KED

KEDS SCDX Research

Real-time free viewpoint rendering via viewdependent polygon plane arrangement

Keisuke Nonaka, Ryosuke Watanabe, Jun Chen, Sei Naito KDDI Research, Inc.

Background (What is free-viewpoint?)

- Free-viewpoint synthesis (Free-viewpoint video)
- To synthesize virtual image from arbitrary viewpoint by using multiple images

Users can watch a scene from arbitrary angle freely

- Feature: immersive experience (has high affinity to virtual reality experience), Intuitive understanding of the target scene
- Use case: sports watching, training, analysis, education, gaming, etc.

Conventional method of the visual hull

Problem

 It takes so much time to calculate the shape even by using decent power PC
 It is quite impactful for realizing real-time live streaming of free-viewooint

It is quite impactful for realizing real-time live streaming of free-viewpolyvideo

KODI

Proposal

 We propose a new concept of representation of the visual hull to overcome the above problem
 • use a set of virtual planes instead of a set of voxels

• Camera parameter calculation (intrinsic and extrinsic)

KED

Problem of conventional method (repeated) The conventional visual hull takes so much time to calculate the shape even by using decent power PC Ex: for representing 10 m³ space at 1 cm³ voxel size, we have to calculate 10⁹ vertices ON/OFF flag explicitly.

Proposed method

- We propose a new concept of representation of the visual hull based on virtual plane
 - It economizes the time to calculate shape of the target object
 It constructs almost the same shape compared with
 - conventional visual hull (based on voxel)
- It synthesizes a virtual image (video) from arbitrary virtual viewpoint, maintaining quality of conventional visual hull

Key idea

• We use a set of virtual plane instead of a set of voxels

Experiments

- We carry out two experiments by using actual sports videos Quality assessment
 - Comparison of calculation time

(PT)

