
A High Performance File System for

Non-Volatile Main Memory

Fumiya Shigemitsu1,2 Mitsugu Suzuki1,3

Abstract: Emerging Non-Volatile Main Memories (NVMMs) are expected to be next-generation storage. These

memories promise to enable persistent memory, which can store data persistently at the main memory level with low

latency. Therefore, the traditional primary storage hierarchy is extended to the non-volatile part by them. Integrating

NVMM into computer systems includes some interesting challenges though they are expected to realize a fast and

reliable computer system when using them. We explore NVMMs feature and how to handle them efficiently as main

storage through developing a new file system in the Linux kernel which exploits memory hierarchy including NVMMs.

Keywords: NVMM, NVDIMM, File System

1. Introduction

Non-Volatile Main Memories (NVMMs) (e.g., phase change,

spin-torque transfer, resistive memories or Intel and Micron ’s

3DXPoint) are expected to be next-generation storage. These

memories promise to enable persistent memory, which can store

data persistently at the main memory level with low latency.

Therefore, the traditional primary storage hierarchy is extended

to the non-volatile part by them.

Integrating NVMM into computer systems includes some in-

teresting challenges though they are expected to realize a fast

and reliable computer system when using them. Firstly, tradi-

tional software design is not adequate for NVMMs. They are so

fast compared to old one, and conventional software is designed

on the assumption that the storage is too slow compared to the

above memory hierarchy component. Therefore they are redun-

dant when using NVMMs as main storage. We need to design

software again for using NVMMs more efficiently[1]. Secondly,

CPU cache memories still remain as the volatile while the main

memory becomes non-volatile. This requires some considera-

tions when using NVMMs. To make sure data persistent, a com-

puter system should flush data to storage using NVMMs. CPU

cache ability is not fully exploited by the system which flushes

data in cache eagerly because the cache flush instruction causes

significant performance overhead compared to writing data into

cache due to waiting for a processing completion[2].

We explore NVMMs feature and how to handle them effi-

ciently as main storage through developing a new file system

in the Linux kernel which exploits memory hierarchy including

NVMMs. Experimental results show that our developed file sys-

tem provides up to 224% improvement in a micro-benchmark,

1 Shimane University, Matsue, Shimane 690-8504, Japan
2 s179507@matsu.shimane-u.ac.jp
3 suzuki@cis.shimane-u.ac.jp

and up to 471% improvement in a macro-benchmark compared

to other state-of-the-art file systems.

2. Preliminaries

2.1 Non-volatile memory technologies

There are various types of Non-volatile memories and they

have different strengths and weaknesses that make them useful

in different parts of the memory hierarchy. PCM and ReRAM

are denser than DRAM and may enable very large non-volatile

main memories. The 3DXPoint memory technology from Intel

and Micron is the technology to be expected to offer performance

up to 1,000 times faster than NAND flash[3]. NVDIMM, a non-

volatile dual in-line memory module, is a type of memory which

uses non-volatile technologies on DIMM package. NVDIMM-

N is DIMM with flash storage and DRAM on the same module,

which provides as high performance as DRAM DIMM. It can of-

fer non-volatile storage at high speed while its density is as low

as DRAM. As a result, we expect to see more flexible memory

hierarchies become common in a large system.

2.2 Challenges for NVMM software

NVMM technologies present several challenges to file system

designers. Firstly, re-designing software storage stack is essential

to exploit NVMMs performance. The latency of slow storage de-

vices dominates access latency in conventional storage systems.

In the new storage with NVMMs, however, it is much low latency

than them, so software efficiency is critical for improving entire

computer system performance. Secondly, considering processors

cache hierarchies is important. Modern processors use caches

within CPU to improve performance, so implementing software

with it in mind is important to exploit performance. Caches hi-

erarchy is a great effort to improve performance while there is a

disadvantage to lost data when system crash. NVMMs ability to

hold data permanently is great, but storing data does not make

1ⓒ 2019 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2019-OS-145 No.6
2019/2/28

the data persistent soon in conventional computer systems due to

caches. Therefore, it is essential to consider it when designing

software, especially in file systems.

