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Parameterized Algorithms for Tutte Polynomial
Specializations in Graph Orientations

Farley Soares Oliveira1,a) Hidefumi Hiraishi1,b) Hiroshi Imai1,c)

Abstract: The Tutte polynomial is a graph invariant polynomial T (X,Y) which encodes a broad-spectrum of combi-
natorial information about a graph. In particular, the number of acyclic orientations and the number of totally cyclic
orientations of a graph is given by the evaluations T (2, 0) and T (0, 2), respectively. In this paper, we provide algo-
rithms based on binary decision diagrams to enumerate these orientations (and thus count T (2, 0) and T (0, 2)), whose
runtime is given by O∗(2(pw2 /4)+o(pw2)), where pw denotes the pathwidth of the graph. When viewed as matroids, it is
well-known that acyclic and totally cyclic orientations are dual (while when viewed as graphs they can only be said
to be viewed as dual in the planar case). The similarity of our algorithms for both orientations suggests a connection
between them when viewed in light of their matroid counterparts and their evaluation by Tutte polynomials.
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1. Introduction
An orientation of the edges of a graph G is said to be acyclic

if none of its edges is contained in a directed cycle, and is said to
be totally cyclic if all of its edges are contained in at least one di-
rected cycle. When G is planar, these two orientations are dual in
the sense that acyclic orientation can be transformed in a totally
cyclic orientation by by orienting each dual edge by a 90 clock-
wise turn from the corresponding primal edge, and vice-versa.

These two types of orientation are known to be related to sev-
eral combinatorial objects. For example, if we denote the chro-
matic polynomial of G by χG (i.e. χG(k) counts the number of
k-colorings of G), then there exists a non-trivial combinatorial
interpretation of (−1)nχG(−λ), where λ > 0, and, in particular,
(−1)nχG(−1) equals the number of acyclic orientations of G [19].
On the other hand, if we denote the flow polynomial of G by χ∗G
(i.e. χ∗G(k) counts the number of nowhere-zero k-flows of G), then
it is known that χ∗G(−1) equals the number of totally cyclic orien-
tations of G [10]. For a given vertex v of G, the linear coefficient
of χG equals (−1)n+1 times the number of acyclic orientations of
G such that its only sink is the vertex v [4]. Any graph has at
least as many acyclic orientations as Hamiltonian paths, which
implies that being able to compute the number of acyclic orienta-
tions can be useful for establishing lower bounds on the compu-
tational complexity of determining whether vertex-coloring of a
graph is valid and other related decision problems [12]. Further-
more, these results have been extended to hyperplane arrange-
ments [4], point configurations and polytopes [8], among other
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interpretations related to matroids.
Acyclic and totally cyclic orientations are also related to each

other and to other combinatorial entities through the Tutte poly-
nomial, TG(X,Y), a bivariate generalization of the chromatic and
flow polynomials. In particular, they can be computed by evaluat-
ing TG(2, 0) [19] and TG(0, 2) [10], respectively. For (x, y) ∈ C2,
it is known that evaluating TG(x, y) exactly is #P-hard unless (x, y)
is an element of {(1, 1), (−1,−1), (0,−1), (−1, 0), (i,−i), (−i, i),
( j, j2), ( j2, j)}, where j = exp(2πi/3). Several fixed-parameter
tractable (FPT) algorithms have been developed with the aim of
evaluating TG(x, y) for a given (x, y), where the fastest ones have
time complexity O∗(2tw2 +o(tw2)) [14] with respect to the treewidth
tw of the graph, and O∗(2tw log tw) [18] with respect to the path-
width pw of the graph, respectively. Here, the notation O∗ ignores
polynomial terms in n.

