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Abstract: Machine learning is a discipline with many simulator-driven applications oriented to learn 

behavior. However, behavior simulation it comes with a number of associated difficulties, like the lack of 

a clear reward function, actions that depend of the state of the actor and the alternation of different policies. 

We present a method for behavior learning called Contextual Action Multiple Policy Inverse Reinforcement 

Learning (CAMP-IRL) that tackles those factors. Our method allows to extract multiple reward functions 

and generates different behavior profiles from them. We applied our method to a large scale crowd simulator 

using intelligent agents to imitate pedestrian behavior, making the virtual pedestrians able to switch between 

behaviors depending of the goal they have and navigating efficiently across unknown environments. 

 

Introduction 

Simulation applications like traffic simulators or 

robotic manipulators, have been benefited from machine 

learning techniques since the arrival of the big data and 

deep learning. Crowd simulation are another example, and 

have been the object of interest because it can deal with a 

number of real-life problems in our society. Pedestrian 

simulation can help to the design of evacuation strategies 

and identifying risky situations in concrete scenarios like 

natural disasters or terrorist incidents as it can be seen in  

[1] or [2].   

Crowd simulators have been approached by diverse 

machine learning potential solutions as well, tackling 

different problems like trajectory planning, crowd micro 

behavior and others. In our case, we are interested in 

pedestrian simulation used for predicting business 

performance and city planning. However, walking 

behavior has not been the subject of so much research, 

mainly because its inherent characteristics: like any other 

living being behavior, it is goal driven, but its reward 

function is unknown, humans usually do not take the most 

optimal route, and even congestion can be seen as a 

positive factor [3]; also it is composed of different patterns 

that act at the same time, being able to switch the current 

goal for another.   

Inverse Reinforcement Learning techniques help in 

solving those issues, as they work by obtaining the hidden 

reward function from a set of observed behaviors provided 

by an expert. In our case we developed a variant of 

bayesian inverse reinforcement learning for multiple 

reward functions and adapted it to work with contextual 

actions, as the pedestrians are expected to show different 

behaviors depending on their current goal, and have 

different available actions depending on their location, 

having an exponentially large set of different actions. We 

called this method "Contextual Action Multiple Policy 

Inverse Reinforcement Learning", or CAMP-IRL. The 

technique allows to evaluate different sets of actions 

depending on the state of the pedestrian, and also extracts 

different behavior patterns called profiles. 

This work is organized as follows: Section 2 contains a 

review of previous work on reinforcement learning used 

for agent behavior and pedestrian simulators. Section 3 

presents our CAMP-IRL method, and section 4 describes 

our pedestrian simulator and the behavioral model of the 

agents generated by it. Section 5 presents our preliminary 

tests and discusses their results. Finally, section 6 contains 

the conclusions of our research. 

Related Work 

Apprenticeship learning methods have been widely 

used in intelligent agents' systems to train them to perform 

tasks in dynamic environments like [4] or [5]. We can 

observe strategies to emulate predefined driving behaviors 

in [6]. There are also works where agents are given a 

behavior cognitive model for pedestrians like in [7], [8] or 

[3]. However, in those works the behavior model is 

predefined by a designer, having a low degree of flexibility, 

being tied to its domain, or even escalating badly.  

An extra issue in simulating people's behavior is that the 

reward function governing their actions will be often 
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hidden. We can avoid this problem using inverse 

reinforcement learning (here on after IRL) because instead 

a reward function, it only needs a set of observed expert 

demonstration behaviors.  

IRL works well on domains where the reward function 

is hidden, being appropriate to model animal and human 

behavior [9]. IRL techniques work on domains that can be 

defined by a Markov Decision Process (MDP, from here 

on after) and are used to learn its hidden reward function. 

MDPs are defined by a tuple M = {S, 𝒜, 𝒯, γ , r}, where 

S is the state space of the model, 𝒜 is the set of actions 

that can be performed, 𝒯 is the transition function, which 

returns the probability of transition from one state to other 

given a concrete action, and usually is given in the form 

of a matrix, r is the reward function that generates a reward 

value from reaching a state, and γ is a discount factor, that 

applies when calculating accumulated reward through 

consecutive actions. In IRL, r is unknown so a set of expert 

trajectories T is used to obtain it, each one of the 

trajectories consisting on a sequence of states and actions 

pairs.  

We can find many different approaches to IRL, each one 

with its own characteristics and issues [10]. For example, 

we find a linearly solvable approach in [11], with a number 

of constraints in the MDP definition, or the Maximum 

Entropy method contained in [12], which works well when 

we do not have much information about the solution space. 