2.3 File system technologies for NVMM

The page cache is used to buffer reads and writes to files, and

provide the pages which are mapped into user-space by a call to

mmap(2). When storage becomes memory-like, the page cache

would be unnecessary copies of the original storage.

Considering the above case, The DAX appears[4]. The tech-

nologies of DAX provides direct access to files. It avoids pages

cache and also maps an NVMMs region directly into user-space

when calling mmap(2) system call. NVMM-aware file systems

usually use this technology for performance.

2.4 NVMM-aware File System

We will review some proceeding NVMM-aware file systems.

EXT2-DAX extents EXT2 with DAX, which is direct access

mode to access NVMMs storage directly. EXT4-DAX and XFS-

DAX also extends EXT4 and XFS with DAX. PMFS is an exper-

imental DAX file system designed only for NVMMs which use

undo journal for meta-data updates[1]. PMFS introduces some

techniques to address NVMMs storage efficiently and safely. For

example, PMFS maps entiere NVMMs region to a kernel vir-

tual address space to access NVMMs region efficiently. PMFS

uses the technique to protect the mapped region by using a write

protect control feature along with mapping the region. They are

incorporated succeeding NVMM-aware file systems. NOVA is

a log-structured file system designed only for NVMMs[5][6].

NOVA uses logs to update each inode, journal to update multiple

meta-data and copy-on-write to write data to NVMMs. NOVA

aims to realize high-performance with providing strong consis-

tency guarantees. SoupFS is an NVMM-aware filesystem with

soft-updates which is re-designed for NVMMs. SoupFS provides

correctness and consistency without synchronous cache flushes

in the critical path[7]. It is deeply considered the timing of cache

flushes and achieves high performance compared to NOVA while

providing less consistency guarantee. HiNFS is an NVMM-

aware file system considering file writes on NVMMs [8]. HiNFS

provides better performance compared to PMFS and EXT4 to

buffer the lazy-persistent file writes in DRAM. This idea comes

from almost NVMMs write latency is slower than DRAM.

2.5 Insights for NVMM-aware FS from Experiments

Priya Sehgal et.al show the feature of a file system to design a

better NVMM-aware file system[9]. They present four keys from

their performance study which evaluate some Linux file systems.

The following is the points.

(1) Parallel allocation strategy

(2) An in-place update

(3) An Execute-in-place I/O

(4) Fixed sized data blocks

Firstly, enabling parallel allocation is more preferable for

NVMM-aware file systems. PMFS cannot scale beyond a few

numbers of files and allocation requests because it uses a single

list to allocate blocks. An NVMM-aware file system should have

some allocation groups to scale file system performance.

Secondly, an in-place update is suitable for NVMM-aware file

systems as it helps utilize the CPU and memory resource effi-

ciently. The technologies of updating file system such as copy-

on-write, a log-structured file system, use much CPU resource

and memory resource and may cause much cache contention.

Thirdly, An execute-in-place, which equals DAX, leverages

NVMMs to its fullest extent because it helps bypass extra lay-

ers in the software stack.

Finally, using fixed-size blocks is better than an extent based

because it uses simple index based inodes which are cache

friendly. Simple software design helps to improve the perfor-

mance of software for NVMMs, including a file system.

3. AEON Design and Implementation

We describe the design and implementation of our file sys-

tems ”AEON”. AEON is designed to maximize NVMM-aware

file system performance with light-weight consistency guaran-

tees, especially in NVDIMM. We have implemented AEON in

Linux Kernel 4.19.4. AEON has some features to exploit a sys-

tem with NVMMs. They are optimal NVMM space management

including the NVDIMM NUMA architecture support and meta-

data management with scalability in mind, careful locking con-

sideration, and in-place updates which are supported by consis-

tency without ordering.