The Merino-Welsh conjecture [13], originally stated in 1999,
corroborates the importance of the relationship between acyclic
and totally cyclic orientations. This conjecture states that, for any
bridgeless, loopless graph, both the number of acyclic and the
number of totally cyclic orientations is bigger than the number
of spanning trees. In terms of the Tutte polynomial, it can also
be stated as max{TG(2, 0),TG(0, 2)} ≥ TG(1, 1). Since the Tutte
polynomial is also defined for matroids, the conjecture can nat-
urally be extended to matroids. It can also be further extended
by considering the convexity of the Tutte polynomial: the con-
vex version of the Merino-Welsh conjecture states that for any
matroid M, TM(x, 2 − x) is convex for x ∈ [0, 2]. Some partial
results of the conjecture have been recently obtained: it holds for
(i) n-vertex graphs with either at most 16n/15 edges or at least 4n
edges [20], (ii) 3-connected graphs with some lower bound on de-
gree [11], and (iii) sereies-parallel graphs [15]. The matroid ver-
sion has been affirmatively settled for a class of coloopless paving
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matroids [3]. Note that, while it is believed (yet not proved) that,
asymptotically speaking, almost all matroids are paving, almost
all graphs (or, graphic matroids in more precise terms) do not fall
into the class of paving matroids.

The remaining part of this paper is structured as follows: in
Sec. 2, we provide the necessary background related to graph and
matroid orientations, and give a brief introduction to the Tutte
polynomials and binary decision diagrams (BDD). In Sec. 3, we
describe our BDD-based algorithms to enumerate acyclic and
totally cyclic orientations. In Sec. 4, we prove that our algo-
rithms enumerate the enumerations correctly and give a bound
of O∗(2pw2 /4+o(pw2)) on the number of nodes of the BDD.

2. Preliminaries
If n is a positive integer, then [n] denotes the set {1, 2, . . . , n}. If

S is a given set, 2S denotes its power set, i.e. the set of all subsets
of S .

2.1 Graph Orientations
Given a graph G, we denote its set of vertices and its set of

edges by V(G) and E(G), respectively. Furthermore, we write
n(G) := |V(G)| and m(G) := |E(G)|. When the graph G is clear
from the context, we may simply write V , E, n and m.

For each edge e = {u, v} ∈ E(G), where u, v ∈ V(G), we can
orient e, obtaining either the oriented edge (u, v) or the oriented
edge (v, u). Any directed graph D obtained by orienting all edges
e ∈ E(G) is said to be an orientation of G. Since each edge of G
can be oriented in two ways, there exist 2m orientations of G.

Let A ∈ 2E(G). A partial orientation P of G is an edge-disjoint
union of an orientation of the subgraph induced by A and the sub-
graph induced by E \ A. Observe that there exist 2m+1 − 1 partial
orientations of G. We will, in general, denote the set of oriented
edges of P by A(P). An acyclic orientation is an orientation in
which no edge belongs to a directed cycle. A totally cyclic orien-
tation is an orientation in which each edge belongs to at least one
directed cycle.

2.2 Matroid Orientations
The concepts of orientation, acyclic orientation and totally

cyclic orientation can be extended to oriented matroids. We pro-
vide a simplified introduction to these concepts below. For a more
detailed account, we refer the reader to [9].

A matroid M = (E, ρ) is a finite set E provided with a rank
function ρ : 2E −→ N satisfying:
( 1 ) 0 ≤ ρ(S ) ≤ |S | for each S ∈ 2E .
( 2 ) ρ(S 1) ≤ ρ(S 2) for each S 1, S 2 ∈ 2E where S 1 ⊆ S 2.
( 3 ) ρ(S 1)+ρ(S 2) ≥ ρ(S 1∪S 2)+ρ(S 1∩S 2) for each S 1, S 2 ∈ 2E .
We say that a subset S of E is independent if ρ(S ) = |S |. A circuit
is a minimal non-null, non-independent set. The dual matroid of
M, denoted byM∗ = (E, ρ∗), is the matroid defined on E where

ρ∗(S ) = |S | + ρ(E \ S ) − ρ(E), for each S ∈ 2E .

