
IPSJ SIG Technical Report

Enumerating Surrounding Polygons

Katsuhisa Yamanaka1,a) Takashi Horiyama2,b) Yoshio Okamoto3,4,c) Ryuhei Uehara5,d)

Tanami Yamauchi1,e)

Abstract: We are given a set S of points in the Euclidean plane. We assume that S is in general position. A sim-
ple polygon P is a surrounding polygon of S if each point of P is a point in S and every point in S is either inside
P or a point of P. In this paper, we present an enumeration algorithm of surrounding polygons for a given point
set. Our algorithm is based on reverse search by Avis and Fukuda and enumerates all the surrounding polygons in
polynomial-delay.

1. Introduction
Enumeration problems are fundamental and important in com-

puter science. Enumerating geometric objects are studied for tri-
angulations [2], [3], [7], non-crossing spanning trees [7], pseudo-
line arrangements [17], non-crossing matchings [16], unforldings
of Platonic solids [6], and so on. In this paper, we focus on an
enumeration problem of simple polygons of a given point set.
We are given a set S of n points in Euclidean plane. A surround-
ing polygon of S is a simple polygon P such that each point of
P is a point in S and every point in S is either inside the poly-
gon or a point of the polygon. A surrounding polygon P of S
is a simple polygonization*1 if the vertices on P is precisely the
set of S . See Fig. 1 for examples. A simple polygonization is
one of theoretically-appealing geometric objects and studied on
counting and random generations.

The main topic on counting simple polygonizations is to give
lower and upper bounds of the number of them. There is a his-
tory on investigating the number of simple polygonizations of n
points. The current best lower and upper bounds are 4.64n [5] and
54.55n [12], respectively. See surveys for further details [4], [11].
It is still an outstanding open problem to propose a polynomial-
time algorithm that counts the number of simple polygonizations
of a given point set [9].

Another research topic is a random generation of simple poly-

1 Iwate University, Morioka, Iwate 020–8515, Japan
2 Saitama University, Saitama, Saitama 338–8570, Japan
3 The University of Electro-Communications, Chofu, Tokyo 182–8585,

Japan
4 RIKEN Center for Advanced Intelligence Project, Chuo-ku, Tokyo 103–

0027, Japan
5 Japan Advanced Institute of Science and Technology, Nomi, Ishikawa

923–1211, Japan
a) yamanaka@cis.iwate-u.ac.jp
b) horiyama@al.ics.saitama-u.ac.jp
c) okamotoy@uec.ac.jp
d) uehara@jaist.ac.jp
e) tanami@kono.cis.iwate-u.ac.jp
*1 The simple polygonizations are also called spanning cycles, Hamiltonian

polygons, and planar traveling salesman tours.

(a) (b) (c)

Fig. 1 (a) A point set S . (b) A surrounding polygon of S . (c) A simple
polygonization of S .

gonizations. Since no polynomial-time counting algorithm is
known for simple polygonizations, it seems to be a hard task
to propose a polynomial-time algorithm that uniformly generates
simple polygonizations. However, uniformly random generations
are known for restricted classes: x-monotone polygons [18] and
star-shaped polygons [13]. For general simple polygonizations,
heuristic algorithms are known [1], [14], [18]. Those algorithms
efficiently generate simple polygons, but not uniformly at ran-
dom.

On the other hand, nothing is known for the problem of enu-
merating all the simple polygonizations, as mentioned in [15]. A
trivial enumeration is to generate all the permutations of given
points, then output only simple polygonizations. However, this is
clearly a time-consuming algorithm. It is an interesting and chal-
lenging question whether all simple polygonizations of a given
point set can be enumerated efficiently (for example, output-
polynomial time*2 or polynomial-delay*3).

As the first step toward the question, we consider the prob-
lem of enumerating surrounding polygons of a given point set S .
From the definition, the set of surrounding polygons of S includes
the set of simple polygonizations of S . We show that, for this
enumeration problem, the reverse search by Avis and Fukuda [2]
can be applied. First, we introduce an “embedding” operation:
deleting a point from a surrounding polygons and putting it inside

*2 The running time of an enumeration algorithm A is output-polynomial if
the total running time of A is bounded by a polynomial in its input and
output size.

*3 The running time of an enumeration algorithm A is polynomial-delay
if the delay, which is the maximum computation time between any two
output, of A is bounded by a polynomial in its input size.