3.1 NVMM space management

When managing the memory subsystem, it is important to con-

sider whether the system is UMA or NUMA. AEON can manage

both UMA and NUMA architecture properly by adopting a little

different management policy.

3.1.1 In case of UMA

Fig. 1 AEON’s block allocation layout in UMA version

Figure 1 shows the layout of free lists for block allocation in

AEON. The block allocation of AEON is designed with scala-

bility in mind. AEON has free block lists at each CPU cores

to avoid locking and scalability bottlenecks. AEON also stores

each pointer to each free list in unique region per CPU[10] to ac-

cess free lists quickly. When requesting a new block allocation,

AEON uses the free list that belongs the CPU running at the time.

2ⓒ 2019 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2019-OS-145 No.6
2019/2/28

3.1.2 In case of NUMA

Figure 14 shows the layout of free lists for block allocation in

NUMA version of AEON. When system architecture is NUMA,

the access speed to memory depends on the distance from the

CPU, so it is better to use local memory as much as possible. For

example, we want to make CPU 0 use NVDIMM0 region in fig-

ure 14. AEON uses a local NVDIMM node from running CPU

when requesting a new block allocation.

Fig. 2 AEON’s block allocation layout in NUMA version

Traditional file systems with NVMM support including EXT2,

EXT4, and XFS can handle some NVMM devices to combine

in one device by the device mapper technology. The file system

dedicated to NVMM including PMFS and NOVA etc. maps entire

NVMM region to a kernel virtual address space for efficient file

system operations. It is a better way to handle NVMM devices

efficiently though they are unable to identify an entire linear-

mapped device. They can only use the first device. Although

AEON also maps the entire NVDIMM device region to a kernel

virtual address space, AEON further identifies each NVDIMM

node separately. The following is the example of mapping two

different NUMA nodes to the kernel virtual address space.

Example✓ ✏
NVMM0 virtual address 0xffff966b90200000 size 16GB

NVMM1 virtual address 0xffff967fd0200000 size 16GB

✒ ✑
AEON swithches the head address per node. To manage the al-

located blocks, AEON holds the allocated block number with

NUMA id.

3.2 Metadata management

The figure 3 shows how to manage inode allocation. The inode

cache consists of two parts which are allocated blocks for new

inodes and a linked list holding released inodes.

AEON gets some blocks for inodes allocation (one block in de-

fault). The inode size is 256 bytes. The number of inodes is de-

termined ”the number of CPUs * range + CPU id”. The number

of range increases every allocation. After releasing the allocated

inode, connecting it to a linked list, which prepared in per CPU

cores, and reuse inodes from a linked list preferentially.

Fig. 3 Inode allocation

The how to allocate directory entry is also simple. The direc-

tory entry structure size is fixed, it is 256 bytes. One block can

hold sixteen entries. When releasing directory entry spaces due

to deleting files, they are connected to a linked list. The released

spaces are reused preferentially. Releasing entire directory entry

due to deleting the directory, allocated blocks insert the free lists.

Fig. 4 The layout of extents

AEON uses extents to express file data. The figure 4 shows the

layout of extent allocation in AEON. A few extents are embedded

in an inode and expand a red-black tree when increasing them.

The region for extents is managed by an extent header, which is

3ⓒ 2019 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2019-OS-145 No.6
2019/2/28

also embedded in an inode. When increasing extents and one ex-

tent header cannot manage all extent, a new block would allocate

for extent headers.

3.3 Mutual exclusion

It is essential to use mutual exclusion for some critical file sys-

tem operations. In the Linux kernel, many forms of mutual ex-

clusion can be used. and they each have advantages and disad-

vantage[11]. It is important to choose which type of locks for

improving the file system performance, especially in increasing

scalability in mind[12]. We choose the type of mutual exclusion

carefully in file system operations in AEON.