Other methods have obtained better results under certain 

conditions, like [13] which works on a subset of MDPs, 

but it does not match well with our domain, or [14] which 

deals with non-linear reward functions. 

Works using IRL to learn agent behavior are sparse but 

effective, as it is shown in [15] where driving styles are 

learned by an agent, or [16] where different agents work 

together for routing traffic. 

In our domain, we have the additional requirement of 

obtaining different patterns from the existing data. The 

task of obtaining multiple policies from the IRL process is 

a desirable characteristic, as the observed trajectories 

come from different pedestrians with different goals and 

creating a combined reward function for all of them would 

mix different behaviors that may not be optimal for a 

concrete goal or even be antagonistic to it. Other works 

have previously dealt with this aspect, like [17], showing 

how to switch between different MDP and obtain their 

related policy functions and works well extracting 

different behaviors. In [18] divides the data in smaller sub-

goals in order to obtain simple reward functions, and [19] 

describes a hierarchical method for selecting MDP 

partitions with different policies for each sub-MDP, which 

can be interesting for domains where the agent has a 

number of sequential small sub-goals. Our CAMP-IRL 

method is based in [20] which works extracting a number 

of clusters from the data, obtaining their reward and policy 

functions, but we include contextual actions that are 

different for each state of the MDP, used to avoid an 

explosion in the solution space by cutting redundant 

actions. 

The CAMP-IRL Method 

IRL techniques work on domains that can be modeled by 

a Markov Decision Process (MDP) but have hidden 

reward functions (the reward function dictates the gain 

from performing a given action in a given state). Hence, it 

is ideal to model human behavior, which usually is reward 

driven using  unknown reward functions. However 

human behavior is not only directed by only one goal but 

many, with different rewards that are managed at the same 

time, IRL has potential to learn different behavior patterns, 

but need some adaptation as works with single rewards 

and well defined actions.  

We based our method in a non-parametric Bayesian 

approach to the problem [20] extracting a number of 

clusters from the data, obtaining different reward and 

policy functions for each one of them. Also, we adapted 

the MDP to be able to work with this model in our domain 

including contextual actions for the agents, used to avoid 

an explosion in the solution space by cutting redundant 

actions. 

We define Contextual Action Multiple Policy MDP 

(CAMP-MDP) as an MDP {S, 𝒜, 𝒯, γ , ℛ} using the 

standard definition of S as the set of states, the transition 

function 𝒯(s, a, s’) from one state to another by executing 

an action, and γ as the discount factor. We also defined the 

super set 𝒜 (s) of actions as a function of a state s, and ℛ 

(s, a) as a super set of Reward functions where s is a state 

from S and a is an action from the set 𝒜 (s). This means 

that available actions are dependent of the state (i.e., 

contextual), because each location has a different number 

of possible paths to take; when translating the locations to 

states and paths to actions, there will be certain actions 

only available to certain states. We also do this in order to 

avoid a combinatorial explosion in the solution space, 

reducing the number of possible actions for each state. 

Finally, each state has a set of features, which influence 

how the reward function is calculated. 

The CAMP-IRL algorithm uses a Dirichlet process [21] 

to classify the trajectories into different groups we call 
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profiles, and then a reward function is calculated for each 

profile using a Bayesian approach to the IRL method. 

However, we modified it to be able to work with the 

CAMP-MDP considering that each state will have a 

different action set. The algorithm follows the next steps 

and formulas: 

1. Initialize the profile set C containing K elements and 

the reward set {𝑟}𝑘=1
𝐾

 

I. The initial clusters (profiles) and their reward 

function are randomized. The reward function 

consists in a weight vector containing the weights 

of all the map features. 

II. An initial policy is generated randomly from each 

reward. This policy consists in a vector containing 

the optimal action to perform for each node, and 

it is obtained by calculating the value of 

performing the most optimal action a from the 

available actions in the state s following the next 

function: 

𝑉∗(𝑠) =  𝑚𝑎𝑥𝑎∈𝒜(𝑠) ℛ(s, a) + γ ∑ 𝒯(s, a, s′) 𝑉∗(𝑠′)

𝑠′𝜖S

 

2. For each element m in the trajectory set, select a new 

class candidate 𝑐𝑚
∗  using the following rule: 

I. If the trajectory has no assigned class, generate a 

new one, and a reward function for it. 

