
IPSJ SIG Technical Report

Fast Railway Delay Evaluation Method Based on
Discrete Distribution Propagation

Tomoshi Otsuki1,a) Hideo Sakamoto1 Hideki Kubo2

Abstract: Accurate delay evaluation of timetables is crucial for railway companies. There have been some
conventional methods utilizing continuous random variables directly. These methods, however, suffer combi-
natorial expansion problems, which require complex pruning techniques. In this paper, discretizing the delay
distribution on railway networks, we present a method calculating propagated delay distributions on each
event analytically under the assumption of propagated delays’ independence. We also show the complexity
of the proposed method is O(M2N) in the general case and can be reduced to O(MN) especially for the
special cases where the source distribution is the negative binominal distribution, where M denotes the num-
ber of quantization levels in discretization and N denotes the total number of events. Finally, computational
experiments on test scenarios with M ∼ 700 show that the proposed method provides almost same results
as and in over 500 times faster computation time than Monte Carlo simulations.

Keywords: Railway scheduling, Train delays, Delay propagation, Robustness

1. Introduction

Accurate delay evaluation of timetables is crucial for rail-

way companies, since train delays cause dissatisfaction of

passengers, reduction in revenue, and increase in the penalty

payment for compensation when the delay exceeds some

threshold time.

Thus, they usually give some buffer to timetables in prepa-

ration for the delay. If we increase buffer time, the frequency

of delays can be reduced. However, too much buffer time in-

creases the service time, causing the dissatisfaction of pas-

sengers. Thus, a trade-off exists between punctuality and

service levels of train operations.

To evaluate timetables, we introduce the random variables

representing delays in each station of timetables.

Railway timetables consist of multiple sequences corre-

sponding to respective trains each of which consists of mul-

tiple scheduled events such as departures, arrivals, and pass-

ings. Train delays occur between two events. For example,

the delay while running occurs between the departure event

at a station and the arrival event at the following station.

Train delays are categorized into two types. First, we

define a source delay as a primary delay on each train typi-

cally due to technical failures or unexpected passenger’s be-

haviors. Then a propagated delay, on the other hand, is a

secondary delay caused by preceding events of train itself

1 Toshiba Corporation
1, Komukai-Toshiba-cho, Saiwai-ku, Kawasaki 212–8582,
Japan

2 Toshiba Digital Solutions Corporation
72-34, Horikawa-Cho, Saiwai-ku, Kawasaki 212–8585, Japan

a) tomoshi1.otsuki@toshiba.co.jp

or different trains when accumulating delays exceed some

buffer time.

In this paper, we propose the way of calculating the prop-

agated delays on each event where source delays are given.

The remainder of this paper is organized as follows. Sec-

tion 2 provides related work. Then Section 3 gives a prob-

lem setting and stochastic modelling of propagated delays.

Section 4 gives an algorithm and its complexity. Section 5

reports comparison results between the proposed approach

and conventional Monte Carlo simulation-based approach.

Finally, Section 6 provides a conclusion.

2. Related Work

To evaluate propagated delays, there have been mainly

three approaches: deterministic approaches, Monte Carlo

simulation-based approaches, and stochastic approaches.

First of all, deterministic approaches for timetable simula-

tion have been well studied for a long time. PERT (Program

Evaluation and Review Technique), which can find out crit-

ical paths of delays, is one of the methods which can be

utilized in cases such as diagram simulation [3], reschedul-

ing [4], and shunting scheduling [5]. However, since PERT

deals with deterministic variables, it cannot calculate the

distribution of delays.

Then Monte Carlo simulation-based approaches (MC) can

evaluate propagated delays as well. For example, Ushida et

al. [6] reports a method of evaluating robustness of timeta-

bles on a railway company. Then Tatsui et al. [7] proposes

a method simulating timetables based on predicted number

of passengers by neural network and Nakamura et al. [8]

and Takeuchi et al. [9] evaluate the robustness of railway

ⓒ 2019 Information Processing Society of Japan 1

Vol.2019-MPS-122 No.7
2019/2/28

IPSJ SIG Technical Report

timetable based on statistics of passengers. However, though

MC can evaluate timetables accurately if there are the ad-

equate number of iterations, it requires much time to run

many iterations. Moreover, for running detailed simulation,

we need to collect many kinds of accurate information and

to handle missing or error data, which usually takes a lot of

time and effort. On the other hand, our proposed method

can be executed only by easily-accessible operation records

such as run and dwell time statistics or, more simply, by the

average of run and dwell time.