• Atomic operations

• Spinlocks

• Reader-writer spinlocks

• Mutex locks

We use atomic operations to modify pointers in a inode or a

dentry (directory entry structure) on NVMM. Atomic operations

can perform atomic read-modify-write operations on a memory

location. We can modify a variable on NVMM safely by these

operations in the multi-threaded scenario.

Atomic operations are useful when operating only on CPU

word and double word size data, but often file systems want to

bigger shared data with a bunch of instructions. Spinlocks, one

of the simplest and lightweight mutual exclusion mechanisms are

suitable for these cases. We use spinlocks in two cases. First is to

modify free lists. Although AEON has as many free lists as CPU

cores and chooses free lists by running CPU id, mutual exclusion

should be used because users may run multi-thread applications

or AEON chooses a free list other than running CPU id due to free

blocks depletion. While there are such problems, we predict that

lock contentions do not occur frequently thanks to multiple free

lists. Therefore we use the most lightweight mutual exclusions,

spinlocks, in this case. Second is to connect released inodes or

dentries to the related linked list as a reusable cache. There is a

possibility of corrupting a linked list due to competing the same

resource. However, it is simple and lightweight operations so we

use spinlocks.

Reader-writer spinlocks are more fine-grained mutual exclu-

sion than the simple spinlocks. They enforce exclusion between

reader and writer paths; this allows concurrent readers to share

lock and a reader task will need to wait for the lock while a writer

owns the lock. It is suitable to manipulate extents, which are the

structure for file data. AEON can share the file data resource

when reading, and update the file data safely thanks to them.

The mutual exclusion of spinlocks type is lightweight, how-

ever, it enforces busy-waiting to the CPU. Therefore, they would

have a bad impact on the performance of the system in the case

that a lock is held for longer, non-deterministic durations. Sleep-

ing locks such as mutex locks are precisely designed to be en-

gaged in such situations. These types of mutual exclusion are

put into sleep and moved out into a wait for a queue and forcing

a context switch allowing the CPU to run other productive tasks

when a caller task attempts to acquire a mutex that is unavailable.

When the mutex comes available, the task in the wait queue is

woken up and moved by the unlock path of the mutex, which can

then attempt to lock the mutex. We use mutex locks in two cases.

First is to do truncate operations. File truncate operations hold

non-deterministic durations because the length of operation time

depends on the truncate size. Second is to rebuild the structure

of AEON when the mount process. If the last system shutdown

was invalid, AEON checks the structure on NVMM. It holds non-

deterministic durations, so we mutex locks.

3.4 In-place updates

AEON updates all metadata in-place. Also, AEON reuse

NVMM regions that is released recently with temporal locality

in mind. All of them are designed to implement a fast and scal-

able file system.

3.4.1 Consistency Without Ordering for NVMM

In-place updates are a better way to update metadata from the

aspect of performance. On the other hand, it cannot protect file

system consistency as it is. One way of protecting file system

consistency with in-place updates is journaling. Journaling is

mature technology and the framework of implementation in the

Linux kernel source code. The problem of journaling is lack of

scarablity[12], so there is a less meaning to adopt in-place up-

dates for metadata if using journaling for protection of file system

consistency. Therefore, we should adopt the more scalable tech-

nology than journaling not to kill in-place updates advantages.

We adopt the idea of Consistency Without Ordering

(CWO)[13] in AEON. This is a lightweight technique based

on backpointer-based consistency to provide crash consistency

without ordered writes. The original CWO is designed for

block-based storages, but we believe that it is suitable for

NVMM based storages due to the feature of byte addressability.

We design CWO for NVMMs (CWON). The core of CWON

Fig. 5 The layout of meta-data structure

is circulated and a mutual pointer made of back pointers. The

figure shows that the layout of metadata structure in AEON.

