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A Hybrid Simulator
to Analyze Gradient Staleness Effect

Duo ZHANG2,1 Yusuke TANIMURA1,2 Hidemoto NAKADA1,2

Abstract: One of the obstacles for parallel execution of Deep Learning is the Gradient exchange overhead,
and there are numerous exchange methods are proposed to mitigate the overhead. Investigating these meth-
ods with real machines requires a lot of resources. Furthermore, it is impossible to investigate the behavior
under other circumstances, such as different network latency. We propose a hybrid simulator that combines
gradient computation on real machine and virtual time management using discrete event simulator, that en-
ables to accurately reproduce the behavior under arbitrary gradient exchange methods and arbitrary setup.
We implemented this simulator using Python coroutine. We confirmed that we can reproduce the behavior
of asynchronous gradient exchange, and it can handle 64 nodes with single node.

1. Introduction

Various methods for parallel SGD have been proposed at

present. The limitation is that to analyze the behavior in

the case of execution with some number of nodes, we actu-

ally have to have the number of nodes. This prevents us

from investigating the behavior with a lot of nodes. In [1],

we proposed an environment where we can control commu-

nication delay. However, it still require the same number of

nodes as the target environment.

On the other hand, discrete event simulator can handle

the arbitrary number of nodes. However, since the execu-

tion portion of the calculation is abstracted, no calculation is

actually performed, and therefore the influence on the con-

vergence of the gradient arrival delay in the parallel SGD

cannot be analyzed [2].

In this paper, we propose a ’hybrid’ simulator that actu-

ally perform the graident computation while managing the

virtual time as the discrete event simulators. The purpose

of this simulator is to manage the calculation time and com-

munication time by using the discrete event simulator while

actually performing the gradient calculation, and make it

possible to simulate any number of nodes on a few nodes to

perform the simulation while accurately grasping the effect

of the gradient arrival delay on convergence.

The next section of this paper gives the overview of dis-

tributed machine learning systems focusing on the parame-

ter exchange methods, the introduction of stochastic gradi-

ent descent. Section 3 presents how we implement the hybrid

simulator that enables to accurately reproduce the behavior
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under arbitrary gradient exchange methods and arbitrary

setup. Section 4 describes experiment setup and the results

of the experiments. Section 5 gives summary of the paper

and the future work.

2. Background

2.1 Parameter exchange methods for large scale

machine learning systems

To parallelize machine learning systems, there are two

methods; Data Parallel and Model Parallel. While

data parallel method simultaneously trains multiple machine

learning models synchronizing each other, model parallel

parallelize inside a single machine learning model. While

these two methods are not exclusive each other and often

used complementarily, we focus on data parallel in this pa-

per.

To implement data parallel machine learning systems,

there are two methods: parameter server based methods

and direct communication method. In this paper we focus

on the former, where central parameter servers manage the

graident communication among the worker nodes [3][4].

2.2 Stochastic Gradient Descent(SGD)

Both statistical estimation and machine learning consider

the problem of minimizing an objective function with sum-

mation form:

J(θ) =
1

n

n∑
i=1

Ji(θ)

where the parameter θ which minimizes J(θ) is to be es-

timated. Each sum function Ji is typically associated with

the i-th observation value(for training) in the dataset.

In the machine learning algorithm, when the loss func-

tion is minimized, it can be iteratively solved step by step
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through the gradient descent method to obtain a minimized

loss function and model parameter values. Gradient Descent

Optimization is the most commonly used optimization al-

gorithm for neural network model training. For the deep

learning model, the gradient descent algorithm is basically

used for optimization training[5].

When used to minimize the above function, a standard

(or ”batch”) gradient descent method would perform the

following iterations :

θ := θ − η∇J(θ) = θ − η
n∑

i=1

∇Ji(θ)/n

Where ∇J(θ) is the gradient of the parameter, according

to the difference in the amount of data used to calculate the

objective function J(θ), the gradient descent algorithm can

be divided into Batch Gradient Descent, Stochastic

Gradient Descent and Mini-batch Stochastic Gra-

dient Descent[6]. For the batch gradient descent algo-

rithm, the J(θ) is calculated over the entire training set. If

the data set is large, it may face the problem of insufficient

memory, and its convergence speed is generally slow. The

stochastic gradient descent algorithm is another case. J(θ)

is calculated for a training sample in a training set. That

is, a sample is obtained and a parameter update can be

performed. Therefore, the convergence speed will be faster,

but there may be fluctuations in the value of the objective

function because high-frequency parameter updates result in

high variance. The Mini-batch stochastic gradient descent

algorithm is a compromise solution. Selecting a small batch

of samples in the training set to calculate J(θ) can ensure

that the training process is more stable, and that the batch

training method can also use the advantage of matrix cal-

culations. This is the most commonly used gradient descent

algorithm. We focus on Mini-batch stochastic gradient

descent in this paper.

