
 1

XML 文書の構成変更に対応した権限付与の変換

チャットウィチェンチャイ ソムチャイ, 岩井原 瑞穂, 上林 弥彦

京都大学 大学院情報学研究科 社会情報学専攻
〒606-8501 京都市左京区吉田本町

somchai@db.soc.i.kyoto-u.ac.jp, iwaihara@i.kyoto-u.ac.jp, yahiko@i.kyoto-u.ac.jp

既存の XML アクセス制御モデルでは XML 文書の構成やコンテンツに直接アクセス制限を実

施している．従って，XML 文書の構成に変更が生じる度にセキュリティ管理者は権限付与を変更

しなくてはいけない．本稿では XML 文書の構成変更によって必要となる権限付与の変換方法を提

案する．我々は元の XML 文書と変換後の XML 文書のスキーマが同じ概念を表す場合を考える．

権限付与の変換方法は元の文書と変換後の文書のスキーママッピングに強く依存する．

Translating Access Authorizations for Transformed XML Documents

Somchai Chatvichienchai, Mizuho Iwaihara, Yahiko Kambayashi

Department of Social Informatics, Kyoto University
Yoshida Sakyo Kyoto 606-8501 Japan

somchai@db.soc.i.kyoto-u.ac.jp, iwaihara@i.kyoto-u.ac.jp, yahiko@i.kyoto-u.ac.jp

XML access control models proposed in the literature enforce access
restrictions directly on the structure and content of an XML document. Therefore,
the authorization must be revised whenever the structure of an XML document is
changed. In this paper we present an approach that translates the authorizations
for the transformed XML document. We focus on the case where schemas of the
source and transformed documents represent the same concept. This approach is
strongly based on schema mapping information between the source and
transformed XML documents.

1. Introduction
As XML [3] emerges as an increasingly

popular format for representation and
exchange of data, it will lead to web data
sharing and data integration. Therefore, it
becomes critical to define and enforce access
restrictions on XML documents to ensure that
only authorized users can access to the
information. In recent years, contributions [2,
6, 8] have been made to XML access control
models. These models enforce access
restrictions directly on the structure and
content of XML documents. In this way,
information in XML format can be protected

at a finer level of granularity (e.g., the element
level) than the whole document. Each XML
document is associated with a set of
authorizations specifying access rights of
users on information within the document. An
object in the authorization is described by
path expression identifying an element or
attribute within the document. However, the
structure of XML documents tend to change
over time for a multitude of reasons, for
example to correct design errors in the schema,
to allow expansion of the application scope
over time, or to account for the merging of
several businesses into one. When an XML
document is transformed to conform to a new

研究会Temp
データベースシステム

研究会Temp
128－20

研究会Temp
（２００２． ７． １８）

研究会Temp
－145－

 2

schema, the associated authorizations must be
translated for the transformed document.
However, the translation of authorizations is a
complicated task since its scope covers XML
data model, schema matching, XML access
control model, and application requirements.
In general, the schema matching is a laborious
manual work. Fortunately, recent
contributions have been made in the area of
schema matching and document
transformation. Xtra [10] provides a set of
schema transformation operations that
establish semantic relationships between two
XML document schemas. Xtra also offers an
algorithm that discovers XSLT [5] script to
transform the source XML document into the
target XML document. TranScm [9] examines
and finds similarities/differences between the
source and target schemas. This is done using
a rule-based method that defines a possible
common matching between two schema
components, and provides means for
translating an instance of the first to an
instance of the second. These works can
provide some schema mapping information
needed for authorization translation.

The objective of this paper is to present an
approach that translates authorizations of the
XML document. To the best of our knowledge,
no previous study has addressed authorization
translation for XML documents. Our work
focuses on the case where schemas of the
source and transformed documents represent
the same concept. For an XML document that
is not associated with a DTD, we may obtain
its DTD by applying DTD generating functions
of existing XML document processing tools [1,
7]. The goal of authorization translation is
that authorizations of the transformed XML
document must enforce the same access
restrictions as provided by the authorizations
of the source XML document. This paper also
indicates the limitation of authorization
translation.

