
Inverse Reinforcement Learning for Behavior Simulation with

Contextual Actions and Multiple Policies

Nahum Alvarez1, Itsuki Noda1

1National Institute of Advanced Industrial Science and Technology

Abstract: Machine learning is a discipline with many simulator-driven applications oriented to learn

behavior. However, behavior simulation it comes with a number of associated difficulties, like the lack of

a clear reward function, actions that depend of the state of the actor and the alternation of different policies.

We present a method for behavior learning called Contextual Action Multiple Policy Inverse Reinforcement

Learning (CAMP-IRL) that tackles those factors. Our method allows to extract multiple reward functions

and generates different behavior profiles from them. We applied our method to a large scale crowd simulator

using intelligent agents to imitate pedestrian behavior, making the virtual pedestrians able to switch between

behaviors depending of the goal they have and navigating efficiently across unknown environments.

Introduction

Simulation applications like traffic simulators or

robotic manipulators, have been benefited from machine

learning techniques since the arrival of the big data and

deep learning. Crowd simulation are another example, and

have been the object of interest because it can deal with a

number of real-life problems in our society. Pedestrian

simulation can help to the design of evacuation strategies

and identifying risky situations in concrete scenarios like

natural disasters or terrorist incidents as it can be seen in

[1] or [2].

Crowd simulators have been approached by diverse

machine learning potential solutions as well, tackling

different problems like trajectory planning, crowd micro

behavior and others. In our case, we are interested in

pedestrian simulation used for predicting business

performance and city planning. However, walking

behavior has not been the subject of so much research,

mainly because its inherent characteristics: like any other

living being behavior, it is goal driven, but its reward

function is unknown, humans usually do not take the most

optimal route, and even congestion can be seen as a

positive factor [3]; also it is composed of different patterns

that act at the same time, being able to switch the current

goal for another.

Inverse Reinforcement Learning techniques help in

solving those issues, as they work by obtaining the hidden

reward function from a set of observed behaviors provided

by an expert. In our case we developed a variant of

bayesian inverse reinforcement learning for multiple

reward functions and adapted it to work with contextual

actions, as the pedestrians are expected to show different

behaviors depending on their current goal, and have

different available actions depending on their location,

having an exponentially large set of different actions. We

called this method "Contextual Action Multiple Policy

Inverse Reinforcement Learning", or CAMP-IRL. The

technique allows to evaluate different sets of actions

depending on the state of the pedestrian, and also extracts

different behavior patterns called profiles.

This work is organized as follows: Section 2 contains a

review of previous work on reinforcement learning used

for agent behavior and pedestrian simulators. Section 3

presents our CAMP-IRL method, and section 4 describes

our pedestrian simulator and the behavioral model of the

agents generated by it. Section 5 presents our preliminary

tests and discusses their results. Finally, section 6 contains

the conclusions of our research.

Related Work

Apprenticeship learning methods have been widely

used in intelligent agents' systems to train them to perform

tasks in dynamic environments like [4] or [5]. We can

observe strategies to emulate predefined driving behaviors

in [6]. There are also works where agents are given a

behavior cognitive model for pedestrians like in [7], [8] or

[3]. However, in those works the behavior model is

predefined by a designer, having a low degree of flexibility,

being tied to its domain, or even escalating badly.

An extra issue in simulating people's behavior is that the

reward function governing their actions will be often

ⓒ 2019 Information Processing Society of Japan 1

IPSJ SIG Technical Report Vol.2019-ICS-194 No.6

2019/3/10

hidden. We can avoid this problem using inverse

reinforcement learning (here on after IRL) because instead

a reward function, it only needs a set of observed expert

demonstration behaviors.

IRL works well on domains where the reward function

is hidden, being appropriate to model animal and human

behavior [9]. IRL techniques work on domains that can be

defined by a Markov Decision Process (MDP, from here

on after) and are used to learn its hidden reward function.