2.2.1 Synchronous Stochastic Gradient De-

scent(SSGD)

As we mentioned in the 2.1 section, data parallel machine

learning methods could be categorized into two types; syn-

chronous methods and asynchronous methods. Synchronous

SGD means that each computer used for parallel computing

calculates the gradient value after calculating its own batch,

and sends the gradient value to parameter server. The pa-

rameter server obtains the gradient average and updates the

parameters on the parameter server.

As shown in Figure 1, it can be seen as four computers.

The first computer is used to store parameters, share param-

eters, and share calculations. It can be simply understood as

a memory and computing shared area, that is the parameter

server job; The other three computers are used for parallel

computing to calculate the gradient value, which is worker

task.

The disadvantage of this method of calculation is that

each gradient update must be waited until all workers A, B,

and C have been calculated before updating the parameters.

That is, the speed of iterative update depends on the slow-
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Fig. 1: Synchronous Stochastic Gradient Descent.
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Fig. 2: Asynchronous Stochastic Gradient Descent.

est worker among the three A, B, and C workers. Therefore,

the method of simultaneous update is recommended to have

the same computing power.

2.2.2 Asynchronous Stochastic Gradient De-

scent(ASGD)

As long as the parameter server receives the gradient value

of a machine, it updates the parameters directly without

waiting for other machines. This iterative method is rela-

tively unstable, and the convergence curve is more severe,

because when the worker A updates the parameters in the

parameter server, it may be that the worker B is still using

the old parameter values of the previous iteration.

3. Simulator

3.1 Overview

This simulator uses Python language and implemented us-

ing Python’s coroutine function. We choose Python because

many neural network frameworks are currently implemented

in Python. The reason for using the coroutine is to facilitate

the description of the algorithm by the user.

3.2 Network Simulation Model

Since the purpose of this simulator is not precise simula-

tion of network communication, we do not need to express

congestion on switches and network paths. However, the

overlapping of network and communication, and the inde-

pendence of sending and receiving are important character-

istics in today’s computer system, so we need to express

them.

Therefore, the network model in this simulator is as fol-

lows:
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Fig. 3: The Basic Model in Simulator
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Fig. 4: The Structure of Scheduler

• Send, receive, and calculate can be performed indepen-

dently.

• Transfer to multiple targets is serialized. That is to

say, if you want to send information to multiple targets,

the time spent is proportional to the number of objects

received.

• Similarly, receiving data from multiple nodes is also se-

rialized. That is if you want to receive information from

multiple sources, the time spent is proportional to the

number of objects sent.

This basic model is shown in Figure 3.

3.3 The Configuration of Simulator

The simulator consists of a Scheduler and multiple Walk-

ers. The Scheduler is implemented as a coroutine, and there

is only one Scheduler in the simulator. Walker means ev-

erything scheduled by the Scheduler. Each Walker is also

implemented as a coroutine.

3.3.1 Scheduler

The Scheduler has the role of managing the virtual time

and sequentially executing operable Walker. The key com-

ponent of the Scheduler is the Sorted Dictionary called Event

Queue. This data structure is used to reserve an event to

occur at a certain virtual time.

This structure is shown in Figure 4.

Events are implemented by binding values in the Future.

The key is the virtual time, the value is the value to be bound

to a Future and the Future. Since it is a Sorted Dictionary,

it is automatically sorted in ascending order of virtual time,

so the first one is an event to occur next.

The operation of Scheduler is shown in Figure 5. Ba-

sically, the Scheduler works only when all the walkers are

blocking. If all the walkers are blocking, in order to cause
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Fig. 5: The Operation of Scheduler
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Fig. 6: The State Transition Diagram of Walker

Table 1: The method of Walker.
wait Blocks until someone call notify
notify Release the waiting Walker
sleep Sleep for the specified simulation time

the next event, take out the value to be bound with the

Future from the beginning of the Event Queue and execute

the binding. As the result, it will unblock any of the walkers

and make it proceed the operation.

3.3.2 Walker

A state transition diagram of Walker is shown in Figure 6.

Walker has five states: INITIAL, RUNNING, SLEEPING,

WAITING, and DONE.