Finally, stochastic approaches directly process cumulative

distribution functions (CDF) of underlying random vari-

ables. To deal with the CDF of propagated delays on the

network similar to ours, they propose some probability dis-

tribution classes which have the closeness under required op-

erations. For example, Buker et al. [2] and Kirchhoff et al.

[10] propose the distribution classes that consist of the sum

of extended exponential polynomials. However, since the

number of terms grows exponentially, they require pruning

techniques. On the other hand, Measter et al. [1] proposes

the phase-type-distribution for propagated delays. However,

since the size of matrix grows exponentially, they proposed

the method approximating the matrix with an upper trian-

gular one.

3. Problem Setting

3.1 Network Model

Consider a directed network G(V,A) comprising node set

V and arc set A to represent delays on the timetable. The

node set V represents events on a timetable and the arc set

A represents the possibility of delay propagation between

events on both side of the arc. For each node v ∈ V , sched-

uled time t0v is set to represent the pre-determined time of

the node v on the timetable.

For simplicity, we deal only three node types in this paper

as shown in Figure 1 as follows:

• departure node representing a departure from one of the

stations,

• arrival node representing an arrival at one of the sta-

tions, and

• passing node representing a passing through one of the

stations.

Then a directed arc aij ∈ A that connects nodes i and j,

means the possibility of a delay of the node i can be prop-

agated to the node j. Note that the direction of arcs is

determined to satisfy t0i < t0j .

Though source delays are caused by several factors in-

cluding boarding passengers, turnarounds, platform tracks,

or junctions, we consider only three typical arc types in this

paper for simplicity:

• run arc representing a running phase of a train between

a departure or passing node and the following passing

or arrival node.

• dwell arc representing a dwell phase of a train between

an arrival node and the following departure node.

• headway arc representing a delay propagation possibil-

ity between different trains, which connects a departure

node of one train and the consecutive arrival node of

the following train.

3.2 Modelling Delays on the Network

For a node pair i, j where ai,j is defined, we also define

minimum arc time that represents the minimum required

time of the arc ai,j and buffer time that represents the

marginal time set to ai,j .

Then the interval of scheduled times between t0i and t0j
is decomposed into minimum arc time hi,j(> 0) and the

residual buffer time bi,j(≥ 0) as follows:

t0j = t0i + hi,j + bi,j . (1)

Then consider actual operations on the graph. Let di,j

be a random variable representing delay time on an arc ai,j ,

which follows a distribution Pi,j , and let tj be an operation

time at which event j actually occurs.

We assume source delays are generated only on run and

dwell arcs and no source delays are generated on headway

arcs. Thus, on a headway arc, we define Pi,j as taking all

the probability mass on the delay-zero-point for simplicity.

Moreover, we assume:

(1) The delay of a node j is affected by the delay from

multiple nodes i(∈ prev(j)), where prev(j) is a set of

nodes immediately before node j. Then the delay of

j takes maximum of propagated delays from multiple

previous nodes.

(2) On any node j, operation time tj is never earlier than

scheduled time t0j , since departing earlier than sched-

uled time is banned in many railway companies.

Then the operation time tj on node j is represented as

follows:

tj = max{t0j , max
i∈prev(j)

{ti + hi,j + di,j}}, di,j ∼ Pi,j .

(2)

Consider a random variable Xj = tj− t0j representing the

delay from scheduled time on node j. Then from Equations

(1) and (2), we have

Xj = [max
i∈prev(j)

{Xi + di,j − bi,j}]+, (3)

where [x]+ ≡ max{x, 0}.
When we evaluate each node in the topological order, we

can calculate all the propagated delays recursively by Equa-

tion (3).

4. Delay Propagation Algorithm and Its

Complexity

4.1 Discretization of Random Variables

In the discussion above, we have regarded propagated de-

lays X as continuous random variables. However, handling

continuous random variables analytically suffers combinato-

rial expansion problems as shown in Section 2.