MDPs are defined by a tuple M = {S, 𝒜, 𝒯, γ , r}, where

S is the state space of the model, 𝒜 is the set of actions

that can be performed, 𝒯 is the transition function, which

returns the probability of transition from one state to other

given a concrete action, and usually is given in the form

of a matrix, r is the reward function that generates a reward

value from reaching a state, and γ is a discount factor, that

applies when calculating accumulated reward through

consecutive actions. In IRL, r is unknown so a set of expert

trajectories T is used to obtain it, each one of the

trajectories consisting on a sequence of states and actions

pairs.

We can find many different approaches to IRL, each one

with its own characteristics and issues [10]. For example,

we find a linearly solvable approach in [11], with a number

of constraints in the MDP definition, or the Maximum

Entropy method contained in [12], which works well when

we do not have much information about the solution space.

Other methods have obtained better results under certain

conditions, like [13] which works on a subset of MDPs,

but it does not match well with our domain, or [14] which

deals with non-linear reward functions.

Works using IRL to learn agent behavior are sparse but

effective, as it is shown in [15] where driving styles are

learned by an agent, or [16] where different agents work

together for routing traffic.

In our domain, we have the additional requirement of

obtaining different patterns from the existing data. The

task of obtaining multiple policies from the IRL process is

a desirable characteristic, as the observed trajectories

come from different pedestrians with different goals and

creating a combined reward function for all of them would

mix different behaviors that may not be optimal for a

concrete goal or even be antagonistic to it. Other works

have previously dealt with this aspect, like [17], showing

how to switch between different MDP and obtain their

related policy functions and works well extracting

different behaviors. In [18] divides the data in smaller sub-

goals in order to obtain simple reward functions, and [19]

describes a hierarchical method for selecting MDP

partitions with different policies for each sub-MDP, which

can be interesting for domains where the agent has a

number of sequential small sub-goals. Our CAMP-IRL

method is based in [20] which works extracting a number

of clusters from the data, obtaining their reward and policy

functions, but we include contextual actions that are

different for each state of the MDP, used to avoid an

explosion in the solution space by cutting redundant

actions.

The CAMP-IRL Method

IRL techniques work on domains that can be modeled by

a Markov Decision Process (MDP) but have hidden

reward functions (the reward function dictates the gain

from performing a given action in a given state). Hence, it

is ideal to model human behavior, which usually is reward

driven using unknown reward functions. However

human behavior is not only directed by only one goal but

many, with different rewards that are managed at the same

time, IRL has potential to learn different behavior patterns,

but need some adaptation as works with single rewards

and well defined actions.

We based our method in a non-parametric Bayesian

approach to the problem [20] extracting a number of

clusters from the data, obtaining different reward and

policy functions for each one of them. Also, we adapted

the MDP to be able to work with this model in our domain

including contextual actions for the agents, used to avoid

an explosion in the solution space by cutting redundant

actions.

We define Contextual Action Multiple Policy MDP

(CAMP-MDP) as an MDP {S, 𝒜, 𝒯, γ , ℛ} using the

standard definition of S as the set of states, the transition

function 𝒯(s, a, s’) from one state to another by executing

an action, and γ as the discount factor. We also defined the

super set 𝒜 (s) of actions as a function of a state s, and ℛ

(s, a) as a super set of Reward functions where s is a state

from S and a is an action from the set 𝒜 (s). This means

that available actions are dependent of the state (i.e.,

contextual), because each location has a different number

of possible paths to take; when translating the locations to

states and paths to actions, there will be certain actions

only available to certain states. We also do this in order to

avoid a combinatorial explosion in the solution space,

reducing the number of possible actions for each state.

Finally, each state has a set of features, which influence

how the reward function is calculated.

The CAMP-IRL algorithm uses a Dirichlet process [21]

to classify the trajectories into different groups we call

ⓒ 2019 Information Processing Society of Japan 2

IPSJ SIG Technical Report Vol.2019-ICS-194 No.6

2019/3/10

profiles, and then a reward function is calculated for each

profile using a Bayesian approach to the IRL method.