It can be easily verified that the dual matroid satisfies three condi-
tions given above. We then say that a subset S of E is a cocircuit
if it is a circuit in the dual. Here we note that circuits in matroids
correspond to cycles in graphs.

Graphs and matroids are related by the the following fact: each
graph G has a canonical matroid M(G) associated to it, called the
graphic matroid of G, defined on E(G), with ρ(S ) = n−c for each
S ∈ 2E(G), where c denotes the number of connected components
of the graph induced by S . In general, a matroid is called graphic
if it is the graphic matroid of some graph. A co-graphic matroid
is a matroid whose dual is a graphic matroid. It can be shown that
a matroid is graphic and co-graphic simultaneously if and only if
it is the graphic matroid of a planar graph [21].

From here on, in order to simplify the exposition, we restrict
ourselves to linear matroids over the reals, i.e. matroids that can
be expressed asMA = (E,JA), where E = [n], A = (a j) ∈ Rm×n

and, for each S ∈ 2E , JA(S ) denotes the number of linearly inde-
pendent vectors in {a j : j ∈ S }.

We can then define the analog of orientations and cycles in
graphs for matroids. An orientation of the matroidMA = (E,JA)
induced by the vector σ ∈ {−1,+1}E is the matroidMA(σ), where
A(σ) := (σ( j) a j) j∈E .

We can also define the analog of acyclic and totally cyclic ori-
entation for matroids. Let S ∈ 2E . A circuit (a j) j∈S in MA is
positive if and only if∑

j∈S

λ ja j = 0 for some λ j > 0.

One can verify that every positive circuit inMA is a positive co-
circuit in its dual MA

∗. We then say that MA(σ) is acyclic if it
contains no positive circuit, and it is totally cyclic if every ele-
ment ai, where i ∈ E, belongs to some positive circuit.

Acyclic and totally cyclic orientations of matroids are related
by the following relation: an orientation MA(σ) is acyclic if and
only if it dualMA(σ) is totally cyclic [16]. This also holds when
we restrict ourselves to planar graphs instead of linear matroids in
general. However, unlike in graphs, the concept of dual is defined
for any matroid and not only those which are planar.

2.3 Tutte Polynomial
Each matroidM has an important bivariate polynomial associ-

ated to it, called its Tutte polynomial, defined as

TM(X,Y) =
∑
S∈2E

(X − 1)ρ(E)−ρ(S )(Y − 1)|S |−ρ(S ),

where the definition extendeds to Tutte polynomial of graphs by
considering their graphic matroids. Some notable properties of
Tutte polynomials are: TM(X,Y) = TM∗ (Y, X) for all matroids
M; TM(2, 0) counts the number of acyclic orientations of the ma-
triod (or graph) M; and TM(0, 2) counts the number of totally
cyclic orientations of the matroid (or graph)M.

2.4 Binary Decision Diagrams
In this technical report, we will use a data-structure known as

binary decision diagram (BDD) to efficiently enumerate all the
acyclic and totally cyclic orientation of graphs. BDDs were cre-
ated with the intention of compactly representing Boolean func-
tions in the seminal paper [2]. Sekine, Imai, Tani [18] proposed
constructing the BDD in a top-down manner, instead of the tra-
ditional bottom-up fashion given in [2], and we follow the same
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approach in this report.
By using such an approach, our algorithms, to be described in

Sec. 3, construct the BDDs of all acyclic and all totally cyclic

orientations of graph in time O∗(2
pw2

4 +o(pw2)).
Since every path decomposition is also a tree decomposition,

the pathwidth is no smaller than the treewidth for any graph.
Thus, the algorithm provided by Noble to count the number of
acyclic and totally cyclic orientations of a given graph (by eval-
uating the Tutte polynomial) [14], which takes O∗(2tw2 +o(tw2))
time, has better time complexity than the one provided in this
report. However, enumerating (i.e. listing) all enumerations is
a harder problem than simply counting. Furthermore, there are
several advantages in using BDDs to represent the Boolean func-
tions facyc and ftcyc over simply counting or even enumerating
their solutions. For example, by using BDDs, one is able to sam-
ple solutions to these functions such that each of them is equally
likely, compute their reliability polynomial and perform opera-
tions on them while giving each edge a weight, among other ad-
vantages [7].