II. If it has one, obtain the most populated profile. 

III. Assign the trajectory to the new class with 

probability 

𝑃(𝜒𝑚|𝑐𝑚
∗ )

𝑃(𝜒𝑚|𝑐𝑚)
 

3. For each class k: 

I. Create a weight vector candidate 

𝑟𝑘
∗  =  𝑟𝑘 + 

𝜏2

2
∇ log(𝑃(𝜒𝑘|𝑟𝑘)𝑃(𝑟𝑘)) +  𝜏𝛼 

where τ is a scaling factor and 𝛼  is a random 

number sampled from a multinomial distribution 

(0,1). 

II. Update the weight and value vectors with 

probability  

𝑃(𝜒𝑘|𝑟𝑘
∗)𝑃(𝑟𝑘

∗)𝑔(𝑟𝑘
∗, 𝑟𝑘)

𝑃(𝜒𝑘|𝑟𝑘)𝑃(𝑟𝑘)𝑔(𝑟𝑘, 𝑟𝑘
∗)

 

Being the function g the gradient from the 

Langevin algorithm, calculated as follows: 

 

𝑔(𝑥, 𝑦) =  
exp (−

1
2𝜏2 ‖𝑥 − 𝑦 −

𝜏2

2
∇𝑙𝑜𝑔𝑃(𝜒𝑘|𝑥)𝑃(𝑥)‖)

(2𝜋𝜏2)𝐷/2
 

where τ is a scaling factor. 

4. Repeat the process from (2) until convergence. Once 

finished, it is possible to use the obtained set of 

optimal policies for each profile to calculate the value 

vector as follows: 

𝑉𝜋(𝑠) =  ℛ(s, π) + γ ∑ 𝒯(s, π, s′) 𝑉𝜋(𝑠′)

𝑠′𝜖S

 

This value represents the expected reward of 

executing that policy on a node s. 

 

In order to use this method for pedestrian prediction, 

we created a CAMP-IRL module that interfaces with a 

crowd simulator called CrowdWalk where each pedestrian 

is represented by an agent. CrowdWalk can simulate 

movements of more than 1 million agents in a diverse 

array of locations, like multi-storied buildings or large city 

areas. Maps can be created by hand or obtained from open 

source formats, like Open Street Maps, and it is possible 

to control agents from external modules. 

The model of the map used by CrowdWalk consists 

in a custom xml that describes the map in the form of 

network where nodes represent intersections and links 

represent paths, which in our CAMP-MDP will represent 

as well as states and actions, respectively. The contextual 

actions are created using the number of links each node 

has, with one action per link, being semantically different 

for each node; thus, the first action in certain state will be 

different from the first action in another one, but will have 

the same label. Links also have length and width attributes 

influencing how long the agents need to walk from a end 

to another and how many agents can walk in parallel. 

Nodes have features describing what facilities are on that 

location, which are represented by the state features in the 

CAMP-MDP.  

CrowdWalk has an Agent handler that generates one 

agent per pedestrian, using a model with dual behavior: 

micro and macro behavior [22]. Micro behavior in in 

charge of the collision detection and the agent's velocity, 

adjusting itself to the crowd. The macro behavior deals 

with the agent's route to its goal. Our CAMP-IRL module 

takes care of the macro behavior. We called the agents 

created by this module CAMP-IRL Agents. 

The inputs of the CAMP-IRL method are the map 

used by CrowdWalk, which is converted into a CAMP-
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MDP, and a file containing the trajectories we want to train. 

Once the training process finishes, we obtain two files: 

one containing the weights of the features of each 

discovered profile, and another containing the value of 

each map node (as defined in the step 4 of the algorithm) 

for each profile. The weight and value files will be used in 

the simulation by the CAMP-IRL agents to decide which 

path to take, and to select the behavior profile they should 

have. 

 The training method is performed before the 

simulation as a pre-processing task, so even if it can take 

a long time depending of the complexity of the map it does 

not represent a big impact in the simulation speed as the 

decision process of the agents once we have these files is 

enough fast to use it in real time. 

 

The CAMP-IRL Agents 

Once the simulation starts, the Agent Controller Module 

generates the CAMP-IRL agents. The agent behavior is 

directed using three input files: the first two files are the 

weight and value files from the CAMP-IRL process we 

described in the previous section, and the third one 

consists in a goal database containing the locations they 

will “want” to visit. Those can be generic features, like 

“visiting a restaurant”, or concrete nodes from the map, 

like “visiting the node labeled as nd00327”. Also, this file 

contains an evacuation point, where the agent will go after 

completing its goals.  