The rest of the paper is organized as follows.
In Section 2 we give basic concepts of XML
and an XML access control model. Section 3
discusses the impact of document structure
transformation on authorization translation.
In Section 4 we present a technique of

translating authorizations for the target
document. Section 5 introduces an algorithm
for translating a path expression of an object
to the corresponding path expression of the
target schema. Finally, Section 6 concludes
our work.

2. Basic Concepts
XML Documents, DTDs and XPath

An XML document is composed of a
sequence of nested elements, each delimited
by a pair of start and end tags or by an empty
tag. An element can have attributes attached
to it. These attributes represent properties of
the element. Both elements and attributes are
allowed to contain values. The structure of an
XML document is described by a DTD. A DTD
can be modeled as a labeled tree containing a
node for each attribute and element in the
DTD. An example of XML document and its
DTD are depicted in Fig.1(a) and (b),
respectively. XPath [4] is a language for
locating textual data, elements, and attributes
in an XML document. In addition to its use for
addressing, XPath can add conditions in the
navigation.

An XML Access Control Model
In this paper, we adopt the XML access

control model of Damiani [6]. Our approach
can be easily adapted to other XML access
control models. This model regulates the
access of users to elements and attributes
within an XML document on the basis of the
user's identity and rules, called authorizations,
which specify for each user the types of
accesses that the user can/cannot exercise on
each object. Authorizations can be positive or
negative to an XML element or attribute.
Authorizations specified on an element can be
defined as applicable to its attributes only
(local authorizations) or, in a recursive
approach to its subelements and attributes
(recursive authorizations). This model
provides document-level and schema-level
authorizations. Schema-level authorizations
are applicable to all XML documents that are
instances of the DTD. Document-level
authorizations allows user to tailor security

研究会Temp
－146－

 3

<!ELEMENT division (dname, client*)>
<!ELEMENT dname (#PCDATA) >
<!ELEMENT client (cname,class,po*)>
<!ELEMENT cname (#PCDATA) >
<!ELEMENT class (#PCDATA)>
<!ELEMENT po (number,date,item+)>
<!ELEMENT number (#PCDATA)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT items (item+)>
<!ELEMENT item (product,price,disc_rate?,qty)>
<!ELEMENT product (#PCDATA) >
<!ELEMENT price (#PCDATA)>
<!ELEMENT disc_rate (#PCDATA)>
<!ELEMENT qty (#PCDATA)>

a1: <<manager,*,*>, /division, read, +, R>
a2: <<staff,*,*>, /division/client, read, +, R>
a3: <<staff,*,*>, /division/client[class!=''special"]//items, read, -, R>

(a) order.xml

(b) order.dtd

(c) order.xacl

<division>
 <dname>Computers</dname>
 <client>
 <cname>Ichiro</cname>
 <class>special</class>
 <po>
 <number>S0210</number>
 <date>20020214</date>
 <items>
 <item>
 <product>Desktop PC</product>
 <price>1200</price>
 <disc_rate>20</disc_rate>
 <qty>1</qty>
 </item>
 </items>
 </po>
 </client>
</division>

Fig. 1. A sample of XML document (a), DTD (b), and access control list (c).

requirements for each document.
Document-level authorizations usually take
precedence over the schema-level ones. To
address the situations where the precedence
criteria should not be applied, the model
allows users to specify the authorization
(either local or recursive) as weak type.

Definition 1 (Authorization): An authorization
is a 5-tuple of the form:

<subject, object, action, sign, type>,
where

• subject is a user to whom the
authorization is granted. subject is
described by a triple (user-id, IP-address,
symbolic-address),

• object described by a path expression
identifying an element and attribute,

• action is the read operation,
• sign ∈ {‘+’, ‘-’},
• type ∈ {L,R,LW,RW} is an authorization

propagation type (Local, Recursive, Local
Weak, and Recursive Weak,
respectively).

□
We call an authorization whose object

definition is based on values of elements or
attributes a value-dependent authorization.
We call an authorization whose object
definition is not based on values of elements
or attributes a value-independent
authorization. An example of access control
list for order.xml is shown in Fig.1(c).