3. Algorithm for Enumeration of Acyclic and
Totally Cyclic Orientations

The two Boolean functions we consider for our BDD-based
algorithms are the ones described as follows: let G be a graph,
fix any ordering of the set of vertices V , and take a characteristic
vector v ∈ {0, 1}E to indicate the digraph obtained by substituting
{u, v} by (u, v) if v({u, v}) = 0 and by (v, u) otherwise, for each
{u, v} ∈ E where u < v. The Boolean functions we consider are
facyc : {0, 1}E → {0, 1} which takes the value 1 for acyclic orien-
tations and 0 otherwise, and ftcyc : {0, 1}E → {0, 1} which takes
the value 1 for totally cyclic orientations and 0 otherwise.

Definition 3.1 (Elimination Front) Let P be a partial orien-
tation. We say that the elimination front of P, denoted by α(P), is
the set of vertices which are adjacent to at least one edge in E(P)
and one directed edge in A(P).

Definition 3.2 (Reachability Relation) Let P be a partial
orientation of G. We say that the reachability relation of P is
the binary relation RP on α(P) given by

(uRPv⇐⇒ u , v and ∃ directed path from u to v in G[A(P)]),

for each (u, v) ∈ α(P)2.
From a graph G and an ordering e1, e2, . . . , em of its edges, we

construct the BDD for acyclic orientations and totally cyclic ori-
entations as shown in Fig. 1.

We show an example of how the algorithm works in Fig. 2.

4. Correctness and Running Time
As we can see in Fig. 2, our algorithms proceed by merging

nodes of the BDD. In a BDD, we are allowed to merge two nodes
when they are at the same level and, given the same remaining
part of the Boolean function, they output the same value.

Proposition 1 (Correctness for Acyclic Orientations) At
any given level of the BDD for acyclic orientations, we are
allowed to merge the partial orientations Pi and P j if RPi = RP j

and both contain no directed cycles.
Proof: Let α := α(Pi) = α(P j). For an arbitrary orientation of the

remaining undirected edges, let Di,D j be the digraphs obtained
from Pi, P j. By symmetry, it is sufficient to prove that if Di is
cyclic, then D j is also cyclic. Assume Di contains a directed cy-
cle C. This cycle must necessarily pass through α, otherwise it
would follow that D j is acyclic. We can exchange the directed
path C ∩ A(Pi) by the directed path C ∩ A(P j) in the cycle C to
obtain a new cycle C′ of D j. �

Proposition 2 (Correctness for Totally Cyclic Orientations)
At any given level of the BDD for totally cyclic orientations,
we are allowed to merge the partial orientations Pi and P j if
RPi = RP j and, for each one, all directed edges participate in
at least one directed path connecting vertices of the elimination
front.
Proof: Let P denote a partial orientation in which all directed
edges participate in at least one directed path connecting vertices
of α(P) in the BDD, and let D(P) denote the digraph resulting
from a fixed, arbitrary orientation of E(P). To prove the theo-
rem, it is sufficient to show a map s which takes each P to a
simplified version s(P) in such a way that (i) D(s(P)) is totally
cyclic iff D(P) is totally cyclic, and (ii) D(s(P)) is totally char-
acterized by RP. We construct the map as follows: we initially
perform vertex identification of each of the cycles of G[A(P)],
obtaining s1(P). Since the elements of any pair of vertices of a
cycle are mutually reachable, we have that D(P) is totally cyclic
iff D(s1(P)) is totally cyclic. We then define s(P) from s1(P) by
setting A(s(P)) := {(u, v) ∈ α(s1(P))2 : uRs1(P)v} and deleting
the (newly) isolated vertices not contained in α(s1(P)). It fol-
lows from the definition that D(s(P)) is completely characterized
by RP. Let α := α(s1(P)) = α(s(P)). To prove that a neces-
sary condition for D(s1(P)) to be totally cyclic is that D(s(P))
is totally cyclic (sufficiency is immediate), we proceed by con-
tradiction. Assume D(s1(P)) is totally cyclic, but there exists
v0, vl ∈ α (v0 , vl) such that v0Rs(P)vl and there exists no path from
vl to v0 on D(s(P)). Note that v0Rs(P)vl implies that v0Rs1(P)vl,
and thus there exists a directed path (v0, v1), (v1, v2), . . . , (vl−1, vl)
contained in A(s1(P)). Since all edges in A(s1(P)) are con-
tained in some cycle after the orientation, there must exist
paths bi, pi, ai, where ai, bi are vertices and pi is an arbitrary
length path, contained in E(s1(P)) and taking each vi to vi−1

