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Abstract: 近年，交通渋滞は特に問題となり，移動時間の長大化や大気汚染などを引き起こしている．Back-
Pressure に基づく交通制御アルゴリズムが交通渋滞を緩和するために提案されているが，それらは交通情報が
不正確な場合や局所的な場合，効果的なスケジューリングが行えない．そこで本研究では，交通渋滞を効果的
に緩和するため，Back-Pressure と Q-Learning に基づく適応的な交通制御アルゴリズムを提案する．提案手法
はリアルタイムの正確な交通情報と Q-Learningで学習した広域的な情報に基づいて，交通制御を行う．提案手
法はシミュレーションにより評価し，交通渋滞が緩和されることで，車両の平均移動時間が比較手法よりも最
大で 25%削減されることを確認した.
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1. Introduction
Traffic congestion in urban areas become a serious problem,

which increases vehicle travel time [1]. Many road traffic network
use fixed cycles to control traffic lights, which easily causes traf-
fic congestion because they do not consider real-time traffic infor-
mation. Moreover, drivers can not select optimal routes to avoid
traffic congestion because the drivers can not get real-time global
traffic information. Survey showed that traffic congestion can be
mitigated by efficient traffic signal control and vehicle routing [2].

Some metropolises implement adaptive traffic signal control,
such as SCOOT (Split Cycle Offset Optimization Technique) [3],
SCATS (Sydney Coordinated Adaptive Traffic System) [4], RO-
HODES (Real-time Hierarchical Optimizing Distributed Effec-
tive System) [5], etc. These systems adjust parameters of signal
control, such as phase and cycle length, according to real-time
traffic situation [6]. Although the results of these systems showed
some improvement, most of the systems cannot guarantee per-
formance [14]. Control theory have been implemented for im-
proving traffic signal control algorithms [7-12]. However, none
of these systems can be implemented in large urban traffic net-
works because large urban traffic networks require decentralized
algorithm while algorithms [7-12] are centralized.

Recently, decentralized traffic control algorithms based on
back-pressure have been proposed [13-17]. Back-pressure was
applied in traffic signal control in [14], and was showed superior
to fixed cycle signal control. These back-presssure based traf-
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fic control algorithms do not consider adaptive control of vehicle
routes, e.g., some use fixed shortest path for route management,
which easily results in traffic congestion especially during rush
hours. Some research considered joint adaptive signal control and
dynamic vehicles routing [19] [21]. However, they focused on
providing individual vehicles adaptive route guidance only. Co-
ordination between different vehicles may further reduce traffic
congestion.

Originally back-pressure algorithm was developed for routing
and scheduling in communication networks [22], and has been
used to jointly control traffic signals and vehicle route in road
networks [18]. However there is a big difference between road
network and communication network: communication time be-
tween two nodes is almost zero, while vehicle travel time between
two junctions is significant. Directly applying back-pressure al-
gorithm to traffic control as [18] is not appropriate. Based on this
observation, [24] proposed an adaptive traffic control algorithm
which considers the difference between road network and com-
munication network. Specifically, they control traffic signal and
vehicle routes based on real-time traffic information, like vehicle
speed and vehicle position. As a result, their algorithm signifi-
cantly reduces traffic congestion.

However, their work controls traffic lights and vehicle routes
based on only local traffic information, i.e., every control agent
considers information of vehicles only at one junctions. There-
fore, their algorithm is short-sigthed. For more efficient traffic
control, global traffic information and coordination between dif-
ferent junction agents are needed. In this paper, we extend the
work [24] and propose an adaptive traffic control algorithm that
controls traffic based on accurate real-time traffic information and
global traffic information, where neighboring junction agents ex-
change traffic information with each other and learning global

ⓒ 2019 Information Processing Society of Japan 1

 
IPSJ SIG Technical Report Vol.2019-DPS-178 No.21

Vol.2019-CSEC-84 No.21
2019/3/4



traffic information by Q-learning.