AEON uses them to recover file system consistency from some

inconsistent states which happen when system failures. We will

see cases of system failures and how to detect and recover from

them below.

Create: changes two data structures of AEON on NVMM. The

one is a dentry, which expresses a directory entry and The other

is an inode, which corresponds a file uniquely.

1 add_dentry() --- (1)

2 init_inode() --- (2)

AEON adds a directory entry (dentry) to a parent directory in the

operation (1), and initializes a new inode which corresponds to

the entry of (1) in the operation (2). The cases to be considered

4ⓒ 2019 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2019-OS-145 No.6
2019/2/28

Fig. 6 Preparing for recovering file system’s consistency

are four; both of them are persisted, the second is the dentry is

persisted but the inode is not persisted, the third is the dentry is

not persisted but the inode is persisted, the last is both of them

are not persisted. The first is no problem, it is all OK. The sec-

ond and third can be detected and recovered by checking whether

back pointers are valid or not. If there are valid, manipulating the

incompleted operation again from the information in the persisted

metadata. The last is that AEON simply does not notice the cre-

ate operation happened.

Delete also changes a dentry and a corresponded inode. The fol-

lowing is the flow of detecting a file.

1 remove_dentry() --- (1)

2 free_inode() --- (2)

The operations which should be done after a system failure are

almost the same as the create operations. Checking and recover-

ing them if needed.

Rename is the most complex operation in all file system’s op-

erations because it contains remove and create operations. The

following is the flow of renaming a file.

1 add_old_dentry_to_newdir() --- (1)

2 fix_old_inode_info --- (2)

3 remove_old_dentry() --- (3)

The biggest issue is that a new directory entry is not persisted and

an old directory entry is fully removed. It means that the data dis-

appear. There is no way to recover the case. To prevent the case,

AEON does cache flushes related (1) and (2) operations before

doing the (3) operation. AEON does not lose the file by its cache

flushes and can recover the consistent state. If a system failure

happens, the considered case is that both new and old directory

entry exists. It seems to be the worse case especially in the aspect

of security, but AEON can remove the file that should be erased

by checking the pointer to the corresponded inode and the back

pointer from it because the back pointer from the inode is one.

3.5 Recovering procedure

We will describe the recovering procedure from a system fail-

ure when the mount processing. The recovering procedure con-

sists of four parts; the preprocessing per parent directory, check-

ing and recovering each file, inserting each valid file, checking

and recovering the parent directory.

Figure 6 shows that preparing for the recovering. Before en-

tering the recovering process, AEON reads all created inodes and

arrange them per parent directories. All inodes which its valid

flag does not stand are connected to inode caches in this stage.

Figure 7 shows the checking and recovering files per parent di-

rectory. In ”Check a child”, AEON checks the detnry pulled from

Fig. 7 Recovering each file’s metadata

Fig. 8 Inserting valid files to a directory entry tree

Fig. 9 Additional checking

5ⓒ 2019 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2019-OS-145 No.6
2019/2/28

Fig. 10 Latency of create and unlink

the inode, and recover it if needed as mentioned the previous sec-

tion.

Figure 8 shows the process of checking directory entries from

the head of directory entry and inserting valid child files. If there

is a valid directory entry but AEON cannot find the corresponded

inode, it is valid flags sets invalid which means it is discarded by

AEON.

Figure 9 shows the last check of the recovering procedure. If

there is a possibility that the parent directory has more child files,

AEON finds whether the child file exists in the opaque list created

when checking inodes in the second stage.

4. Evaluation

4.1 Experimental setup

To evaluate the performance of AEON, we run benchmarks

with an HPE ProLiant DL360 Gen10 Server. It equipped In-

tel Xeon Gold 5115, 128GB DRAM, and two NVDIMM. Each

NVDIMM is a different NUMA node with 16GB.