ⓒ 2019 Information Processing Society of Japan 1

Vol.2019-AL-172 No.3
2019/3/5

IPSJ SIG Technical Report

(a) (b)

P18

P17
P16

P15

P14

P13

P12

P11

P10

P9
P2

P8

P7

P6
P5

P4

P3

P1

P19
P20

P18

P17
P16

P15

P14

P13

P12

P11

P10

P9
P2

P8

P7

P6
P5

P4

P3

P1

P19
P20

(c)

P18

P17
P16

P15

P14

P13

P12

P11

P10

P9
P2

P8

P7

P6
P5

P4

P3

P1

P19
P20

Fig. 2 (a) A surrounding polygon, where p6, p7, p11, p14, p15, p16, and p17 are embeddable. (b) The sur-
rounding polygon obtained by embedding p16. The point p16 is embedded inside the polygon. (c)
The parent of the polygon in (a), which is obtained by embedding p17.

the polygon. Then, using this operation, we define a rooted tree
structure among the set of surrounding polygons of S . We show
that, by traversing the tree structure, one can enumerate all the
surrounding polygons and the proposed algorithm can enumerate
them in polynomial-delay.

All the proofs and some details are omitted in this report.

2. Preliminaries
A simple polygon is a closed region of the plane enclosed by

a simple cycle of straight line segments. Here, a simple cycle
means that two adjacent line segments intersect only at their com-
mon endpoint and no two non-adjacent line segments intersect.
An ear of a simple polygon P is a triangle such that one of its
straight line segments is a diagonal of P and the remaining two
straight line segments are straight line segments of P. The fol-
lowing theorem for ears is known.

Theorem 1 ([8]) Every simple polygon with n ≥ 4 vertices
has at least two non-overlapping ears.

Let S be a set of n points in Euclidean plane. We assume that
S is in general position, i.e., no three points are collinear. The
upper-left point of S is the top point among the leftmost points
in S . A surrounding polygon of S is a simple polygon such that
every point in S is either inside the polygon or a point of the
polygon. From now on, we call a point on a surrounding polygon
a vertex and a straight line segment an edge. For example, the
convex hull of S is a surrounding polygon of S . Note that any
surrounding polygon includes the upper-left point in S .

We denote by P(S) the set of surrounding polygons of S , and
denote by CH(S) the convex hull of S . We denote a surround-
ing polygon of S by a (cyclic) sequence of the vertices in the
surrounding polygon. Let P = 〈p1, p2, . . . , pk〉 be a surrounding
polygon of S . Throughout this paper, we assume that p1 is the
upper-left point in S , the vertices on P appear in counterclock-
wise order, and the successor of pk is p1. Let p be a vertex of a
surrounding polygon P of S . We denote by pred(p) and succ(p)
the predecessor and successor of p on P, respectively.

3. Family tree
Let S be a set of n points in Euclidean plane, and let P(S) be a

set of surrounding polygons of S . In this section, we define a tree
structure over P(S) such that its nodes correspond to surrounding
polygons. To define a tree structure, we first define the parent of
a surrounding polygon using the “embedding operation” defined
below. Then, using the parent-child relationship, we define the
tree structure rooted at CH(S).

Now, we introduce some notations. Let P = 〈p1, p2, . . . , pk〉 be
a surrounding polygon of S . Recall that p1 is the upper-left vertex
on P and the vertices on P are arranged in the counterclockwise
order. We denote by pi ≺ p j if i < j holds, and we say that p j

is larger than pi. The vertex p of P is embeddable if the triangle
consisting of pred(p), p, and succ(p) includes no inside region
of P. See examples in Fig. 2.

Lemma 1 Let S be a set of points, and let P be a surrounding
polygon in P(S) \ {CH(S)}. Then, P has at least one embeddable
vertex.

Now, let us define an operation that makes another surround-
ing polygon from a surrounding polygon. Let p be an em-
beddable vertex on P. An embedding operation is to removes
the two edges (pred(p), p) and (p, succ(p)) and insert the edge
(pred(p), succ(p)). Intuitively, an embedding operation “em-
beds” a vertex into the inside of P. See Fig. 2.