When Walker starts, the state is INITIAL. After initial-

ization, it became RUNNING. Walker implements wait and

notify. The meaning of these methods is similar to wait and

notify of Java objects, and when the wait is executed, it

blocks until notify is called. In addition, the sleep method

is implemented in Walker. When this method is executed,

the Walker sleeps within the specified simulation time.

Methods of Walker are summarized in Table 1.

3.3.3 Worker

The Worker is an object representing a computer in the

simulator, and it is implemented as a subclass of Walker.

The Worker has two Walkers in addition to the Worker it-

self: a Sender Walker that expresses a send buffer, and a

Receiver Walker that expresses a receive buffer.

The Worker has a send method for sending data and a

recv method for receiving data. When sending, deliver the

data to Sender Walker. When receiving, call a method of

Receive Walker to receive data. These will be described in

detail later.

The Worker has an execute function that actually per-

forms calculations. This function takes a reference to a

function and a list of arguments, executes the function, and
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Table 2: The Method of Worker.
send Send data to other Workers
recv Receive data from other Workers
recvNB Receive data in non blocking fashion
execute Execute the function and sleep

for the actual time spent

Table 3: The Method of Simulator.

addWorker Add Worker. At that time, specify the Worker name,
the function to create a Worker, and its argument.

start Execute the simulator

returns the result. In doing so, measure the time taken to

execute the function, and proceed the simulation time using

the sleep method. Walker methods are summarized in Table

2.

3.3.4 Sender Walker

The Sender Walker represents a send buffer. Sender

Walker has a queue to hold send requests. Send requests

received from the Worker are queued.

The Sender Walker scans the send request queue from the

beginning and checks the status of the Receive Walker of the

destination. If the destination is available, send the data and

sleep for the time it takes for sending. If the destination is

not available, it will send a ”request for notification when

available” and proceed to the next entry.

3.3.5 Receive Walker

The Receive Walker represents the receive buffer. Receive

Walker is WAITING when not in communication and be-

comes RUNNING during communication. When it receives

from Sender Walker, it sleeps only for the time it takes. As

a result, when receiving data from a certain node, it indi-

cates that it can not communicate with other nodes. When

receiving is completed, notify is sent to the requested source

to indicate that it is available.

Receive Walker must also communicate with the Worker

main body. When the Worker receives the data and the

data has not yet arrived, a Future representing the receive

status is newly created and the Worker blocks by waiting

for the value of that Future. When data is received, bind

the received value to that Future. As a result, the received

worker returns to the RUNNING state.

3.4 Simulator

To use the Simulator, each node is implemented as a sub-

class of Worker, and the object is registered in the simulator.

Programmers need to implement the ”run” method of the

Worker only. Simulator automatically calls the run method

of Worker on startup. Methods of the class Simulator are

summarized in Table 3.

Program samples are shown in Figure 7 as an example.

This program defines two workers that communicate with

each other. These perform transmission and reception repet-

itively.

4. Experiments

For this simulator, what we want to know is whether the
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Fig. 7: The Description of Ping Pong by Simulator

Table 4: Experiment Configurations.
#workers #latency

Sequential mode(baseline) 1 0
Synchronous mode 2/4 0, 0.001, 0.01, 0.1
Asynchronous mode 2/4 0, 0.001, 0.01, 0.1

Table 5: The Experimental Environment.
CPU Intel(R) Core i7-7700 3.60GHz * 8
GPU Nvidia GeForce GTX 1080Ti 11GB
Memory 16 GB
Operating System Ubuntu 16.04

simulator can reproduce gradient updates as in real multi-

worker scenarios, and we want to know the scalability of

the simulator, that is, how many workers can be simulated

at most. To evaluate the performance of the simulator, we

performed experiments with several latencies settings and

several workers settings.

4.1 Network architecture and Datasets

We chose TensorFlow code implementation on CIFAR-

10[7] for our neural network architecture; specifically, we

trained CIFAR-10 dataset. We run the image classifica-

tion problem of CIFAR-10[8], which consists of 60,000 32*32

RGB color pictures for a total of 10 categories. There

are 50000 training images and 10000 test images(cross-

validation). We fixed the minibatch size per worker as

100. We have implemented parameter server based data-

parallel machine learning on the simulator, in synchronized

and asynchronized fashion.

4.2 Experiments Settings

We tested two modes, synchronous mode, and asyn-

chronous mode. Each mode has two options, one is the

number of workers, and the other is the latencies.