2. SYSTEM MODEL
2.1 Road Network

Every road network atleast consist of Road (R), Junction (J),
Lane (L), Origin (o), Destination (d) and Flow ( f ). From pre-
vious parameters we can create our road network model as :
J = {J1, J2, J3, ...Jma x} is the set of roads, each Ri has three Li j be-
cause we assume that each road has three lanes as show in Fig. 1.
Normally vehicles must have origin and destination, so we group
the vehicles with the same origin and destination into a same f .
We define F as the set of all flows, O = {o( f ), f ∈ F} as the set
of all origins, D = {d( f ), f ∈ F} as the set of all destinations and
λ f (t) as the number of vehicle s exogenously at time slot t.

Fig. 1 Possible traffic movement from road R1 at a junction J1.

2.2 Traffic Rules
Vehicles travelling along a road network from origin to des-

tination. It may pass a junction from road Ri to road R j, We
define it as traffic movement (Ri,R j). Every junction that has
traffic light, it should consist of traffic phase pa

i . pa
i is the set

of all possible traffic movement that can happen in the same time
period. We define Ma as the set of all possible movement and
Pa = {pa

1, p
a
2, ...p

a
ma x} as the set of all possible traffic phase. In

traffic signal control process, agent at each junction have to acti-
vate pa

i by selecting from Pa. An example of all possible phases
at a junction is given in Fig. 2.

Fig. 2 All possible phase at a junction.

3. BACK-PRESSURE BASED ADAPTIVE
TRAFFIC SIGNAL CONTROL AND
VEHICLE ROUTING

In this section, we describe our back-pressure and Q-Learning
based traffic control algorithm, which reduces traffic congestion
using global traffic information in road network.
Each junction has a control agent that collects information of ve-
hicle speed and vehicle position every time slot for traffic con-
trol. At each time slot, the control agent at each junction per-
forms three tasks sequentially. Task 1 (Learning Global Conges-
tion Information): It exchanges congestion level information with
neighboring agents. Based on exchanged congestion informa-
tion, the agent updates its own congestion estimate based on Q-
learning. Through this kind of congestion information exchange
and update, all agents will finally obtain global congestion in-
formation which can be used in the following two tasks. Task
2 (Traffic Phase Selection): It selects a traffic phase to control
traffic signals based on back-pressure algorithm. Task 3 (Vehicle
Routing): After a vehicle passes through the junction under the
traffic phase in task 2, the agent determines which lane the vehicle
should join. Since each lane determines vehicle turning direction,
i.e., going straight, turning left or turning right, the process of de-
termining lanes for a vehicle to join forms the routing process for
that vehicle. To help agents to do the three tasks, we need the
following shadow network.
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Fig. 3 Illustration of shadow network.

3.1 Shadow Network
An example of shadow network is given in Fig. 3, where a vir-

tual shadow vehicle corresponds to one real vehicle in road net-
work, a shadow buffer corresponds to the beginning part of one
real road (a vehicle just passing through a junction will enter this
part of road) and a shadow queue corresponds to the end part of
one real road (a vehicle running close to next junction will enter
this part of the road).

Fig. 4 A vehicle needs time to travel across a road.

In the shadow network, whenever a real vehicle enters the road
network, a shadow vehicle is generated and enters the shadow
network. Furthermore, one more shadow vehicle is generated
with probability ϵ, 0 < ϵ < 1 and also enters the shadow network.
This operation makes sure that algorithm is stable, i.e., queue size
will not go to infinite [18,20].

When a real vehicle enters road network from origin road Ri at
time slot t and wants to go to destination d ∈ D, corresponding
shadow vehicles will also enter shadow buffer B̄d

i (t) associated
with destination d and road Ri. After that vehicle runs close to
the end part of road Ri, the corresponding shadow vehicle first
leaves shadow buffer B̄d

i (t) and then enters shadow queue Q̄d
i (t)

associated with destination d and road Ri. We say a vehicle runs
close to end part of one road if its speed is less than 5 Km/h or the
distance between vehicle and next junction less than 100 meters.