Authorization a1 and a2 are
value-independent authorizations. a2 states
that Staff is allowed to read information of
the clients. a3 is a value-dependent
authorization. It states that Staff is not
allowed to read discount rates of the order
items of special class customers. For
simplicity, we consider L and LW as a local
type. We consider R and RW as a recursive
type.

3. Impact of XML Document
Structure Transformation

We first analyze the impact of XML
document transformation on authorization
translation. We classify the impact as
follows:

Total Mapping / Partial Mapping

Total mapping indicates that every schema
element in a schema has relationship with the
schema element(s) in another schema. Partial
mapping occurs when some schema elements
in either schema have no relationship with
those in another schema. Note that a schema
element is an XML element or attribute. We
call a source schema element that has no
relationship with any target schema elements
an unmapped source schema element (USE).
We call a target schema element that has no
relationship with any source schema elements
an unmapped target schema element (UTE).
In case source and target schemas represent

研究会Temp
－147－

 4

g h i

Schema S2a

b d
e
c

Schema S1

f

a'

b' d'c'

g'h' i'

e'

the same concept, USE and UTE are internal
elements. We define an authorization for
UTEs by three optional policies: Open policy,
Authorization-inheritance policy, and
User-defined policy. Open policy allows all
subjects to access UTEs.
Authorization-inheritance policy allows UTEs
to inherit authorizations from their parents.
User-defined policy allows a security
administrator to predefine authorizations for
UTEs before translating authorizations.

Semantic Relationship between Source and
Target Schema Elements

Semantic relationship between source and
target schema elements is classified into
one-to-one, one-to-many, many-to-one, and
many-to-many relationships. The
authorization of a target schema element e is
computed by combining the authorizations of
all source schema elements that have
semantic relationships with e. In case object of
authorization is based on values of schema
elements that have one-to-many, many-to-one,
or many-to-many relationships with the target
elements, the authorization translation needs
guidance from the security administrator who
knows the value mapping between source and
target schema elements.

Fig. 2. A sample of change of element-subelement

relationship.

Element-subelement Relationship
As an element-subelement relationship is

changed, the descendant elements inheriting
security policies from a given recursive
authorizations may become different. For
example, schema S1 and S2 that are depicted
in Fig.2 represent the same concept. Element f
of schema S1 is an USE. Suppose that there
exists an authorization auth: <<staff, *, *>,
/a/c, read, +, R> for XML document D1
conforming to schema S1. Descendant

elements of element c of schema S1 are
different from those of element c’ of schema S2.
Therefore, we cannot directly translate this
authorization to <<staff, *, *>, /a’/c’, read, +,
R> for the document D2 that is transformed
from D1 to conform to schema S2. To solve this
problem, we first convert auth into a set of
authorizations that have the same
authorization policies of auth. Therefore auth
is converted to (1) a local authorization for
element c and (2) recursive authorizations for
elements e, h and i that are c’s the closest
descendant elements, which are not USEs. We
next translate path expressions of these
authorizations to the corresponding path
expressions of schema S2.

Element and Attribute Values

Due to document transformation, values of
some elements and attributes of XML target
document may be different from the values of
the corresponding elements and attributes of
the source document. The security
administrator uses value mappings between
these source and target elements / attributes
for translating value-dependent
authorizations.

4. Translating Authorizations
We observe that in many occasions the

semantic relationship between source and
target schema element is a one-to-one
mapping. In these cases, we offer a simple
approach for translating authorizations. We
first give definitions of a DTD graph and
partial mapping.

Definition 2 (DTD Graph): A DTD graph is a
3-tuple DG = (V, E, l), where V is the set of
nodes in the graph, E is the set of edges, and l
is the labeling function representing the
properties of a node. We categorize a node
based on its label:
• Element node: each element node n

represents an element type. l(n) = < N(n),
A(n) > where N(n) is n’s name.

• Attribute node: each attribute node a
represents an attribute. l(a) =< N(a), A(a)
> where N(a) is a’s name.