(i = 1, 2, · · · , l) after the orientation. It follows that the path
(vl, bl), pl, (al, vl−1), (vl−1, bl−1), . . . , (a2, v1), (v1, b1), p1, (a1, v0) in
D(s(P)) (up to vertex identification of cycles) connects vl to v0,
which is a contradiction, completing the proof. �

The size of a BDD is defined to be its number of nodes. Many
operations that we may want to perform on BDDs grow with its
size, so it is in our best interest to keep it as small as possible. It is
a well-known that the size of the BDDs depends on the ordering
of the Boolean variables [2]. In our case, the Boolean variables
are represented by the edges of G.

We propose an approach using path decompositions of graphs
to find an ordering of edge. This approach allows us to bound the
size of the resulting BDD, as will be seen below.

First we define (proper) interval graphs. Given n intervals on
the real line, an interval graph is their intersection graph, i.e., each
interval is represented by a vertex and two vertices are connected
by an edge iff the two corresponding intervals intersect. A proper
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Algorithm 1: Enumerate all acyclic orientations
input : Graph G

Ordering of the edges e1, e2, . . . , em
output: BDD enumerating all acyclic orinetations

1 Add the node G to the 0-th level;
2 for k ∈ [m] do
3 Add all the partial orientations obtained by orienting the edge

ek of each node of the (k − 1)-th level, as well as information
about each partial orientation’s parent, to a temporary set Tk;

4 For each node P in Tk , if P contains any directed cycle, add P
to the k-th level (from its parent), map it to 0 and set
Tk := Tk \ {P};

5 For each subset S of Tk whose elements possess the same
reachability relation, choose one element of S and add it to
the k-th level (from its parent);

6 In the m-th level, map the remaining nodes to either 0 or 1

Algorithm 2: Enumerate all totally cyclic orientations
input : Graph G

Ordering of the edges e1, e2, . . . , em
output: BDD enumerating all totally cyclic orientations

1 Add the node G to the 0-th level;
2 for k ∈ [m] do
3 Add all the partial orientations obtained by orienting the edge

ek of each node of the (k − 1)-th level, as well as information
about each partial orientation’s parent, to a temporary set Tk;

4 For each node P in Tk , if P contains an directed edge which is
not contained in any directed path connecting vertices of
α(P), add P to the k-th level (from its parent), map it to 0 and
set Tk := Tk \ {P};

5 For each subset S of Tk whose elements possess the same
reachability relation, choose one element of S and add it to
the k-th level (from its parent);

6 In the m-th level, map the remaining nodes to either 0 or 1

Fig. 1 BDD-based algorithms to enumerate all acyclic and totally cyclic orientations of a given graph.
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Fig. 2 (Left) Binary decision tree generated by the cycle graph with four vertices C4. The edges are
ordered as follows: {1, 2} < {1, 3} < {2, 4} < {3, 4}. Solid and dotted lines indicate the edge is ori-
ented from smallest to biggest and from biggest so smallest vertex, respectively. (Center) Reduced
binary decision diagram used to enumerate acyclic orientations constructed using our algorithm.
Red partial orientations denote a direct cycle has been found and there is no need to keep develop-
ing the branch emanating from them. (Right) Reduced binary decision diagram used to enumerate
totally cyclic orientations constructed from our algorithm. Red partial orientations denote an edge
which is not contained in any directed path connecting two elements of αk has been found and
there is no need to keep developing the branch emanating from them.

interval graph is an interval graph where no interval properly con-
tains another interval [5].