Thus, we discretize the random variable X, and deal the

probability mass function (PMF) in the range from k = 1 to

ⓒ 2019 Information Processing Society of Japan 2

Vol.2019-MPS-122 No.7
2019/2/28

IPSJ SIG Technical Report

Fig. 1 Directed network representing scheduled events and propagated delays. Gray nodes
represent the nodes in which the number of incoming arcs is two.

k = M . When we set sufficiently large M , the PMF is con-

sidered to approach the continuous probability distribution

function (PDF).

Note that when the delay time takes negative values, we

shift the domain of the distribution to k ≥ 1 without loss of

generality. In this case, let k = k0 be the delay-zero-point

in the original distribution.

4.2 Assumption

In our proposed method, we will make the following two

assumptions:

S Independence All the source delay distributions are

independent.

P Independence All the propagated delay distributions

from different routes are independent.

The first assumption means the independence of all Pi,js.

This is natural assumption since small-scale delays usually

occur independently.

Additionally, as in previous studies including [1][2] and

[10], we assume the second assumption, which indicates

the independence of all the preceding nodes’ delays Xi(i ∈
prev(j)) when we evaluate Xj in Equation (3). This as-

sumption can be violated in general since our network is

grid-like and all the routes to a node originate from the ini-

tial node (e.g. the node at Station A on Train 1 in Figure

1). We will discuss this issue again in Section 5.

Moreover, for simplicity, we denote Pr(X = k) by X[k].

4.3 Calculation of Propagated Delays in Each

Node

The process of calculating Xj in each node j from pre-

vious nodes’ propagated delays ({Xi}|i ∈ prev(j)) can be

written in the following Algorithm 1, where CONV(X,D) is

a convolution of X and D, SHIFT(Y, b) is a shift operation

to Y by a constant value b, GETMAXi∈prev(j)({Zi}) is a

maximum operation among Zis, and FLOOR(W,k0) is an

operation flooring a W by a constant value k0.

Algorithm 1 The procedure of getting propagated delays

on node j

Require: j: current node id

Require: Di,j : discrete distribution of source delays on ai,j

Require: bi,j : buffer time on ai,j

Require: prev(j): previous node set of node j

Ensure: Xj : discrete distribution of propagated delays on j

1: for all i ∈ prev(j) do

2: Yi ← CONV(Xi, Di,j)

3: Zi ← SHIFT(Yi, bi,j)

4: end for

5: Wj ← GETMAXi∈prev(j){Zi}
6: Xj ← FLOOR(Wj , k0)

When we consider the fact that distribution of the sum

of two independent random variables can be represented

as convolution, Algorithm 1 strictly corresponds to Xj =

[maxi∈prev(j){Xi + di,j − bi,j}]+ in Equation (3).

Here, since X and D are independent under

S Independence assumption, the result PMF of

Y ← CONV(X,D) is obtained as follows:

Y [k] =

k∑
i=1

X[i] ·D[k − i] (k = 1, 2, . . . ,M), (4)

where X[k] and D[k] are the inputs of the convolution.

Then the result PMF of Z ← SHIFT(Y, b) is

Z[k] = Y [max{1, k − b}] (k = 1, 2, . . . ,M), (5)

where Y [k] and b(= 0, 1, 2, . . .) are the inputs of the shift

operation.

Then consider the result MPF of W ←
GETMAXl∈L{Zl}, where L be the number of input

variables. Let Cl be CDF of Zl. Then since all the Cls

are independent under P Independence assumption, the

probability that all {Cl}Ll=1 are k or less is represented as∏L
l=1 Cl[k]. Let W [k] represent the probability that the

maximum of {Cl}Ll=1 is just k. Then W [k] is obtained by

subtracting the probability that all the variables are under

k from the probability under k + 1. Thus, we obtain W [k]

ⓒ 2019 Information Processing Society of Japan 3

Vol.2019-MPS-122 No.7
2019/2/28

IPSJ SIG Technical Report

as follows:

W [k] =


∏L

l=1 Cl[1] (k = 1)∏L
l=1 Cl[k]−

∏L
l=1 Cl[k − 1]

(k = 2, 3, . . .)

(6)

Thus, the complexity of GETMAXl∈L{Zl} is O(LM).

Moreover, we have the following result PMF of X ←
FLOOR(W,k0):

X[k] =


W [k] if k > k0∑k0

i=0 W [i] if k = k0

0 if k < k0

(7)

(k = 1, 2, . . . ,M),

where W and k0 are the inputs of the flooring operation.