研究会Temp
－148－

 5

We assign a symbol in {*, +, ?} on edge e: ni
→ nj to indicate how many times nj occurs in
ni’s content model.

□
Definition 3 (Map Function): Let graphs DG =
(V, E, l) and DG’ = (V’, E’, l’) be DTD graphs of
source and target schemas, respectively. map:
V → V’ is a partial mapping from the nodes in
V into the nodes in V’. map (v) = v’, where v’ ∈
V’, v ∈ V, and node v’ has semantic
relationship with node v.

□
The partial mapping map can be derived

from the schema matching, which is
performed by manual work and a
schema-matching tool. We represent v and
v’ as absolute path expressions. For example,
map(/client/class) = /customer /@category.
We now give a formal definition of
authorization preservation in translating an
authorization.

Let D1 be a document of schema S1, D2 be
the document transformed from D1 to
conform to schema S2, AUTH = {auth1,
auth2, .. , authm} be a set of authorizations
for D1, and AUTH’ = {auth’1, auth’2, .. ,
auth’n} be a set of authorizations for D2.

Definition 4 (Authorization Preservation): Let
V = {v1, v2, .. , vp} be a set of schema elements
of S1, V’ = {v’1, v’2, .. , v’q} be a set of schema
element of S2, reqi = (subjectr, objecti, actionr)
be an access request for an instance x of vi
(1≤i≤p) of D1, and reqj’ = (subjectr, object’j,
actionr) be an access request for an instance x’
of v’j (1≤j≤q) of D2. AUTH’ preserves
authorization policies of AUTH if and only if
the following conditions are satisfied:
(for each instance x in vi) (for each instance x’
in vj) (v’j = map(vi)) (x’ corresponds to x): reqi
and reqj’ have the same permission decision
(either granted or denied) by AUTH and
AUTH’, respectively for (1≤i≤p) and (1≤j≤q).

□
It is worth to note that objecti does not

indicate USEs of schema S1 while object’j does
not indicate UTEs of schema S2. We now
describe how access control model decides
whether to grant permission to a given access
request.

Definition 5 (Grant Decision): Let x ≼ y denote
the fact that y is a descendant-or-self of node x,
subject ⇒ subject’ denote the fact that subject
is satisfied by definition of subject’. An access
request req = (subjectr, objectr, actionr) is
granted by AUTH if and only if the following
conditions are satisfied:
(∃authi) (¬∃authj) (subjectr ⇒ subjecti) ∧
(actionr = actioni) ∧ (signi = ‘+’) ∧ (subjectr ⇒
subjectj) ∧ (actionr = actionj) ∧ (signj = ‘-’) ∧
(((typei = recursive) ∧ (typej = recursive) ∧
(objecti ≼ objectj ≼ objectr)) ∨ (objectj =
objectr))), where authi = <subjecti, objecti,
actioni, signi, typei> and authj = <subjectj,
objectj, actionj, signj, typej>.

□
An access request is denied by AUTH if the

conditions of definition 5 are not satisfied. For
an access request to an instance x of a schema
element v, the grant/deny decision is based on
the definitions of the authorizations whose
path expressions indicate v. Therefore we can
derive AUTH’ that preserves policies of AUTH
by creating the corresponding authorization
auth’i of each authi as an authorization of
AUTH’. The subject, action and sign of auth’i
are obtained from those of authi. The object of
auth’i is derived by the result of translating
the path expression of object of authi to the
corresponding path expression of the target
schema. As we discussed in the previous
section, there are some cases where we cannot
directly translate an authorization of AUTH.
We now give a formal definition for the
authorization that can be directly translated
to the corresponding authorization.