However, we modified it to be able to work with the

CAMP-MDP considering that each state will have a

different action set. The algorithm follows the next steps

and formulas:

1. Initialize the profile set C containing K elements and

the reward set {𝑟}𝑘=1
𝐾

I. The initial clusters (profiles) and their reward

function are randomized. The reward function

consists in a weight vector containing the weights

of all the map features.

II. An initial policy is generated randomly from each

reward. This policy consists in a vector containing

the optimal action to perform for each node, and

it is obtained by calculating the value of

performing the most optimal action a from the

available actions in the state s following the next

function:

𝑉∗(𝑠) = 𝑚𝑎𝑥𝑎∈𝒜(𝑠) ℛ(s, a) + γ ∑ 𝒯(s, a, s′) 𝑉∗(𝑠′)

𝑠′𝜖S

2. For each element m in the trajectory set, select a new

class candidate 𝑐𝑚
∗ using the following rule:

I. If the trajectory has no assigned class, generate a

new one, and a reward function for it.

II. If it has one, obtain the most populated profile.

III. Assign the trajectory to the new class with

probability

𝑃(𝜒𝑚|𝑐𝑚
∗)

𝑃(𝜒𝑚|𝑐𝑚)

3. For each class k:

I. Create a weight vector candidate

𝑟𝑘
∗ = 𝑟𝑘 +

𝜏2

2
∇ log(𝑃(𝜒𝑘|𝑟𝑘)𝑃(𝑟𝑘)) + 𝜏𝛼

where τ is a scaling factor and 𝛼 is a random

number sampled from a multinomial distribution

(0,1).

II. Update the weight and value vectors with

probability

𝑃(𝜒𝑘|𝑟𝑘
∗)𝑃(𝑟𝑘

∗)𝑔(𝑟𝑘
∗, 𝑟𝑘)

𝑃(𝜒𝑘|𝑟𝑘)𝑃(𝑟𝑘)𝑔(𝑟𝑘, 𝑟𝑘
∗)

Being the function g the gradient from the

Langevin algorithm, calculated as follows:

𝑔(𝑥, 𝑦) =
exp (−

1
2𝜏2 ‖𝑥 − 𝑦 −

𝜏2

2
∇𝑙𝑜𝑔𝑃(𝜒𝑘|𝑥)𝑃(𝑥)‖)

(2𝜋𝜏2)𝐷/2

where τ is a scaling factor.

4. Repeat the process from (2) until convergence. Once

finished, it is possible to use the obtained set of

optimal policies for each profile to calculate the value

vector as follows:

𝑉𝜋(𝑠) = ℛ(s, π) + γ ∑ 𝒯(s, π, s′) 𝑉𝜋(𝑠′)

𝑠′𝜖S

This value represents the expected reward of

executing that policy on a node s.

In order to use this method for pedestrian prediction,

we created a CAMP-IRL module that interfaces with a

crowd simulator called CrowdWalk where each pedestrian

is represented by an agent. CrowdWalk can simulate

movements of more than 1 million agents in a diverse

array of locations, like multi-storied buildings or large city

areas. Maps can be created by hand or obtained from open

source formats, like Open Street Maps, and it is possible

to control agents from external modules.

The model of the map used by CrowdWalk consists

in a custom xml that describes the map in the form of

network where nodes represent intersections and links

represent paths, which in our CAMP-MDP will represent

as well as states and actions, respectively. The contextual

actions are created using the number of links each node

has, with one action per link, being semantically different

for each node; thus, the first action in certain state will be

different from the first action in another one, but will have

the same label. Links also have length and width attributes

influencing how long the agents need to walk from a end

to another and how many agents can walk in parallel.

Nodes have features describing what facilities are on that

location, which are represented by the state features in the

CAMP-MDP.