4.4 Accelerated Convolution Algorithm in the

Case of the Negative Binomial Distribution

Fig. 2 An example of the geometry distribution (r = 1) and the
negative binomial distribution (r = 2) with these averages
at 6.0.

Since we assume the discrete random variables in this pa-

per, the distribution of source delays may also be discrete.

As the distribution of source delays D[k], it is desirable to

have all the masses on nonnegative domain, most of the

masses are on small k domain and having long tails.

The negative binomial distribution, which includes the ge-

ometric distribution as a special case, is one of such examples

as shown in Figure 2.

The PDF of the negative binomial distribution Dr[k] is

as follows:

Dr[k] =

(
k + r − 1

k

)
pk(1− p)r (8)

(k = 0, 1, 2, . . .),

where p and r are the parameters of the distribution. Note

that when r = 1, we get the geometric distribution.

Consider the negative binomial distribution as source de-

lays. Then Zr[k] =
∑k

i=1 X[k] · Dr[k − i] which is the

convolution of X[k] and Dr[k] satisfies the following recur-

rence:

Zr[k] =



(1− p) ·X[1] (k = 1, r = 1)

(1− p) · Zr−1[1] (k = 1, r = 2, 3, . . .)

p · Z1[k − 1] + (1− p) ·X[k]

(k = 2, 3, . . . ,M, r = 1)

p · Zr[k − 1] + (1− p) · Zr−1[k]

(k = 2, 3, . . . ,M, r = 2, 3, . . .)

(9)

Utilizing these recurrences, the complexity of ZR ←
CONV(X,D) is O(MR), where R is the parameter of the

negative binomial distribution. We can also show that the

complexity of O(M) is achieved in the case where D is di-

vided into multiple segments each of which corresponds to

the part of the negative binomial distribution’s PDF. Having

a large degree of freedom, this PDF is useful to approximate

actual delays.

Note that we must care the truncation error in convolution

operations since the output distribution is terminated in fi-

nite k. To deal with this, we implement two measures. First,

we calculate the Zr[k] on the domain not only in ranges from

k = 1 to k = M but in ranges from k = 1 to k = M+b, since

we need to apply the SHIFT(Y , b) operation immediately

after the convolution.

4.5 Complexity of the Algorithm

In general case, the complexity of the convolution is

O(M2) and that of other operations in Algorithm 1 isO(M).

Thus, the total complexity of the Algorithm 1 is O(M2),

so that the total complexity of the proposed approach is

O(M2N) since we have to apply Algorithm 1 once to each

node in the topological order, where N is the number of

nodes.

On the other hand, in special cases where source delays

are the negative binominal distributions, the complexity can

be reduced to O(M) as shown in Section 4.4, so that the to-

tal complexity of the algorithm is reduced to O(MN), which

means linear (namely very fast) in both of M and N .

5. Computational Experiments

In this section, we evaluate the proposed discrete delay

propagation method (DDP) from the viewpoint of its ac-

curacy and the calculation time.

5.1 Monte Carlo Simulation Based Approach

To get propagated delay distributions, Monte Carlo simu-

lation (MC) can also be used in the following manner. MC

performs multiple iterations to get histograms of propagated

delays in each node. In each iteration, we evaluate nodes

in the topological order like DDP. However, unlike DDP,

MC regards source delays di,j as not random variables but

deterministic values. As a result, all the propagated delays

(Xjs) are also deterministic variables. Thus, each node’s

process with Equation (3) is simpler in MC than in DDP

since MC only needs to generate di,j from Pi,j and to per-

form scalar operations after that.

MC repeats this iteration S times to get histograms of

bins 1, 2, . . .M corresponding to the range of discrete vari-

ⓒ 2019 Information Processing Society of Japan 4

Vol.2019-MPS-122 No.7
2019/2/28

IPSJ SIG Technical Report

Fig. 3 An example of the network we use in the evaluation. The number in each node
shows scheduled time of the node, while the number on each arc shows the buffer
time of the arc in SN1.

ables in DDP. Then we obtain the propagated delay dis-

tribution by dividing frequencies in each bin by S. We set

S = 10, 000 based on preliminary test results.

Note that MC does not assume P Independence, so

that MC can evaluate propagated delays under more natu-

ral assumptions.