Definition 6 (Translatable Form): Let
authi=<subjecti, objecti, actioni, signi, typei> be
an authorization of AUTH of D1,
authj’=<subjectj’, objectj’, actionj’, signj’, typej’>
be an authorization of AUTH’ of D2, v and v’
be element nodes indicated by objecti and
objectj’, respectively. Let desc(v) be a set of v’s
descendant elements that are not USEs, and
desc(v’) be a set of v’ ’s descendant elements
that are not UTEs. auth’ corresponds to auth
if and only if: (1) (subjecti = subjectj’) and
(actioni = actionj’) and (signi = signj’), (2) v’ =
map(v), (3) object corresponds to object’, and

研究会Temp
－149－

 6

PathExpr ::= RegularExpr | '/' RegularExpr | '//' RegularExpr
RegularExpr ::= Step Predicate* | RegularExpr '/' Step Predicate*

 | RegularExpr '//' Step Predicate*
Step ::= NameTest | '@' NameTest
Predicate ::= '[' Comparison ']'
BasicExpr ::= Literal | Number
Comparison ::= PathExpr | PathExpr CompareOp BasicExpr
CompareOp ::= '=' | '!='
NameTest ::= Qname
SimpleRegularExpr ::= Step | SimpleRegularExpr '/' Step

 | SimpleRegularExpr '//' Step
SimpleAbsoluteRegularExpr ::= '/' SimpleRegularExpr | '//' SimpleRegularExpr

/division/client

//disc_rate

1

1 2

2

=

n1

n2

n3 n4

n5

class 'special'
(a) Syntax of XPathAuth (b) A sample of XPathAuth graph

Fig. 3. (a) Syntax of XPathAuth and (b) a sample of XPathAuth graph.

one of the following conditions are satisfied:
• (typei and typej’ are recursive types) and

(each schema element in desc(v) has
one-to-one mapping with a schema
element in desc(v’)).

• typei and typej’ are local types.
In this case, we say that authi is in

translatable form.
□

We give a formal definition of condition (3)
in the next section. For a recursive
authorization authi whose object indicates v, if
authi is not in translatable form, we generate
auth”1, auth”2, .. , auth”q for v’s closest
descendant elements v1, v2, .. , vq, respectively.
Note that v1, v2, .. , vq are not USEs. The
subject, action, and sign of auth”j (1≤j≤q) are
obtained from those of authi. If vi is an
internal element, the type of auth”j is defined
as a recursive type. Otherwise, type of auth”j
is defined as a local type. The path expression
of object”j of auth”j is defined as concatenation
value of path expression of object of authi and
/vj. If v is not an USE, we change type of authi
to local. Otherwise, we remove authi from
AUTH. If auth”j (1≤j≤q) is not in translatable
form, we recursively apply the same approach
in generating a set of authorizations for auth”j
until all authorizations are in translatable
form. We next translate path expression of
object of each authorization in AUTH to the
corresponding path expression of the target
schema.

Proposition 1: Given AUTH for D1, we can
derive AUTH”={auth”1, auth”2, .. , auth”n} from
AUTH for D1 where each auth”i ∈ AUTH” is

in translatable form.
□

Proposition 2: Let AUTH” = {auth”1, auth”2, .. ,
auth”n} be a set of translatable authorizations
for D1, AUTH’ = {auth’1, auth’2, .. , auth’p} be a
set of authorization of D2. AUTH’ preserves
the authorization policies of AUTH” if:
∀auth”i ∃auth’j such that auth”i corresponds
to auth’j, where (1≤i≤n) and (1≤j≤p).

□

5. Translating a Path Expression
This section presents how to translate path

expression of object of each authorization to
the corresponding path expression of the
target schema. We give a definition of the path
expression used for defining the objects in the
authorizations. We focus on the core part of
XPath since it can sufficiently express location
of authorized objects. We name the core part
XPathAuth. We assume that path expression
used for defining the objects are given in the
form of PathExpr of Fig.3(a). From the syntax
rule, we observe that the XPathAuth can be
represented by the following sequence:

A1{P1}+ A2{P2}+ … An-1{Pn-1}+ An{Pn}*,
where n ≥ 1. A1 represents a language of
nonterminal symbols: SimpleRegularExpr or
SimpleAbsoluteRegularExpr, Ai (2 ≤ i ≤ n) and
Pj (1 ≤ j ≤ n) represent a language of
nonterminal symbols: SimpleAbsolute-
RegularExpr and Predicate, respectively. ‘{}+’
and ‘{}*’ are meta symbols, which represent
‘one or many occurrences’ and ‘zero or many
occurrences’ respectively. For example, the
path expression /division/client[class=
'special']//disc_rate can be viewed as a