CrowdWalk has an Agent handler that generates one

agent per pedestrian, using a model with dual behavior:

micro and macro behavior [22]. Micro behavior in in

charge of the collision detection and the agent's velocity,

adjusting itself to the crowd. The macro behavior deals

with the agent's route to its goal. Our CAMP-IRL module

takes care of the macro behavior. We called the agents

created by this module CAMP-IRL Agents.

The inputs of the CAMP-IRL method are the map

used by CrowdWalk, which is converted into a CAMP-

ⓒ 2019 Information Processing Society of Japan 3

IPSJ SIG Technical Report Vol.2019-ICS-194 No.6

2019/3/10

MDP, and a file containing the trajectories we want to train.

Once the training process finishes, we obtain two files:

one containing the weights of the features of each

discovered profile, and another containing the value of

each map node (as defined in the step 4 of the algorithm)

for each profile. The weight and value files will be used in

the simulation by the CAMP-IRL agents to decide which

path to take, and to select the behavior profile they should

have.

 The training method is performed before the

simulation as a pre-processing task, so even if it can take

a long time depending of the complexity of the map it does

not represent a big impact in the simulation speed as the

decision process of the agents once we have these files is

enough fast to use it in real time.

The CAMP-IRL Agents

Once the simulation starts, the Agent Controller Module

generates the CAMP-IRL agents. The agent behavior is

directed using three input files: the first two files are the

weight and value files from the CAMP-IRL process we

described in the previous section, and the third one

consists in a goal database containing the locations they

will “want” to visit. Those can be generic features, like

“visiting a restaurant”, or concrete nodes from the map,

like “visiting the node labeled as nd00327”. Also, this file

contains an evacuation point, where the agent will go after

completing its goals.

The decision making process of the CAMP-IRL agent is

shown in Figure 1. First, the agent selects the profile that

has the highest weight for the features associated to its

goals. As the agent may have multiple goals and also the

weights may be similar, the agent first selects a set

composed of the profiles that are within a threshold from

the one with the highest weight. From our experiments, we

concluded that a 10¥% of threshold gives the best results.

The set of selected profiles forms the agent's profile list.

Once completed this step, the agent chooses from its list

the profile with the highest value in its starting node

according to the value file.

Whenever an agent enters in a node, it checks if that

node contains a goal in its list or not. In case it is not a goal,

the agent compares the value of the nodes connected to the

current one and chooses one within the set of best valued

ones. This set is created again using a threshold range from

the highest valued node, and also a threshold of a 10¥%

laid the best results. The selection of the best valued nodes

ignores the node the agent is coming from, under the

rationale of the agent coming from a node with an already

high value and having to conform with lower values after

that. Once the best node to go is selected, the agent moves

to it.

If the agent is in a node containing a goal, then the

agent enters in a waiting state, simulating the agent taking

time in satisfying its goal. The goal satisfaction time is

given by another training process, apart from the CAMP-

IRL process, that consists in a linear regression method to

Figure 1: The algorithm followed by the CAMP-IRL agents. Once they reach a map node, they choose their next node by comparing

the values of the available destination nodes. If they satisfy a goal, they change their profile and search for another goal. Also they

calculate the time they should spend in the goal nodes and leave the map when all of them were satisfied.

ⓒ 2019 Information Processing Society of Japan 4

IPSJ SIG Technical Report Vol.2019-ICS-194 No.6

2019/3/10

learn from the waiting times present in the trajectories,

estimating the time from the node features. Once the goal

is satisfied, the agent verifies if it has remaining goals. If

all the goals have been satisfied, the agent evacuates by

going directly to the evacuation point (this movement is

no more behavioral, and is performed by calculating the

shortest route to the evacuation node).

If there are still unsatisfied goals, the agent proceeds

to select a new profile. However, before selecting one it

updates its profile's list, as it has fewer goals now and

some profiles are not useful anymore. After deleting those

profiles related with already satisfied goals, the agent

chooses the profile in the same way that it did initially.