We denote by larg(P) the largest embeddable vertex on P. The
parent of P, denoted by par(P), is the polygon obtained by em-
bedding larg(P) on P. Note that par(P) is also a surrounding
polygon of S . By repeating to find the parents starting from P, we
obtain a sequence of surrounding polygons. The parent sequence
PS(P) = 〈P1, P2, . . . , P`〉 of P is a sequence of surrounding poly-
gons such that the first polygon is P itself and Pi is the parent of
Pi−1 for each i = 2, 3, . . . , `. See Fig. 3. As we can see in the
following lemma, the last polygon in a parent sequence is always
CH(P).

Lemma 2 Let S be a set of n points in Euclidean space, and
let P be a surrounding polygon in P(S) \ {CH(S)}. The last poly-
gon of PS(P) is CH(S).

From Lemma 2, for any surrounding polygon, the last polygon
of its parent sequence is the convex hull. By merging the parent
sequences for all surrounding polygons in P(S), we have the tree
structure rooted at CH(S). We call such a tree structure the family
tree. An example of the family tree is shown in Fig. 4.

4. Enumeration algorithm
In this section, we present an enumeration algorithm that, for

a given set S of n points, enumerates all the polygons in P(S).
In the previous section, we define the family tree among P(S).
We know that the root of the family tree is the convex hull of
S . Hence, we have the following enumeration algorithm. We
first construct the convex hull of S . Then, we traverse the (im-
plicitly defined) family tree with depth first search. This algo-
rithm can enumerate all the surrounding polygons in P(S). To
do the search, we design an algorithm that finds all the children

ⓒ 2019 Information Processing Society of Japan 2

Vol.2019-AL-172 No.3
2019/3/5

IPSJ SIG Technical Report

par(P) par(par(P))

P11

P12

P3

P13

P7

P14

P2

P6

P4

P5

P8

P1

P10

P9

par(par(par(P)))P

P11

P12

P3

P13

P7

P14

P2

P6

P4

P5

P8

P1

P10

P9

P11

P12

P3

P13

P7

P14

P2

P6

P4

P5

P8

P1

P10

P9

P11

P12

P3

P13

P7

P14

P2

P6

P4

P5

P8

P1

P10

P9

Fig. 3 A parent sequence.

Input point set

Fig. 4 An example of a family tree.

of any surrounding polygon of S . Starting from the root, we ap-
ply the child-enumeration algorithm recursively, and then we can
traverse the family tree.

To describe how to construct children, we introduce some nota-
tions. Let P = 〈p1, p2, . . . , pk〉 be a surrounding polygon in P(S).
For an edge (pi, pi+1) on P and a point p inside P, we denote by
P(pi, pi+1; p) the polygon obtained by removing (pi, pi+1) and in-
serting two edges (pi, p) and (p, pi+1). Intuitively, this operation
is the reverse one of embedding operation. We call it a dig opera-
tion. Any child of P is described as P(pi, pi+1; p) for some p, pi,
and pi+1. Hence, for all possible P(pi, pi+1; p), if we can check
whether or not P(pi, pi+1; p) is a child, then one can enumerate
all the children. We have the following observation.

Lemma 3 Let P be a surrounding polygon of a set of points.
For an edge (pi, pi+1) on P and a point p inside P, P(pi, pi+1; p)
is a child of P if

(1) P(pi, pi+1; p) is a surrounding polygon of S and
(2) par(P(pi, pi+1; p)) = P holds.

Note that the condition (2) in Lemma 3 can be rephrased as fol-
lows: p is the largest vertex in P(pi, pi+1; p). Using the conditions
in Lemma 3, we obtain the child-enumeration algorithm. For ev-
ery possible P(pi, pi+1; p), we check whether or not P(pi, pi+1; p)
is a child of P. We apply the algorithm recursively starting from
the convex hull. Thus, we can traverse the family tree. In this
way, one can enumerate all the surrounding polygons. In each
recursive call, there are O(n2) child candidates P(pi, pi+1; p). We
can check whether or not P(pi, pi+1; p) is a child in O(n) time.
Thus, each recursive call takes O(n3) time. Now we have the fol-
lowing theorem.

Theorem 2 Let S be a set of n points in Euclidean plane.

There is an O(n3 |P(S)|)-time algorithm that enumerates all the
surrounding polygons in P(S).

From the theorem above, one can see that our algorithm is
output-polynomial. Using the even-odd traversal in [10], we have
a polynomial-delay enumeration algorithm. In the traversal, the
algorithm output polygons with even depth when we go down the
family tree and output polygons with odd depth when we go up.
See [10] for further details. We can have the following corollary.