研究会Temp
－150－

 7

concatenation of A1, P1, and A2 where A1 is
/division/client, P1 is [class='special'], and A2 is
//disc_rate. To clarify the relationship among
SimpleRegularExpr, SimpleAbsoluteRegular
Expr, and predicate in the path expression of
an object, we introduce XPathAuth graph
adapted from [11].

Definition 7 (XPathAuth Graph): The
XPathAuth graph is a directed graph G(N,
E) satisfying the following constraints:

• Every node has a node type that is one of
the following five nonterminal symbols:
SimpleRegularExpr,
SimpleAbsoluteRegularExpr, Literal,
Number, and Boolean. Every node that is
not Boolean type has a value. For a node
of type T, the value of the node is a
language of T. There is exactly one node
in N called the output node of G. A
shaded circle depicts the output node.E is
the union of two mutually disjoint sets of
edges: Et (tree edges) and Ec (comparison
edges).

• A tree edge is depicted by a solid line. A
comparison edge is depicted by a dashed
line. The graph (N, Et) is a tree with a root. In
(N, Et), children of a node are ordered.

• A tree edge from a parent n to its i-th child m is
denoted by (n, i, m). A comparison edge has a
CompareOp as a label. A comparison edge from n
to m with a label θ is denoted by (n,θ, m).

□
The XPathAuth graph of the path expression
/division/client[class=‘special’]//disc_rate is
shown in Fig.3(b). Node n2 is a Boolean node.
Intuitively, this path expression has three
component paths: /division/client, /division/
client/class, and /division/client//disc_rate.
These component paths are concatenated
values of nodes in XPathAuth graph. The
concatenated value is defined as follows.

Definition 8 (Concatenated-value of a Node
in XPathAuth Graph) Let n be a node of
SimpleRegularExpr or SimpleAbsolute-
RegularExpr type in an XPathAuth graph G,
value (n) be the value of n, and concat(n) be
concatenated-value of n (in G). concat(n) is
defined recursively as follows:

(1) If n has no ancestor node of
SimpleRegularExpr or SimpleAbsolute-
RegularExpr type, concat(n) = value(n).

(2) Otherwise, let na be the closest ancestor
node of SimpleRegularExpr or
SimpleAbsoluteRegularExpr type.
concat(n) is computed as follows:
• if n is of SimpleRegularExpr type,

concat(n) = concat(na) & ‘/’ & value(n),
• if n is of the SimpleAbsolute-

RegularExpr type, concat(n) =
concat(na) & value(n), where &
denotes the concatenation operator.

□
Definition 9 (Path Expression
Correspondence): Let path and path’ be
path expressions of schema S1 and S2,
respectively. Let G(N, E) and G’(N’, E’) be
XPathAuth graphs representing path and
path’, respectively. path corresponds to
path’ if and only if all the following
conditions are satisfied:

(1) |N| = |N’| and |E| = |E’|,
(2) ∀i (∃ei ∈ E) (∃e’i ∈ E’) (label of ei is as

same as label of e’i) for 1 ≤ i ≤ |E|,
(3) (For each ni ∈ N where ni’s type is either

Literal or Number) (∃n’i ∈ N’) (value(ni)=
value(n’i)) for 1 ≤ i ≤ |N|, and

(4) (For each ni ∈ N where ni’s type is either
SimpleRegularExpr or
SimpleAbsoluteRegularExpr) (∃n’i ∈ N’)
(map(vi) = v’i) for 1 ≤ i ≤ |N|, where vi
and v’i are full path style of concat(ni)
and concat(n’i), respectively.