Additionally, the agent has a timeout in case it spends

too much time wandering across the map without reaching

any goal. If the timeout finishes, the agent will select a

new profile, but this time the method it uses to do it is

different. Instead of selecting a profile from its profile's

list, the agent selects randomly another profile from the

whole set, with the only condition that it has to be different

than the previous one. This represents the agent deciding

that its previous actions where not advancing it to the goal,

and it has to ``explore'' the map using a different strategy.

Experimental Results

We performed a set of tests to compare our method with

others. We wanted to test the efficiency of the agents in

locating goals, so we measured the time the agents took in

satisfying 5 goals belonging to different pedestrian

profiles whose trajectories were previously trained using

synthetic data. We also wanted to compare how equivalent

were their trajectories to the trained ones in terms of being

“human-like”, so we also recorded their map coverage and

trajectory information, measuring how many nodes the

agents traversed in their routes.

To contrast the performance of our agents, we

prepared other pedestrian agents using four different IRL

methods; it is important to note that all of them are agents

that navigate the map with no information of its layout,

aside of the data from their learning technique. Those four

agents were: one agent that chooses randomly its path,

called “Random Agent”, used as a baseline; one agent

using a different IRL method that extracts only a unique

policy and reward function from the whole set of

trajectories and does not use contextual actions (this

means it has a fix set of actions and only one profile) called

“NC-Single IRL Agent”; another agent that uses the same

single profile IRL technique, but this time modified by us

to include contextual actions into its MDP, called “Single

IRL Agent”; and finally one agent that extracts multiple

profiles but with no contextual actions called “Multi-IRL

Agent”. Both Single IRL Agent and NC-Single IRL Agent

use the maximum entropy algorithm from [12], chosen

because it works well when the agents do not have much

information about the layout of the map, and the Multi-

IRL agent uses the method shown in [20] in which our

CAMP-IRL algorithm is based as well.

We trained all the agents (except Random Agents)

with 150 trajectories that could be divided into five

profiles: “restaurant” for pedestrians that are going

looking for a place to eat; “books” for pedestrians that are

going to buy books, magazines or other paper ware;

“cinema” for pedestrians going to the cinema or similar

entertainment places (theater, games, etc.); “shopping” for

pedestrians that want to buy clothes; and finally

“supermarket” that covers pedestrians going to

supermarkets or convenience stores. The trajectories were

created by artificial methods due to the lack of real data in

this domain, but they were designed to be as realistic as

possible, using real trajectories as inspiration. We also

designed the trajectories to be slightly noisy, with the

agents having small detours and wandering a bit while

they were going to their goals in order to contain enough

variation and also to not be always the most optimal. The

map we used was a portion of Tokyo from the Toshima

ward area, containing commercial areas, entertainment

spots, a train station, and residential zones. The map

contained a total of 14 different features, and the trained

routes covered around of the 67% of the map and an 87%

of the features.

Once we trained with the trajectories, we obtained a

total of 7 profiles for our CAMP-IRL agents. We

compared the obtained features weights with the

information of the map and we observed that from these 7

profiles, 3 were strongly tied to 3 of the original profiles

we trained, and the other 4 were combinations of the 5

original profiles.

Then, we prepared different simulations using the

CAMP-IRL Agents, Random Agents, NC-Single Agents,

Single IRL Agents and Multi-IRL Agents. The simulator

was set under the same conditions for each type of agent:

150 generated agents, each one with five goals, one for

each one of the original profiles. Each simulation was

executed five times in order to average the results. We also

configured the agents to not taking any time in satisfying

the goals and keep walking immediately to avoid

unwanted noise in the results; the trained trajectories also

ⓒ 2019 Information Processing Society of Japan 5

IPSJ SIG Technical Report Vol.2019-ICS-194 No.6

2019/3/10

were designed with no goal satisfaction delays.

Table 1 shows the average time in seconds each type

of agent took to satisfy their goals, and also the average

clear times of the five sets of 150 agents in hours, minutes

and seconds. Our agents obtained clearly better times than

the rest. We see small differences between Single and NC-

Single agents average times with the NC-Single agents

having slightly better results, albeit having more variance

in their results, causing longer clear times.