5.2 Experimental Settings

We used a three-train-five-station network model consist-

ing of 22 nodes as shown in Figure 3. Then we set M = 720

(= 60× 60/5), under assumption that we evaluate delays at

most 60 minutes with accuracy of five seconds.

On the network, we evaluate the influence of a trigger de-

lay on the initial node to the final nodes. Then we consider

four scenarios. We set trigger delays and buffer times bi,j

for each scenario as follows:

• Scenario 1 (SN1): We set no delay on the initial node.

Then buffer times for all the headway arcs are from one

to three minutes as shown in Figure 3, while those for

residual arcs are 0.5 minute.

• Scenario 2 (SN2): We set no delay on the initial node.

Then buffer times for headway arcs are values increased

toward SN1 by 3 minutes, while those for residual arcs

are the same as those for SN1. That is, we assume the

situation where we move back the whole sequence of

train 2 and 3 by 3 and 6 (= 3 + 3) minutes for SN1,

respectively.

• Scenario 3 (SN3): We set 10-minute delay on the initial

node, and buffer times are same as SN1.

• Scenario 4 (SN4): We set 10-minute delay on the initial

node, and buffer times are same as SN2.

We set source delays in the initial node occur at k = 0(in

SN1 and SN2) or k = 120 (in SN3 and SN4) with a prob-

Fig. 4 Examples of final node’s propagated delay distributions
in DDP and MC in (a) SN2 and (b) SN3. The horizon-
tal axis in each plot represents the delay time in minutes.
The vertical axis is linear in the top figure, while log-scale
in the bottom figure for each scenario.

ability of 1.0. Then we assume source delays on each arc

follow the negative binominal distribution (r = 2) with av-

erage µi,j . Here, to make 100 instances for each scenario,

we generate µi,j from independent discrete uniform distri-

butions in the range from 1 to 24, meaning the range from

5 to 120 seconds.

The experiments were all performed on a computer with

an Intel Xeon E5-2697v3 2.60 GHz Processor and 264 GB

RAM.

5.3 Computational Results

Table 1 shows the compared results of DDP and MC

from SN1 to SN4 by evaluating the propagated delay distri-

bution of the final node.

The third to sixth columns of the table corresponds to the

ⓒ 2019 Information Processing Society of Japan 5

Vol.2019-MPS-122 No.7
2019/2/28

IPSJ SIG Technical Report

average of mean delay time in minutes (m) and the proba-

bility that delays are k minutes or over (qk : k = 5, 10, 15)

of the distribution in 100 instances.

In the cases where buffer times between trains are rela-

tively large as in SN2, the result values are almost same

in both DDP and MC. On the other hand, when buffer

times are relatively small as in SN1, SN3, or SN4, there

are gaps between DDP and MC. This is because DDP as-

sume P Independence while MC does not. In case where

buffer times are small, P Independence usually does not

hold since the correlation in delays from different arcs gets

large.

Then Figure 4 shows both linear and log-scale plots of the

final nodes’ distributions from SN2 and SN3 in DDP and

MC.

As shown in the results in Figure 4, we confirm the curve

of DDP roughly agrees with that of MC, where the prob-

ability mass is over 10−4.

However, MC cannot calculate the values under 10−4

since the number of iterations in MC is 104, while DDP

can provide smooth curves when the probability mass is un-

der 10−4. Moreover, MC results seem unstable even in

the region where the probability mass is slightly larger than

10−4. When we analyze propagated delays, we usually focus

on rare events. Therefore, we believe that DDP which can

evaluate rare events has the advantage over MC.

Table 1 Compared results in DDP and MC from SN1 to SN4.
We show mean delays in minutes (m) and the probabil-
ity that delays are k minutes or over (qk : k = 5, 10, 15).
All results are the average of 100 instances.

SN Method m q5 q10 q15
SN1 DDP 6.0 61.0 8.0 0.4

MC 5.3 49.3 6.2 0.4
SN2 DDP 4.1 32.3 3.0 0.1

MC 4.0 31.3 3.0 0.1
SN3 DDP 15.0 100.0 98.7 46.8

MC 13.9 100.0 93.1 32.9
SN4 DDP 9.5 97.9 39.4 3.9

MC 8.8 93.8 30.7 3.1

Table 2 Comparison of computational time for DDP (TDDP)
and MC (TMC) in seconds when N = 22, 106, 1002 and
10004.

