

gated CMA-ES is robust against the initial condition, and sta-

bly achieves better performance than conventional methods.
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