Similarly, after a real vehicle destined for destination d ∈ D
leaves road Ri and enters adjacent road R j at slot t, a correspond-
ing shadow vehicle will also leaves shadow queue Q̄d

i (t) of road
Ri and enters shadow buffer B̄d

j (t) of road R j.

Movement of virtual shadow vehicles in the shadow network
can be seen as control information exchange, based on which a
agent performs its three tasks (details are given in the following
section). Movement process of shadow vehicles in our model
is quite different from work [18], where a vehicle enters road R j

and its corresponding shadow vehicle immediately enters shadow
queue Q̄d

i (t). This misleads agents in judging congestion level at
each road.

3.2 Adaptive Traffic Control Algorithm Based on Back-
Pressure and Q-Learning

Our algorithm is decentralized and the agent at each junction
runs the following algorithm independently. At every time slot t,
each agent perform the three tasks sequentially.

3.2.1 Task 1 Learning Global Congestion Information
The agent at a junction is responsible for estimating route con-

gestion level Rd
i j(t) for route to destination d and by the way of

road i and the neighbor road j. Each agent maintains a table Ri to
store the value of Rd

i j(t). At the beginning of each time slot, the
agent exchanges information of its own queue length Q̄d

j (t) and
the table Ri with neighboring agents. After exchanging those in-
formation, the agent updates its route congestion estimate Rd

i j(t)
as floows:

Rd
i j(t)→ (1 − α)Rd

i j(t − 1) + α[Q̄d
j (t) + γmin

k
Rd

jk(t)] (1)

where α and γ are Q-learning parameters, 0 < α, γ <= 1. If
Rd

i j > Cmax, set Rd
i j = Cmax, Cmax is a positive constant. Each

agent calculates a bias quantity Cd
i (t) as follows:

Cd
i (t) = min

j
Rd

i j(t) (2)

Finally, the bias quantity Cd
i (t) will be used in Traffic Phase

Selection. The following task 2 Traffic Phase Selection and task
3 Vehicle Routing are the same with that in work [24] (please re-
fer to [24] for details), except that traffic pressure in our work is
defined as follows:

wd
i j(t) = max{(Q̄d

i (t) +Cd
i (t)) − (Q̄d

j (t) +Cd
j (t)), 0} (3)

4. SIMULATIONS
In this section, we do simulations to evaluate the performance

of our algorithm and compare it to other algorithms as follows.

□ Fixed-cycle (FC) signal controller
□ Back-pressure based signal controller with shortest path

routing (SP-BP) [14]
□ Back-pressure based adaptive traffic signal control and ve-

hicle routing without real-time control information update
(AR-BP) [18].

□ Back-pressure based adaptive traffic signal control and vehi-
cle routing with real-time control information update (ARD-
BP)[24].

□ Adaptive Traffic Control Algorithm Based on Back-Pressure
and Q-Learning (ARD-BP-Q)．
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4.1 Simulation Setup
We implemented our algorithm in an open-source simulator

SUMO (Simulation of Urban MObility)[23]. This is the set of
vehicle arrival rate the we use to simulate our algorithm : {100,
200, 300, 400, 500, 800} vehicle/hour.

Structure of road network for simulation is shown in Fig. 5,
where each road has different length ranging from 250 meters to
950 meters and different speed limit ranging from 60 km/h to 140
km/h. Each road consists of three lanes: lanes for turning left,
right , and going straight as show in Fig. 1. There are 8 ori-
gin and destination pairs {(o1, d1), (o2, d2), (o3, d3), ...., (o8, d8)} as
shown in Fig. 4. Vehicle arrival rates are set to be the same for all
pairs ranging from 100 vehicle/hour to 1100 vehicle/hour. Sys-
tem time slot is set to be 15 seconds. Shadow vehicle generating
parameter ϵ is set to be 0.02 and vehicle routing parameter β is
set to be the same as ϵ.