We compare AEON against four Linux file systems: EXT2

with DAX, EXT4 with DAX, EXT4 with DAX and writeback

mode, XFS with DAX, TMPFS, NOVA. We use NOVA with in-

place mode because it is the standard option at the experiment

day from upstream NOVA, and it seems to be the fastest mode in

NOVA[14].

We use linear-mapped pmem device combined with two pmem

devices for evaluation of EXT2, EXT4, XFS. NOVA cannot iden-

tify the entire region of the combined device, so we use one pmem

device. We use both of pmem devices for AEON, which identifies

each pmem device as different NUMA nodes.

In evaluation, we use simple Linux commands for simple eval-

uations and use Filebench [15] for further evaluations.

4.2 Micro benchmark

Table 1 Micro-benchmark characteristics (dir operations)

Workload files dirs threads

touch command 1 × 104 1 1

rm command 1 × 104 1 1

createfiles (filebench) 5 × 105 100 1 - 30

filemicro delete (filebench) 5 × 105 100 1 - 30

We use four micro-benchmarks to evaluate the throuphput and

latency of meta-data operations as show in Table 1.

Figure 10 shows the latency of creating and unlink tested us-

ing the shell script. AEON provides the lowest latency for the

create operations, outperforms EXT2 which provides the highest

latency by 115%. For delete operations TMPFS provides the low-

est latency, outperforms XFS which provides the highest latency

by 1.05 %

Fig. 11 Throughput of create with the different number of threads

Fig. 12 Latency of delete with the different number of threads

Figure 11 and 12 shows the throuput and latency of create and

unlink tested using two filebench workloads through chaging the

number of threads. AEON provides the highest throughput and

scarability for the create operations, outperforms XFS by up to

520%. AEON provides one of the lowest latency for the delete

operations.

Single-thread workload tests do not show the remarkable dif-

ference but In multi-thread workloads, AEON has good scalabil-

ity compared to the other file systems including TMPFS. AEON

optimizes for the concurrent workloads and can avoid heavy ad-

ditional writes cache flush instructions through operations while

NOVA needs log and cache flush instructions. In addition, It is

interesting that XFS is not scalable in these tests. Although XFS

is designed with scalability in mind, it cannot make a contribution

on NVDIMM.

Table 2 Micro-benchmark characteristics (file operations)

Workload files appends sync threads

dd command 1 1000 - 1

filemicro writefsync (filebench) 1 1024k per 12500 10

6ⓒ 2019 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2019-OS-145 No.6
2019/2/28

We use two micro-benchmarks to ealuate the throuput and la-

tency of writing as shown in Table 2 Figure 13 shows that the

throughput of write tested using the dd command. NOVA pro-

vides the highest throughput, outperforms even TMPFS and XFS

which is the lowest throughput by 142%. NOVA uses the orig-

inal write method, while the other file systems without TMPFS

use the method provided by the Linux kernel. Generally, there is

a possibility that the optimized original method can outperform

a general method, so we believe that there is still room for im-

provement of AEON’s write method.

On the other hand, NOVA does not make a significant contribu-

tion in a multi-thread write workload. TMPFS provides the high-

est throughput, outperforms XFD which is the lowest throughput.

EXT2 provides the second highest throughput. EXT2 has good

scalability in micro benchmark from the results. It seems not to

match the result between a single-thread benchmark and a multi-

thread benchmark necessarily.

Fig. 13 Throuput of write with dd command

Fig. 14 Latency of multi-thread write workload

4.3 Macro benchmark

We evaluate the performance of AEON for real-world ap-

plications by running a set o macro-benchmark workloads by

Filebench. Table 3 shows the characteristics of Filebench work-

loads.

Figure 15 shows the throughput of webserver workload. The

webserver workload consists of opens, reads, and appends.