The pathwidth of a graph can be characterized by interval
graphs [1]. Theorem 29 in the last reference states that, for a
graph G, the pathwidth of G is at most k−1 if and only if interval
thickness is at most k, where the interval thickness of G is the
smallest maximum clique size of an interval graph containing G
as its subgraph.

Proposition 3 (Bound on Size of the Elimination Front [17])
For any graph G of n vertices, there exists an ordering of the
edges in which the size of the elimination front is bounded by
pw +1.

A binary relation is said to be a strict partial order if it is ir-
reflexive, transitive and asymmetric. It is a well known and easy
to verify fact that, for any finite set S , the set of all partial orders
of S is in bijection with the set of all strict partial orders of S (we
need only take away the elements of the form (a, a) (a ∈ S ) from

the binary relations of the former set).
Theorem 1 The width of the BDDs described in this section

is bounded by

2
pw2

4 +o(pw2)

for a pathwidth ordering of the edges, where pw denotes the path-
width of the graph.
Proof: Let us first consider the BDD for acyclic orientations. For
a given partial orientation P, where A(P) is acyclic, it is simple
to check that the reachability relation RP is a strict partial order
on the elimination front α(P). As explained above, there exists
a one-to-one correspondence between the set of strict partial or-
ders on α(P) and the set of partial orders on α(P). The following
bound to the number of partial orders Pn of a finite set of n ele-
ments is given in [6]:

log2 Pn =
n2

4
+

3n
2

+ O(log n),
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from which the desired result follows.
In the case of totally cyclic orientations, there may exist subsets

of vertices in the elimination front whose elements are mutually
reachable. If we identify vertices of the elimination front that
are mutually reachable, we can use Kleitman and Rothschild’s
result by considering the reachability relations on sets of cardi-
nality 1, 2, . . . , pw. The number of possible reachability relations
becomes bounded by

2
12
4 +o(pw2) + 2

22
4 +o(pw2) + · · · + 2

pw2

4 +o(pw2)

= 2
pw2

4 +o(pw2) + (pw−1)2
(pw−1)2

4 +o(pw2)

= 2
pw2

4 +o(pw2) + 2
2 pw−1

4 2
(pw−1)2

4 +o(pw2)

= 2
pw2

4 +o(pw2).

�

Pathwidth is a graph invariant which indicates how close to a
path graph a certain graph is. For example, any path graph Pn has
pathwidth 1, while trees T , lattice graphs Lh×k and lattice graphs
Pk

3 have pathwidth log(|T |), min{h, k} and 3k2/4 + O(k), respec-
tively.

5. Conclusion
In this report, we have proposed BDD-based algorithms to enu-

merate all acyclic and totally cyclic orientations of a graph, fixed-
parameter tractable with respect to the pathwidth of the graph.
While it is known that acyclic orientations and totally cyclic ori-
entations are closely related, this relationship is not completely
understood (e.g. the Merino-Welsh conjecture is still open at the
time of writing). In this regard, our algorithms provide evidence
that this relationship may manifest itself as similarity in methods
used to compute these quantities. Furthermore, our enumerating
methods, in virtue of being based in binary decision diagrams,
may be used not only for counting the orientations, which is an
easier problem than enumerating, but also for the other advan-
tages provided by BDDs, as explained in the previous sections.
Possible directions of further research include developing fixed-
parameter algorithms which are tractable with respect to other
parameters, especially those which are robust to graph density.
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