□
We present the algorithm TranslatePath

(shown in Fig.4) that translates path
expression of the object. Given an XPathAuth
graph, we first parse the values of nodes of the
XPathAuth graph in preorder to obtain the
component paths in the XPathAuth graph. We
expand the component path from wildcard
form into full path. For example,
/division/client//disc_rate is expanded into
/division/client/po/items/item/disc_rate. We
apply map function and the target DTD graph
to translate each component path into the
corresponding component path of the target
DTD. If we can’t find the corresponding path
for a component path, the algorithm produces
translation error report and terminates the

研究会Temp
－151－

 8

translation. We next merge the translated
component paths with values of nodes of
Literal and Number types to obtain the
corresponding path expression of the target
schema.

6. Conclusion
 In this paper, we present an approach that

translates the authorizations for the XML
document that is transformed from an XML
source document. We focus on the case where
schemas of the source and transformed
documents represent the same concept. This
approach is strongly based on schema
mapping information between the source and
transformed schemas. We conclude that XML
document structure transformation has strong
impact on definitions of authorizations of the
transformed document. We have addressed
problems and limitations of authorization
translation.

7. References
[1] AlphaWorks. Data Descriptors by Example,

January 8, 2001.
http://www.alphaworks.ibm.com/tech/DDbE.

[2] E. Bertino et al., “Specifying and Enforcing
Access Control Policies for XML Document

Sources,” World Wide Web, Baltzer Science
Publishers, Netherlands, vol. 3, no. 3, 2000.

[3] T. Bray et al. “Extensible Markup Language
(XML) 1.0 (Second Edition)”. World Wide Web
Consortium (W3C).
http://www.w3c.org/TR/REC-xml (Oct 2000).

[4] J. Clark et al. “XML Path Language (XPath)
Version 1.0”. World Wide Web Consortium
(W3C). http://www.w3c.org/TR/xpath
(November 1999).

[5] J. Clark. "XSL Transformations (XSLT) Version
1.0". World Wide Web Consortium (W3C).
http://www.w3c.org/TR/xslt (November 1999).

[6] E. Damiani, et al., Securing XML documents.
In Proceedings of the 2000 International
Conference on Extending Database Technology
(EDBT'2000), Germany, March 2000.

[7] M. H. Kay. SAXON DTDGenerator,
http://users.iclway.co.uk/mhkay/saxon/saxon5-5
-1/dtdgen.html, 13 April 1999.

[8] M. Kudo et al., “XML Document Security based
on Provisional Authorization”. Proceedings of
the 7th ACM conference on Computer and
Communications Security. November 2000,
Athens Greece.

[9] T. Milo and S. Zohar. Using schema matching
to simplify heterogeneous data translation. In
VLDB, pages 122-133, 1998.

[10] H. Su et al., “Automating the Transformation of
XML Documents” Advances in Web-Age
Information Management, 2nd International
Conference WIDM 2001: 68-75, July 9-11, 2001.

[11] M. Yoshikawa, et al., XRel: “A Path-Based
Approach to Storage and Retrieval of XML
Documents Using Relational Databases”. ACM
Transactions on Internet Technology, Vol.1,
No.1, pp.110-141, 2001.

TranslatePath (G, DG, DG’, p)
Input: (1) An XPathAuth graph G,

(2) a source DTD graph DG = (V, E, l), and
(3) a target DTD graph DG’ = (V’, E’, l’).

Output: A path expression p.
Algorithm:
Traversing the nodes in the XPathAuth G in preorder.
For each node m that is not Boolean type, do the following steps:

Let vi ∈ V be the schema element indicated by concat(m), vk ∈ V be the schema element indicated by the
concatenated-value of the closest ancestor node of m, and val be the location path from map(vk) to map(vi) of
the target DTD graph.
If vi is an USE then report translation error on vi and terminate algorithm.
If node m is not connected with comparison edge then

p:= p & val. (where & denotes the concatenation operator)
Otherwise

Let θ be the label on the comparison edge connected to node m.
If comparison edge connected to node m is an out-edge then p:= p & ‘[’ & val & θ .
Otherwise p:= p & val & ‘]’.

return p.

Fig. 4. The algorithm TranslatePath.

研究会Temp
－152－