In summary, the experiments settings are these: First, We

tested 1 worker’s synchronous mode with the latency of 0 as

the baseline. And 2 worker’s and 4 worker’s synchronous

mode and asynchronous mode with the latencies of 0, 0.001,

0.01 and 0.1 seconds. We also tested the case where the

worker is 8, 16, 32 and 64 with the latencies of 0.001 sec-

onds in asynchronous mode. Table 4 shows the experiments

setups. Table 5 shows the experimental environment.
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Fig. 8: Comparison of Synchronous and Asynchronous Ex-

perimental Results of 2 Workers, X-axis is the Elapsed Vir-

tual Time.
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Fig. 9: Comparison of Synchronous and Asynchronous Ex-

perimental Results of 4 Workers, X-axis is the Elapsed Vir-

tual Time.

4.3 Results of Experiments

Figure 10 shows the comparison of synchronous and asyn-

chronous experimental results of 2 workers, Figure 11 shows

the comparison of synchronous and asynchronous experi-

mental results of 4 workers. The x-axis is the iterations,

the y-axis is the loss to perform gradient exchange.

Also, Figure 8 shows the comparison of synchronous and

asynchronous experimental results of 2 workers, Figure 9

shows the comparison of synchronous and asynchronous ex-

perimental results of 4 workers. The x-axis is the elapsed

virtual time, the y-axis is the loss to perform gradient

exchange.

Finally, Figure 12 and Figure 13 show the asynchronous

experimental results of 8, 16, 32 and 64 workers with the

latency of 0.001 seconds.

4.4 Discussion on the Results

From these results, it can be seen that: Firstly, compared

with elapsed virtual time in synchronous mode, it can be

seen that four workers converge faster than two workers, and
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Fig. 10: Comparison of Synchronous and Asynchronous Ex-

perimental Results of 2 Workers, X-axis is the Iterations.
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Fig. 11: Comparison of Synchronous and Asynchronous Ex-

perimental Results of 4 Workers, X-axis is the Iterations.
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Fig. 12: The Experimental Results of 8, 16, 32 or 64 Work-

ers in an Asynchronous Mode with latency = 0.001, X-axis

is the Elapsed Virtual Time.

three kinds of latency: 0, 0.01, 0.001 curves of two workers

and four workers basically coincide. The latency of 0.1 is

not particularly desirable, probably because of the latency

of 0.1 seconds is really a little bit big.

Comparing with elapsed virtual time in asynchronous
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Fig. 13: The Experimental Results of 8, 16, 32 or 64 Work-

ers in an Asynchronous Mode with latency = 0.001, X-axis

is the Iterations.

mode, the situation is basically the same as that in syn-

chronous mode. In the three cases of latency 0, 0.001 and

0.01, the convergence speed of the synchronous mode and

asynchronous mode is the same, but compared with the la-

tency of 0.1, the asynchronous mode can converge faster.

Comparing with iterations in synchronous mode, it can

be seen that four workers converge faster than two workers.

Unlike iterations, the curves of four latencies of two work-

ers and four workers basically coincide. The performance

of these two workers in asynchronous mode is basically the

same as that in synchronization mode.

Finally, compared with the iterations of 8, 16, 32, and 64

workers, we can see that the convergence curve is basically

the same, so we can know that the number of workers added

in the asynchronous mode has no effect on the loss update.

Secondly, we can prove that the simulator can operate at

least 64 workers, and more workers need to be verified later.

It should be noted that the updating gradient method

used in the network model is modified when 8, 16, 32, and

64 workers are tested. When the network model is used be-

fore, it works well at 8 workers, but for 16 workers, it does

not improve loss, and when 32 and 64 workers are tested, the

gradient explosion will occur. Figure 14 shows the results.

We could find that this strategy is not scalable, without ac-

tually testing the strategy with large cluster. However, in

order to verify whether the simulator can run more than 64

workers, we changed the updating gradient method in the

network model.

5. Conclusion

In this paper, we propose a simulator, which combines

gradient computation on the real machine and virtual time

management using discrete event simulator that enables to

accurately reproduce the behavior under arbitrary gradient

exchange methods and arbitrary setup. Also, we have quan-

titatively measured the loss to perform gradient exchange

with several settings. As a result, we have found the follow-

ings:
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Fig. 14: A finding of gradient update strategy from experi-

ments.

1) In this simulator, the number of workers that can be

run can reach at least 64. That is, the scalability of the

simulator seems well.

2) The convergence speed of four workers is generally bet-

ter than two workers.

3) From the results of this experiment, the asynchronous

mode is better than the synchronous mode.

Our future work include the followings:

• Test more advanced asynchronous data exchange meth-

ods, such as gossip algorithm.

• Modify the simulator it can simulate in parallel.
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