AEON provides the second highest throughput next to TMPFS,

Table 3 Macro-benchmark characteristics (file operations)

Workload files dirs threads

Webserver 20,000 20 100

Fileserver 60,000 100 50

Varmail 20,000 100,000 12

Mongo 200,000 40 2

outperforms EXT4-DAX(writeback) which is the lowest through-

put by 1.09%

Figure 16 shows the throughput of fileserver workload. The

fileserver workload consists of well-balanced getting file statis-

tics, searches, deletes, creates, writes, and appends. AEON pro-

vides the highest throughput, outperforms EXT4-DAX(ordered)

which is the lowest throughput by 1.12%. AEON perform well

in the comprehensive workload compared to the other file sys-

tems. We believe that it depends on the design with scalability

and NUMA architecture in mind.

Fig. 15 The throughput of webserver workload with different file systems

Fig. 16 The throughput of fileserver workload with different file systems

Figure 17 shows the throughput of varmail workload. The

varmail workload consists of finds, deletes, writes, and syncs.

AEON is the second highest throughput next to TMPFS, though

almost the same. AEON outperforms EXT2-DAX by 472%.

EXT2-DAX shows the good performance before this benchmark

but its performance is degraded in this workload. We think that

the cause is that the searching directory entries of EXT2 is a lin-

ear search. It seems to increase overhead as the directory entries

increase.

Figure 18 shows the throughput of mongo workload. The

mongo workload consists of finds, appends, and deletes like a

7ⓒ 2019 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2019-OS-145 No.6
2019/2/28

database workload. AEON outperforms the highest throughput,

outperforms XFS which is the lowest throughput by 181%.

Fig. 17 The throughput of varmail workload with different file systems

Fig. 18 The throughput of mongo workload with different file systems

Fig. 19 The difference of each file system’s memory usage

4.4 Resource Comsumption

We also evaluate the memory and disk usage with different file

systems.

4.4.1 The Memory Usage

We compared to the memory usage through the varmail work-

load (Figure 19) among EXT2, EXT2-DAX, EXT4, EXT4-DAX,

XFS, XFS-DAX, and AEON. EXT2 has the largest memory us-

age and XFS-DAX has the lowest memory usage. Although it is

natural, the memory usage of the file system with the DAX option

becomes less than when the option is not attached.

4.4.2 The Disk Usage

We compared to the disk usage by creating 10,000 of 16KB

files (Figure 20) among EXT-DAX, EXT4-DAX, XFS-DAX,

NOVA, and AEON. NOVA uses a very large space. It may use it

for each inode log, which is 4KB.

Fig. 20 The difference of each file system’s disk usage

4.4.3 Evaluation for CWON

We evaluate the CWON by destroying meta-data via ioctl(2).

We made 32 error cases referencing the previous CWO research.

Test cases is made to reproduce the inconsistent state after a sys-

tem failure (e.g. a system failure while creating a file or deleteting

a file or renaming a file, and so on). Test cases contain destroying

multiple meta-data. AEON can recover the consistent state from

the inconsistent state which each test case make. AEON can pro-

vide atomicity operations at least related the test cases which we

made.

5. Concluding Remarks

We have implemented and described AEON, a file system with

scarability in mind designed for NVMM. AEON is made fast and

scalable by doing in-place update with CWON. CWON makes

AEON avoid most cache flushes, it affects better performance im-

provement. Also, AEON can handle different NVDIMM NUMA

nodes. In NUMA architecture, especially in NVDIMM, it is

pretty fast compared to traditional storage so it is important

to consider NUMA architecture when designing new software.

AEON handle it and achieves better performance.

There are some future works. One is to study AEON whether

it is better performance in the other NVMMs (e.g. like HiNFS in

a write operation). In addition, AEON is not always good perfor-

mance in single-thread benchmarks. If it was improved, AEON

could get better performance in the other file systems every cases.

Also, it is a problem that CWON cannot be generally adopted to

other file systems easily. We will work around above works to

study better file systems from the aspect of performance and reli-

ability.