The decision making process of the CAMP-IRL agent is 

shown in Figure 1. First, the agent selects the profile that 

has the highest weight for the features associated to its 

goals. As the agent may have multiple goals and also the 

weights may be similar, the agent first selects a set 

composed of the profiles that are within a threshold from 

the one with the highest weight. From our experiments, we 

concluded that a 10¥% of threshold gives the best results. 

The set of selected profiles forms the agent's profile list. 

Once completed this step, the agent chooses from its list 

the profile with the highest value in its starting node 

according to the value file. 

Whenever an agent enters in a node, it checks if that 

node contains a goal in its list or not. In case it is not a goal, 

the agent compares the value of the nodes connected to the 

current one and chooses one within the set of best valued 

ones. This set is created again using a threshold range from 

the highest valued node, and also a threshold of a 10¥% 

laid the best results. The selection of the best valued nodes 

ignores the node the agent is coming from, under the 

rationale of the agent coming from a node with an already 

high value and having to conform with lower values after 

that. Once the best node to go is selected, the agent moves 

to it. 

If the agent is in a node containing a goal, then the 

agent enters in a waiting state, simulating the agent taking 

time in satisfying its goal. The goal satisfaction time is 

given by another training process, apart from the CAMP-

IRL process, that consists in a linear regression method to 

Figure 1: The algorithm followed by the CAMP-IRL agents. Once they reach a map node, they choose their next node by comparing 

the values of the available destination nodes. If they satisfy a goal, they change their profile and search for another goal. Also they 

calculate the time they should spend in the goal nodes and leave the map when all of them were satisfied. 
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learn from the waiting times present in the trajectories, 

estimating the time from the node features. Once the goal 

is satisfied, the agent verifies if it has remaining goals. If 

all the goals have been satisfied, the agent evacuates by 

going directly to the evacuation point (this movement is 

no more behavioral, and is performed by calculating the 

shortest route to the evacuation node). 

If there are still unsatisfied goals, the agent proceeds 

to select a new profile. However, before selecting one it 

updates its profile's list, as it has fewer goals now and 

some profiles are not useful anymore. After deleting those 

profiles related with already satisfied goals, the agent 

chooses the profile in the same way that it did initially.  

Additionally, the agent has a timeout in case it spends 

too much time wandering across the map without reaching 

any goal. If the timeout finishes, the agent will select a 

new profile, but this time the method it uses to do it is 

different. Instead of selecting a profile from its profile's 

list, the agent selects randomly another profile from the 

whole set, with the only condition that it has to be different 

than the previous one. This represents the agent deciding 

that its previous actions where not advancing it to the goal, 

and it has to ``explore'' the map using a different strategy. 

 

Experimental Results 

We performed a set of tests to compare our method with 

others. We wanted to test the efficiency of the agents in 

locating goals, so we measured the time the agents took in 

satisfying 5 goals belonging to different pedestrian 

profiles whose trajectories were previously trained using 

synthetic data. We also wanted to compare how equivalent 

were their trajectories to the trained ones in terms of being 

“human-like”, so we also recorded their map coverage and 

trajectory information, measuring how many nodes the 

agents traversed in their routes.  

To contrast the performance of our agents, we 

prepared other pedestrian agents using four different IRL 

methods; it is important to note that all of them are agents 

that navigate the map with no information of its layout, 

aside of the data from their learning technique. Those four 

agents were: one agent that chooses randomly its path, 

called “Random Agent”, used as a baseline; one agent 

using a different IRL method that extracts only a unique 

policy and reward function from the whole set of 

trajectories and does not use contextual actions (this 

means it has a fix set of actions and only one profile) called 

“NC-Single IRL Agent”; another agent that uses the same 

single profile IRL technique, but this time modified by us 

to include contextual actions into its MDP, called “Single 

IRL Agent”; and finally one agent that extracts multiple 

profiles but with no contextual actions called “Multi-IRL 

Agent”. Both Single IRL Agent and NC-Single IRL Agent 

use the maximum entropy algorithm from [12], chosen 

because it works well when the agents do not have much 

information about the layout of the map, and the Multi-

IRL agent uses the method shown in [20] in which our 

CAMP-IRL algorithm is based as well.  