Corollary 1 Let S be a set of n points in Euclidean plane.
There is an O(n3)-delay algorithm that enumerates all the sur-
rounding polygons in P(S).

Acknowledgements
Part of this work has been discussed during the Japan-Austria

Bilateral Seminar: Computational Geometry Seminar with Ap-
plications to Sensor Networks in November 2018. The authors
thank the organizers for providing an encouraging atmosphere.
This work was supported by JSPS KAKENHI Grant Num-
bers JP15K00009, JP15H05711, JP16K00002, JP17H06287,
JP18H04091, JP18K11153. The third author is supported by JST
CREST Grant Number JPMJCR1402 and Kayamori Foundation
of Informational Science Advancement.

References
[1] T. Auer and M. Held. Heuristics for the generation of random poly-

gons. In Proceedings of the 8th Canadian Conference on Computa-
tional Geometry, pages 38–43, 1996.

[2] D. Avis and K. Fukuda. Reverse search for enumeration. Discrete
Applied Mathematics, 65(1-3):21–46, 1996.

[3] S. Bespamyatnikh. An efficient algorithm for enumeration of tri-
angulations. Computational Geometry Theory and Applications,
23(3):271–279, 2002.

[4] E. D. Demaine. http://erikdemaine.org/polygonization/,

ⓒ 2019 Information Processing Society of Japan 3

Vol.2019-AL-172 No.3
2019/3/5

IPSJ SIG Technical Report

2012.
[5] A. Garcı́a, M. Noy, and J. Tejel. Lower bounds on the number of

crossing-free subgraphs of kn. Computational Geometry, 16(4):211–
221, 2000.

[6] T. Horiyama and W. Shoji. Edge unfoldings of platonic solids never
overlap. In Proceedings of the 23rd Annual Canadian Conference on
Computational Geometry, pages 65–70, 2011.

[7] N. Katoh and S. Tanigawa. Enumerating edge-constrained triangu-
lations and edge-constrained non-crossing geometric spanning trees.
Discrete Applied Mathematics, 157(17):3569–3585, 2009.

[8] G. H. Meisters. Polygons have ears. American Mathematical Monthly,
82(6):648–651, 1975.

[9] J. S. B. Mitchell and J. O’Rourke. Computational geometry column
42. International Journal of Computational Geometry and Applica-
tions, 11(5):573–582, 2001.

[10] S. Nakano and T. Uno. Generating colored trees. Proceedings of the
31th Workshop on Graph-Theoretic Concepts in Computer Science,
(WG 2005), LNCS 3787:249–260, 2005.

[11] J. O’Rourke, S. Suri, and C. D. Tóth. Polygons. In Handbook of Dis-
crete and Computational Geometry, Third Edition., pages 787–810.
Chapman and Hall/CRC, 2017.

[12] M. Sharir, A. Sheffer, and E. Welzl. Counting plane graphs: Perfect
matchings, spanning cycles, and kasteleyn’s technique. J. Comb. The-
ory Ser. A, 120(4):777–794, May 2013.

[13] C. Sohler. Generating random star-shaped polygons. In Proceedings
of the 11th Canadian Conference on Computational Geometry, pages
174–177, 1999.

[14] S. Teramoto, M. Motoki, R. Uehara, and T. Asano. Heuristics for gen-
erating a simple polygonalization. IPSJ SIG Technical Report 2006-
AL-106(6), Information Processing Society of Japan, May 2006.

[15] E. Welzl. Counting simple polygonizations of planar point sets. In
Proceedings of the 23rd Annual Canadian Conference on Computa-
tional Geometry, 2011.

[16] M. Wettstein. Counting and enumerating crossing-free geometric
graphs. Journal of Computational Geometry, 8(1):47–77, 2017.

[17] K. Yamanaka, S. Nakano, Y. Matsui, R. Uehara, and K. Nakada. Effi-
cient enumeration of pseudoline arrangements. In Proceedings of Eu-
ropean Workshop on Computational Geometry 2009, pages 143–146,
Mar. 2009.

[18] C. Zhu, G. Sundaram, J. Snoeyink, and J. S. B. Mitchell. Generat-
ing random polygons with given vertices. Computational Geometry:
Theory and Applications, 6:277–290, 1996.

ⓒ 2019 Information Processing Society of Japan 4

Vol.2019-AL-172 No.3
2019/3/5