However, the advantage of adding contextual actions

is more notable when comparing with Multi-IRL Agents.

We also observed high variance values in general, mainly

due to the agents micro behaviors that make them slow

their movements if the paths are too crowded. This effect

was observed in the training routes as well and causes the

first agents to finish very fast, as the streets are empty, but

as soon as they get crowded, the agents velocity drops

until the pedestrian congestion disappears.

Even if Multi-IRL Agents perform way better than the

two single profile agents and obtain a good performance

in general, CAMP-IRL Agents take much less time to

finish. We think that the effect of contextual actions

increases greatly when the agents have to choose between

different profiles, taking advantage of its flexibility. Thus,

not only CAMP-IRL Agents reduced their variance and

total clear times like Single IRL Agents did with respect to

their ``non-contextual'' versions, but they also improved

greatly their average times, being almost half of the results

obtained by Multi-IRL Agents.

Table 2 shows the average number of different nodes

visited by the whole group of 150 agents, the average

number of different nodes visited per agent in its trajectory,

and the average trajectory length for each type of agent.

As we can see, CAMP-IRL Agents not only beat the others

in the time to clear all the goals but also they cover less of

the map, meaning that their paths are more efficient and

they wander less than the others. We noted too that in the

trained routes the coverage per agent was similar to our

CAMP-IRL agents. The trajectories of our agents were

also shorter, being the most similar to the trained

trajectories than the other agents.

We identified one aspect we want to improve in future

versions of the training system: we observed that some

useful information from the map and the routes was not

being reflected in the learning process: in one of our

experiments, one of the goals was a scarce feature that

only was present in four nodes of the map; the agents were

able to find it, but the wandered excessively before to do

it. The main reason was that the agents were switching

between different profiles after reaching several times

their timeout without finding any goal. After analyzing

why this was happening, we found that this situation was

due to the coincidence of two factors: scarcity of the goal

feature and having only a few and indirect ways to reach

it. In the example, in order to reach one of those features,

agents had to cross from one area of the map to another

Agent Individual Avg. Std. Dev. Avg. Total Clear Time

CAMP-IRL 3319.99 3006.67 5:57:21

Multi IRL 5778.09 6141.29 11:22:58

Single IRL 8570.52 7417.15 11:45:35

NC Single IRL 7326.99 7806.32 14:03:45

Random agent 32641.40 31610.99 51:05:26

Agent Map Coverage Avg. per Agent Avg. Trajectory Length

Trained routes 95 31 41

CAMP-IRL 128 26 78

Multi IRL 133 34 165

Single IRL 140 37 209

NC Single IRL 140 38 178

Random agent 140 89 852

Table 1: Map coverage in number of visited nodes (Total nodes: 140).

Table 1: Clear Times of the Agents

ⓒ 2019 Information Processing Society of Japan 6

IPSJ SIG Technical Report Vol.2019-ICS-194 No.6

2019/3/10

which could only be entered by three points between them,

but those points were not very remarkable in terms of

value for the selected profiles to reach that feature. Thus,

agents near that feature were conducted by their profiles

to go towards it, but when reaching the mentioned area of

the map they could not find a crossing point that was far

away. We plan to solve this issue by improving the

learning process by adding enriched information to the

map, establishing semantic relations between nodes of the

map like those crossing points and the featured nodes.

Also, we want improve our agents to be able to move

across maps that have not been trained, using training

routes from a different one. We will improve the agents

with the capability to estimate the value of a node using

the formula we described in the fourth step of the CAMP-

IRL algorithm in section 3. This improvement will have a

negative impact in the performance of the system (in terms

of simulation velocity); however, it also will increase

significantly its usefulness, as only training once would be

enough to simulate the pedestrians, as long as those

pedestrians are from the same distribution (similar

background, same potential profiles, etc.). We want to

explore this potential improvement as even an

approximation to this solution could be beneficial.