N TDDP (s) TMC (s) TMC/TDDP

22 1.11× 10−4 1.06× 10−1 960.1
106 9.66× 10−4 5.29× 10−1 548.0
1002 9.71× 10−3 5.58 574.5
10004 7.65× 10−2 5.64× 101 738.1

5.4 Evaluation of Computation Time

In the experiments above, we found that N = 22 is too

small to evaluate computation time. Thus, by repeating

trains 2 and 3 patterns in the problem shown in Figure 3,

we prepared the problem of large N . Table 2 shows calcula-

tion time for MC and DDP with different Ns. The table

shows that the calculation time of DDP is over 500 times

faster than that of MC in all Ns.

6. Conclusion

In this paper, we have proposed a novel discrete distribu-

tion propagation method (DDP) to evaluate delay distri-

butions on railway timetables. We have shown the way of

calculating the propagated delay distribution on each event

analytically under the assumption of source and propagated

delay independence. Then we have shown the complexity of

DDP is O(M2N) in the general case and is O(MN) espe-

cially in the special cases where source distributions are the

negative binominal distributions, whereM denotes the num-

ber of quantization levels in discretization andN denotes the

total number of events. Finally, DDP have achieved almost

same results as and over 500 times faster than conventional

Monte Carlo simulations with 10,000 trials in computation

time on test scenarios. In addition to the fast computation

time, DDP also has the advantage that it can be executed

only by easily-accessible operation records such as the aver-

age of run and dwell time in each node unlike conventional

detailed simulation-based approaches.

On the other hand, DDP requires the unnatural assump-

tion of the propagated delay independence. At this moment,

we need further analysis regarding the level of error arising

from this assumption. Thus, evaluating the effect of the er-

ror is and improving DDP to cope with the problem need

to be established in the future work.

References

[1] Ludolf Meester and Sander Muns: Stochastic Delay Prop-
agation in Railway Networks and Phase-type Distributions,
Transportation Research Part B, Vol. 41, pp. 218–230 (2007).

[2] Thorsten Buker and Bernhard Seybold: Stochastic Mod-
elling of Delay Propagation in Large Networks, Journal of
Rail Transport Planning and Management, Vol. 2, pp. 34–50
(2012).

[3] Keisuke Abe and Shinji Araya: Train Traffic Simulation Us-
ing the Longest Path Method, Transactions of Information
Processing Society of Japan, Vol. 27, No. 1, pp. 103–111
(1986).

[4] Yusaku Nagasaki, Motomu Takano and Takafumi Koseki:
Train Rescheduling Evaluation and Assistance System with
Passengers’ Behavior Simulation based on Graph Theory,
2004 Technical Meeting on Systems and Control, IEE Japan,
pp. 25–29 (2004).

[5] Norio Tomii, Li Jian Zhou and Naoto Fukumura: An Algo-
rithm for Shunting Scheduling Problems Combining Proba-
bilistic Local Search and PERT, IEEJ Transactions on Elec-
tronics, Information and Systems, Vol. 119, No. 3 (1999).

[6] Kohei Ushida, Shingo Makino and Norio Tomii: Increasing
Robustness of Dense Timetables by Visualization of Train
Traffic Record Data and Monte Carlo Simulation, Proceed-
ing of World Congress on Railway Research (WCRR), Lille,
France (2011).

[7] Daisuke Tatsui, Kosuke Nakabasami and Taketoshi Kuni-
matsu: Predicting Method of Train Delay and Train Con-
gestion Using Neural Network, RTRI report, Vol. 31, No. 10,
pp. 29–34 (2017).

[8] Yukihito Nakamura: Simulation Model to Analyze Delay in
Commuter Train Schedule, Master Thesis (2004).

[9] Yoko Takeuchi, Norio Tomii and Chikara Hirai: Evaluation
Method of Robustness for Train Schedules, Quarterly Report
of RTRI, vol. 48, No. 4, pp. 197–201 (2007).

[10] Frank Kirchhoff and Marcin Kolonko: Modelling Delay Prop-
agation in Railway Networks Using Closed Family of Distri-
butions, Available for download at
http://bisec.bjut.edu.cn/en/Events/Colloquium &
Seminar/201798/15048610866411526 1.html
(last access date: Dec. 27, 2018).

ⓒ 2019 Information Processing Society of Japan 6

Vol.2019-MPS-122 No.7
2019/2/28