We trained all the agents (except Random Agents) 

with 150 trajectories that could be divided into five 

profiles: “restaurant” for pedestrians that are going 

looking for a place to eat; “books” for pedestrians that are 

going to buy books, magazines or other paper ware; 

“cinema” for pedestrians going to the cinema or similar 

entertainment places (theater, games, etc.); “shopping” for 

pedestrians that want to buy clothes; and finally 

“supermarket” that covers pedestrians going to 

supermarkets or convenience stores. The trajectories were 

created by artificial methods due to the lack of real data in 

this domain, but they were designed to be as realistic as 

possible, using real trajectories as inspiration. We also 

designed the trajectories to be slightly noisy, with the 

agents having small detours and wandering a bit while 

they were going to their goals in order to contain enough 

variation and also to not be always the most optimal. The 

map we used was a portion of Tokyo from the Toshima 

ward area, containing commercial areas, entertainment 

spots, a train station, and residential zones. The map 

contained a total of 14 different features, and the trained 

routes covered around of the 67% of the map and an 87% 

of the features.  

Once we trained with the trajectories, we obtained a 

total of 7 profiles for our CAMP-IRL agents. We 

compared the obtained features weights with the 

information of the map and we observed that from these 7 

profiles, 3 were strongly tied to 3 of the original profiles 

we trained, and the other 4 were combinations of the 5 

original profiles. 

Then, we prepared different simulations using the 

CAMP-IRL Agents, Random Agents, NC-Single Agents, 

Single IRL Agents and Multi-IRL Agents. The simulator 

was set under the same conditions for each type of agent: 

150 generated agents, each one with five goals, one for 

each one of the original profiles. Each simulation was 

executed five times in order to average the results. We also 

configured the agents to not taking any time in satisfying 

the goals and keep walking immediately to avoid 

unwanted noise in the results; the trained trajectories also  

ⓒ 2019 Information Processing Society of Japan 5

 
IPSJ SIG Technical Report Vol.2019-ICS-194 No.6

2019/3/10



were designed with no goal satisfaction delays. 

Table 1 shows the average time in seconds each type 

of agent took to satisfy their goals, and also the average 

clear times of the five sets of 150 agents in hours, minutes 

and seconds. Our agents obtained clearly better times than 

the rest. We see small differences between Single and NC-

Single agents average times with the NC-Single agents 

having slightly better results, albeit having more variance 

in their results, causing longer clear times. 

However, the advantage of adding contextual actions 

is more notable when comparing with Multi-IRL Agents. 

We also observed high variance values in general, mainly 

due to the agents micro behaviors that make them slow 

their movements if the paths are too crowded. This effect 

was observed in the training routes as well and causes the 

first agents to finish very fast, as the streets are empty, but 

as soon as they get crowded, the agents velocity drops 

until the pedestrian congestion disappears. 

Even if Multi-IRL Agents perform way better than the 

two single profile agents and obtain a good performance 

in general, CAMP-IRL Agents take much less time to 

finish. We think that the effect of contextual actions 

increases greatly when the agents have to choose between 

different profiles, taking advantage of its flexibility. Thus, 

not only CAMP-IRL Agents reduced their variance and 

total clear times like Single IRL Agents did with respect to 

their ``non-contextual'' versions, but they also improved 

greatly their average times, being almost half of the results 

obtained by Multi-IRL Agents. 

Table 2 shows the average number of different nodes 

visited by the whole group of 150 agents, the average 

number of different nodes visited per agent in its trajectory, 

and the average trajectory length for each type of agent. 

As we can see, CAMP-IRL Agents not only beat the others 

in the time to clear all the goals but also they cover less of 

the map, meaning that their paths are more efficient and 

they wander less than the others. We noted too that in the 

trained routes the coverage per agent was similar to our 

CAMP-IRL agents. The trajectories of our agents were 

also shorter, being the most similar to the trained 

trajectories than the other agents.   

We identified one aspect we want to improve in future 

versions of the training system: we observed that some 

useful information from the map and the routes was not 

being reflected in the learning process: in one of our 

experiments, one of the goals was a scarce feature that 

only was present in four nodes of the map; the agents were 

able to find it, but the wandered excessively before to do 

it. The main reason was that the agents were switching 

between different profiles after reaching several times 

their timeout without finding any goal. After analyzing 

why this was happening, we found that this situation was 

due to the coincidence of two factors: scarcity of the goal 

feature and having only a few and indirect ways to reach 

it. In the example, in order to reach one of those features, 

agents had to cross from one area of the map to another 

Agent Individual Avg. Std. Dev. Avg. Total Clear Time 

CAMP-IRL  3319.99 3006.67 5:57:21 

Multi IRL 5778.09 6141.29 11:22:58 

Single IRL 8570.52 7417.15 11:45:35 

NC Single IRL 7326.99 7806.32 14:03:45 

Random agent 32641.40 31610.99 51:05:26 

Agent Map Coverage Avg. per Agent Avg. Trajectory Length 

Trained routes 95 31 41 

CAMP-IRL  128 26 78 

Multi IRL 133 34 165 

Single IRL 140 37 209 

NC Single IRL 140 38 178 

Random agent 140 89 852 

Table 1: Map coverage in number of visited nodes (Total nodes: 140). 