Conclusions

This work presents an IRL technique we called

Contextual Action Multiple Policy Inverse Reinforcement

Learning, or CAMP-IRL, designed to learn pedestrian

behavior. This method has the novel feature of using

different sets of actions for each state combined with the

generation of multiple profiles, reflecting the different

behaviors observed in the training data. We applied the

CAMP-IRL technique to an agent-based pedestrian

simulator using learned profiles to control pedestrians'

behavior.

Our method converts a city map into a CAMP-MDP

where the states represent locations on the map and the

actions symbolize movements between locations, being

contextual so they have different meaning on each state.

The model is trained using the data from previously stored

pedestrian trajectories, and produces two data structures:

the features weights and the map nodes value sets. These

structures contain different values for each extracted

behavior profiles. The profiles are used by the agents to

traverse the map, choosing the profile that fits better their

goals. The CAMP-IRL agents are also able to switch

profiles whenever they have to obtain a different goal or

when they consider that their profile is not good enough to

reach the current goal.

We prepared a set of experiments in order to compare

the performance of our agents with other existing methods

and check if the obtained profiles are coherent with their

intended behavior. Our CAMP-IRL agents performed way

better than others trained with the same data but using

single profile IRL methods or multiple profile methods

with no contextual actions and got the best clear times in

the simulator. We noticed also that having multiple

profiles and contextual actions have a positive synergy,

yielding better results when these two improvements are

combined than if we apply them individually and add the

performance gain. The CAMP-IRL agents also have more

optimal routes, having shorter routes than the rest, and

having results similar to the trained ones.

The results of our experiment opened interesting

research paths, and further work is required to give light

to them: as our next step, we plan to improve the training

method by adding a pre-processing stage to enrich the

information of the map. We observed that under certain

conditions it was difficult for the agents to reach certain

goals due to the features weight not being properly

transferred over the distance. We want our method to be

able to automatically modify the features of a node or add

new ones to it in order to reflect how much influence has

the node to the feature globally, even if such feature is not

actually present in it. We will do it by creating virtual

relations between nodes and influence areas for the

features. We also want to improve our method with the

ability to work with training data from different maps, by

calculating an estimated value of the map nodes in real

time.

Finally, we have plans to contrast the behavior of our

agents with real pedestrians data in further experiments. In

order to do this and due to legal and logistic issues in

tracking crowds effectively, we want to apply our system

to more manageable domains, like public events

(concretely fireworks festivals, which have been used

before to collect data for CrowdWalk) where it is possible

to enact certain degree of control and surveillance to the

crowd, or customer behavior inside department stores or

supermarkets.

References

[1] Yamashita, T., Soeda, S., and Noda, I. (2009). Evacuation

planning assist system with network model-based

pedestrian simulator. In PRIMA, pages 649–656. Springer.

[2] Lammel, G., Grether, D., and Nagel, K. (2010). The

ⓒ 2019 Information Processing Society of Japan 7

IPSJ SIG Technical Report Vol.2019-ICS-194 No.6

2019/3/10

representation and implementation of time-dependent

inundation in large-scale microscopic evacuation

simulations. Transportation Research Part C: Emerging

Technologies, 18(1):84–98.

[3] Crociani, L., Vizzari, G., Yanagisawa, D., Nishinari, K.,

and Bandini, S. Route choice in pedestrian simulation:

Design and evaluation of a model based on empirical

observations. Intelligenza Artificiale (2016), 10(2):163–

182.

[4] Siebra, C. d. A. and Neto, G. P. B. (2014). Evolving the

behavior of autonomous agents in strategic combat

scenarios via sarsa reinforcement learning. In Proceedings

of the 2014 Brazilian Symposium on Computer Games and

Digital Entertainment, SBGAMES ’14, pages 115–122,

Washington, DC, USA. IEEE Computer Society.

[5] Svetlik, M., Leonetti, M., Sinapov, J., Shah, R., Walker, N.,

and Stone, P. (2016). Automatic curriculum graph

generation for reinforcement learning agents.