During simulation we collect the following data: vehicle speed,
number of vehicles in network, number of arriving vehicles and
vehicle traveling time. Vehicle traveling time is the time it takes
a vehicle to travel from its origin to its destination.

We separate simulations into two types: algorithm with and
without warm-up.

4.1.1 Simulation without warm-up
FC and SP-BP, We run simulation for these algorithms 7200 +

5000 = 12200 second (3.4 hours). We do not collect simulation
data of vehicles that enter road network after 7200 seconds, be-
cause 5000 seconds left in simulation will make wrong estimate
average vehicle travelling time.

4.1.2 Algorithm with warm-up
For algorithms AR-BP , ARD-BP and ARD-BP-Q, we run sim-

ulation for 6000 + 7200 + 5000 = 18200 seconds (5 hours). We
do not collect simulation data of vehicles that enter road net-
work during the first 6000 seconds, because these algorithms need
warm-up state to learn vehicle routing probabilities and reach a
stable routing policy. We do not collect simulation data of vehi-
cles that enter road network after 6000 + 7200 = 13200 seconds.

Fig. 5 Road network with 8 pairs of origin and destination, where each road
has different length and speed limit.

4.2 Simulation Result and Analysis
All simulation results will summarized in figure. From Fig. 6,

we can see that our algorithm ARD-BP-Q has almost lowest aver-
age travelling time compare to other algorithm in almost vehicle
arrival rates.Compare to ARD-BP our ARD-BP-Q reduce average
vehicle travelling time by percentage ranging from 15% to 25%
respectively. However, average travelling time under ARD-BP-
Q is only slightly lager than SP-BP at low vehicle arrival rates.
Because under low vehicle arrival rates do not make a lot of con-
gestion. The better choice should be SP-BP.

Fig. 6 Average vehicle travelling time with increasing vehicle arrival rate
under different algorithms. For AR-BP, ARD-BP and ARD-BP-Q, α
= 2.5.

Fig. 7 shows simulation results of average vehicle speed. From
the figure, we can see that average vehicle speed under ARD-
BP-Q is higher than other algorithms when vehicle arrival rate is
more than 200 vehicles/hour, indicating that vehicles under our
algorithm ARD-BP-Q are less congested.
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Fig. 7 Average vehicle speed with increasing vehicle arrival rate. For AR-
BP, ARD-BP and ARD-BP-Q, α = 2.5.

Fig. 8 shows simulation results of average number of vehicles
in network. This figure shows that the number of vehicles in road
network under ARD-BP-Q algorithm is smaller than other algo-
rithms, meaning less traffic congestion. Fig. 9 shows that more
vehicles can arrive at destinations under our algorithm ARD-BP-
Q, meaning that more vehicles under other algorithms get stuck
in road network.

Fig. 8 Average number of vehicles in road network with increasing vehicle
arrival rate. For AR-BP, ARD-BP and ARD-BP-Q, α = 2.5.

.

Fig. 9 Number of vehicles arriving at destinations. For AR-BP, ARD-BP
and ARD-BP-Q, α = 2.5.

Finally, we run simulations to check the effect of α on ARD-
BP-Q performance. The result is summarized in Fig. 10. We can
see that there exists the optimal value of α such that ARD-BP-Q

achieves the lowest average traveling time.

Fig. 10 Effect of parameter α on average travelling time under ARD-BP-Q.
Vehicle arrival rate is set to be 450 vehicles/hour.

In summary, our Adaptive Traffic Control Algorithm Based on
Back-Pressure and Q-Learning greatly reduces traffic congestion
as verified by simulations.

5. CONCLUSIONS
In this paper, we proposed an adaptive traffic control algo-

rithm based on back-pressure and Q-learning. Our algorithm
controls traffic based on accurate real-time traffic information
(achieved by using shadow network) and global traffic informa-
tion (achieved by using Q-learning). Our algorithm greatly re-
duces traffic congestion and vehicle traveling time as verified by
simulations and is superior to other four algorithms.
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