Acknowledgments We thank Toshihiro Kamiya for his feed-

back. We are also thankful Hiroyuki Onizawa and Hewlett-

Packart Japan, Ltd for hardware access. This research is sup-

ported by Mitou program, sponsored by IPA.

8ⓒ 2019 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2019-OS-145 No.6
2019/2/28

References

[1] D. S. Rao, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,
R. Sankaran, and J. Jackson, “System software for persistent mem-
ory,” in Ninth Eurosys Conference 2014, EuroSys 2014, Amsterdam,
The Netherlands, April 13-16, 2014 (D. C. A. Bulterman, H. Bos,
A. I. T. Rowstron, and P. Druschel, eds.), pp. 15:1–15:15, ACM, 2014.

[2] M. Alshboul, J. Tuck, and Y. Solihin, “Lazy persistency: A high-
performing and write-efficient software persistency technique,” in 45th
ACM/IEEE Annual International Symposium on Computer Architec-
ture, ISCA 2018, Los Angeles, CA, USA, June 1-6, 2018 (M. An-
navaram, T. M. Pinkston, and B. Falsafi, eds.), pp. 439–451, IEEE
Computer Society, 2018.

[3] J. L. Hennessy and D. A. Patterson, Computer Architecture - A Quan-
titative Approach, 5th Edition. Morgan Kaufmann, 2012.

[4] M. W. et.al, direct access for files - Linux Kernel Documenta-
tion. https://www.kernel.org/doc/Documentation/filesystems/dax.txt,
January 31, 2019.

[5] J. Xu and S. Swanson, “NOVA: A log-structured file system for hybrid
volatile/non-volatile main memories,” in 14th USENIX Conference on
File and Storage Technologies (FAST 16), (Santa Clara, CA), pp. 323–
338, USENIX Association, 2016.

[6] J. Xu, L. Zhang, A. Memaripour, A. Gangadharaiah, A. Borase,
T. B. D. Silva, S. Swanson, and A. Rudoff, “Nova-fortis: A fault-
tolerant non-volatile main memory file system,” in Proceedings of the
26th Symposium on Operating Systems Principles, Shanghai, China,
October 28-31, 2017, pp. 478–496, ACM, 2017.

[7] M. Dong and H. Chen, “Soft updates made simple and fast on non-
volatile memory,” in 2017 USENIX Annual Technical Conference
(USENIX ATC 17), (Santa Clara, CA), pp. 719–731, USENIX As-
sociation, 2017.

[8] J. Ou, J. Shu, and Y. Lu, “A high performance file system for non-
volatile main memory,” in EuroSys, pp. 12:1–12:16, ACM, 2016.

[9] P. Sehgal, S. Basu, K. Srinivasan, and K. Voruganti, “An empirical
study of file systems on NVM,” in IEEE 31st Symposium on Mass
Storage Systems and Technologies, MSST 2015, Santa Clara, CA,
USA, May 30 - June 5, 2015, pp. 1–14, IEEE Computer Society, 2015.

[10] J. Corbet, Better per-CPU variables. https://lwn.net/Articles/258238/,
November 12, 2007.

[11] R. Bharadwaj, Mastering Linux Kernel Development. Packt Publish-
ing, 2017.

[12] C. Min, S. Kashyap, S. Maass, and T. Kim, “Understanding manycore
scalability of file systems,” in USENIX Annual Technical Conference,
pp. 71–85, USENIX Association, 2016.

[13] V. Chidambaram, T. Sharma, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Consistency without ordering,” in FAST, p. 9, USENIX As-
sociation, 2012.

[14] “Nova: Non-volatile memory accelerated log-structured file system.”
https://github.com/NVSL/linux-nova.

[15] V. Tarasov, E. Zadok, and S. Shepler, “Filebench: A flexible frame-
work for file system benchmarking,” ;login:, vol. 41, no. 1, 2016.

9ⓒ 2019 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2019-OS-145 No.6
2019/2/28