[6] Faccin, J., Nunes, I., and Bazzan, A. (2017). Understanding

the Behaviour of Learning-Based BDI Agents in the Braess’

Paradox, pages 187–204. Springer International Publishing.

[7] Luo, L., Zhou, S., Cai, W., Low, M. Y. H., Tian, F., Wang,

Y., Xiao, X., and Chen, D. (2008). Agent-based human

behavior modeling for crowd simulation. Computer

Animation and Virtual Worlds, 19(3-4):271–281.

[8] Martinez-Gil, F., Lozano, M., and Fernandez, F. (2017).

Emergent behaviors and scalability for multiagent

reinforcement learning-based pedestrian models.

Simulation Modelling Practice and Theory, 74:117–133.

[9] Ng, A. Y., Russell, S. J., et al. (2000). Algorithms for

inverse reinforcement learning. In Icml, pages 663–670.

[10] Zhifei, S. and Meng Joo, E. (2012). A survey of inverse

reinforcement learning techniques. International Journal of

Intelligent Computing and Cybernetics, 5(3):293–311.

[11] Kohjima, M., Matsubayashi, T., and Sawada, H. What-if

prediction via inverse reinforcement learning. In

Proceedings of the Thirtieth International Florida Artificial

Intelligence Research Society Conference, FLAIRS 2017,

Florida, USA, May 22-24, 2017, pages 74–79.

[12] Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey, A. K.

(2008). Maximum entropy inverse reinforcement learning.

In AAAI, volume 8, pages 1433–1438. Chicago, IL, USA.

[13] Dvijotham, K. and Todorov, E. (2010). Inverse optimal

control with linearly-solvable mdps. In Proceedings of the

27th International Conference on Machine Learning

(ICML-10), pages 335–342.

[14] Levine, S., Popovic, Z., and Koltun, V. (2011). Nonlinear

inverse reinforcement learning with gaussian processes. In

Advances in Neural Information Processing Systems,

pages 19–27.

[15] Abbeel, P. and Ng, A. Y. (2004). Apprenticeship learning

via inverse reinforcement learning. In Proceedings of the

twenty-first international conference on Machine learning,

page 1. ACM.

[16] Natarajan, S., Kunapuli, G., Judah, K., Tadepalli, P.,

Kersting, K., and Shavlik, J. (2010). Multi-agent inverse

reinforcement learning. In 2010 Ninth International

Conference on Machine Learning and Applications, pages

395–400. IEEE.

[17] Surana, A. and Srivastava, K. (2014). Bayesian

nonparametric inverse reinforcement learning for switched

markov decision processes. In Machine Learning and

Applications (ICMLA), 2014 13th International

Conference on, pages 47–54. IEEE.

[18] Michini, B. and How, J. P. (2012). Bayesian nonparametric

inverse reinforcement learning. In Joint European

Conference on Machine Learning and Knowledge

Discovery in Databases, pages 148–163. Springer.

[19] Krishnan, S., Garg, A., Liaw, R., Miller, L., Pokorny, F. T.,

and Goldberg, K. (2016). Hirl: Hierarchical inverse

reinforcement learning for long-horizon tasks with delayed

rewards. arXiv preprint arXiv:1604.06508.

[20] Choi, J. and Kim, K.-E. (2012). Nonparametric bayesian

inverse reinforcement learning for multiple reward

functions. In Advances in Neural Information Processing

Systems, pages 305–313.

[21] Neal, R. M. (2000). Markov chain sampling methods for

dirichlet process mixture models. Journal of computational

and graphical statistics, 9(2):249–265.

[22] Torrens, P. M., Nara, A., Li, X., Zhu, H., Griffin, W. A., and

Brown, S. B. (2012). An extensible simulation

environment and movement metrics for testing walking

behavior in agent-based models. Computers, Environment

and Urban Systems, 36(1):1–17.

ⓒ 2019 Information Processing Society of Japan 8

IPSJ SIG Technical Report Vol.2019-ICS-194 No.6

2019/3/10