Table 1: Clear Times of the Agents 
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which could only be entered by three points between them, 

but those points were not very remarkable in terms of 

value for the selected profiles to reach that feature. Thus, 

agents near that feature were conducted by their profiles 

to go towards it, but when reaching the mentioned area of 

the map they could not find a crossing point that was far 

away. We plan to solve this issue by improving the 

learning process by adding enriched information to the 

map, establishing semantic relations between nodes of the 

map like those crossing points and the featured nodes. 

Also, we want improve our agents to be able to move 

across maps that have not been trained, using training 

routes from a different one. We will improve the agents 

with the capability to estimate the value of a node using 

the formula we described in the fourth step of the CAMP-

IRL algorithm in section 3. This improvement will have a 

negative impact in the performance of the system (in terms 

of simulation velocity); however, it also will increase 

significantly its usefulness, as only training once would be 

enough to simulate the pedestrians, as long as those 

pedestrians are from the same distribution (similar 

background, same potential profiles, etc.). We want to 

explore this potential improvement as even an 

approximation to this solution could be beneficial. 

 

Conclusions 

This work presents an IRL technique we called 

Contextual Action Multiple Policy Inverse Reinforcement 

Learning, or CAMP-IRL, designed to learn pedestrian 

behavior. This method has the novel feature of using 

different sets of actions for each state combined with the 

generation of multiple profiles, reflecting the different 

behaviors observed in the training data. We applied the 

CAMP-IRL technique to an agent-based pedestrian 

simulator using learned profiles to control pedestrians' 

behavior.  

Our method converts a city map into a CAMP-MDP 

where the states represent locations on the map and the 

actions symbolize movements between locations, being 

contextual so they have different meaning on each state. 

The model is trained using the data from previously stored 

pedestrian trajectories, and produces two data structures: 

the features weights and the map nodes value sets. These 

structures contain different values for each extracted 

behavior profiles. The profiles are used by the agents to 

traverse the map, choosing the profile that fits better their 

goals. The CAMP-IRL agents are also able to switch 

profiles whenever they have to obtain a different goal or 

when they consider that their profile is not good enough to 

reach the current goal. 

We prepared a set of experiments in order to compare 

the performance of our agents with other existing methods 

and check if the obtained profiles are coherent with their 

intended behavior. Our CAMP-IRL agents performed way 

better than others trained with the same data but using 

single profile IRL methods or multiple profile methods 

with no contextual actions and got the best clear times in 

the simulator. We noticed also that having multiple 

profiles and contextual actions have a positive synergy, 

yielding better results when these two improvements are 

combined than if we apply them individually and add the 

performance gain. The CAMP-IRL agents also have more 

optimal routes, having shorter routes than the rest, and 

having results similar to the trained ones.  

The results of our experiment opened interesting 

research paths, and further work is required to give light 

to them: as our next step, we plan to improve the training 

method by adding a pre-processing stage to enrich the 

information of the map. We observed that under certain 

conditions it was difficult for the agents to reach certain 

goals due to the features weight not being properly 

transferred over the distance. We want our method to be 

able to automatically modify the features of a node or add 

new ones to it in order to reflect how much influence has 

the node to the feature globally, even if such feature is not 

actually present in it. We will do it by creating virtual 

relations between nodes and influence areas for the 

features. We also want to improve our method with the 

ability to work with training data from different maps, by 

calculating an estimated value of the map nodes in real 

time. 

Finally, we have plans to contrast the behavior of our 

agents with real pedestrians data in further experiments. In 

order to do this and due to legal and logistic issues in 

tracking crowds effectively, we want to apply our system 

to more manageable domains, like public events 

(concretely fireworks festivals, which have been used 

before to collect data for CrowdWalk) where it is possible 

to enact certain degree of control and surveillance to the 

crowd, or customer behavior inside department stores or 

supermarkets. 
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