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Abstract: Nowadays, on-chip cache scales are oversized in multicore embedded systems, and those caches even con-
sume half of the total energy debit. However, we observe that a large portion of cache banks are wasted, meaning that
those banks are rarely used but consume a great deal of energy during their entire lifetime. In this paper, we propose a
controllable shared last level cache (SLLC) scheme to dynamically trace cache bank demands for each thread. Thus,
energy on useless banks can be largely saved. Specifically, we (1) propose an effective cache bank allocating policy
to explore bank demands corresponding to executed applications, (2) discuss the interrelations between application
locality change and bank demands for further energy saving and (3) represent a modified PID controller to generate
optimal banks for each thread. Experimental results show that our controllable SLLC design can save on average 39.7
percent shared cache access energy over conventional cache, while its performance is slightly improved and additional
hardware overhead is less than 0.6 percent.
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1. Introduction

On-chip cache hierarchies which are used to balance the access
speed of processor and memory, are rapidly increasing in scale
as the number of on-chip cores is increasing. Typically, shared
last level cache (SLLC) performs the key task of caching costly
off-chip memory accesses, but its size in a single die tends to
occupy a large portion of both on-chip area and energy consump-
tion. Hence, optimizing energy saving of SLLC is a key issue for
both high computing density and low energy consumption under
given constraints.

Many previous researches illustrate that common SLLCs pro-
vide effective multicore sharing, but they are inefficient, because
that great majority of their cache parts (i.e., cache lines) are rarely
accessed before evicted [1], [8]. Those parts provide very few
cache hits during their entire lifetime, but consume a great deal
of energy for keeping hot. An effective method to reduce such
energy wasting is to set the useless parts of SLLC into low-power
mode, meaning that those parts can be shut down for energy sav-
ing [6]. However, the efficiency of such method is highly rely-
ing on how accurate it can locate useless parts, Otherwise, it
will lead to extra off-chip memory accesses which have expen-
sive access latencies. Inevitably, previous studies employ search-
ing algorithms to find suitable parts corresponding to applica-
tions [9], [20]. And many efforts focusing on energy saving have
been done with different angles. Researches aim at catching the
locality with phase cache design [11], [18], or using complex al-
gorithms for accurate searching results [12], or OS-level cache
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allocating [13], [19], and so on.
In this work, we introduce a new controllable cache approach

to manage the SLLC efficiently. Based on experimental profiling
of hit rate and energy values on SLLC, we discover that access en-
ergy is highly correlated with allocated cache bank numbers, and
then a new bank allocating policy is constituted to find optimal
bank numbers for each thread instead of clueless bank searching.
Moreover, we study locality features of embedded applications,
and propose locality-aware control intervals based on runtime ap-
pearances of hot subroutines. Finally, we efficiently integrate PID
control method with our cache design to control runtime bank
allocating, and the control results are converging to the optimal
(low energy) SLLC banks corresponding to each thread. As a re-
sult, all threads are allocated with their desired SLLC banks in
every interval synchronously. Thus, our controllable cache can
work with low energy consumed.

The rest of this paper is organized as follows: Section 2
shows the motivation of this work, including analysis of pre-
experiments. Section 3 describes our controllable cache design.
Sections 4 and 5 show experimental results and conclusions.

2. Motivation

To study runtime cache bank demands of each thread, we em-
ploy gcc benchmark executed as an example in our experimental
platform [16]. By analyzing the pre-experimental results, we ob-
serve two key appearances to motivate our proposed approach:
(1) many allocated SLLC banks are useless but consume a great
deal of energy (Fig. 1), and (2) demands of SLLC banks are shift-
ing largely due to application locality change (Fig. 2).

This work is partly supported by GJJ180486.
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Fig. 1 Energy per access and hit rate varying with allocated SLLC bank
number ranging from 1 to 16. All tests use gcc benchmark. 128 KB
size per bank.

Fig. 2 Average energy per access sampling in ten billion instructions. gcc
benchmark, fixed five banks allocated.

2.1 The Proportion of Active SLLC Banks is Small
Figure 1 shows average hit rate and energy per access values

varying with allocated SLLC bank number which ranges from
one to sixteen. For each test group, we run ten billion instruc-
tions and take samples at every ten million instructions. And then
we calculate the runtime hit rate and energy values on SLLC. In
this paper, we define that energy per access is calculated as total
SLLC energy which is divided by the numbers of SLLC calls, and
the total energy includes static energy consumed by SLLC during
off-line memory accesses (SLLC miss repairing).

We highlight two key appearances in Fig. 1: (1) in the first
several banks, hit rate increases very fast, while energy per ac-
cess decreases sharply. (2) in the last several banks, hit rate re-
mains unchanged, but energy per access is rising. To analyze
those appearances, we deduce that thread starving happens in the
first several banks, which results in many costly off-chip memory
accesses. Once more cache banks are added, energy per access
decreases sharply because of great hit rate improvement and also
energy is largely saved. But in the last several banks, adding more
banks only causes more static energy consumption while hit rate
remains unchanged. As a consequence, those appearances moti-
vate us to find suitable cache bank number (i.e., five banks) with
low energy consumed.

2.2 Bank Demand Shifting with Application Locality
In this section, we try to represent that bank demand may be

shifting with application locality. In other words, the minimum
energy (optimal) allocated bank number corresponding to its lo-
cality may be different among sampling periods. Here, we em-
ploy an experimental example to represent such demand shifting.
Firstly, we fix the allocated bank number as five to run gcc bench-
mark in our platform. And then we can simulate ten billion in-
structions in each thread, while we take samples at every fifty mil-

lion instructions and calculate the average energy per access value
for each sample (see Section 4.1 for details). As shown in Fig. 2,
we can observe two key appearances: (1) Locality changing hap-
pens frequently, and results in sharp energy value variation, i.e.,
energy value changes in 3.4-th point of horizontal axis. (2) Lo-
cality appearing as energy variation in the figure may be approxi-
mately stable in a long sampling period, i.e., the sampling period
from 4.5-th to 5.3-th. Meanwhile, we should note that such local-
ity variation may be caused by many reasons, due to less or more
reused data accesses in new period, cache read or write propor-
tion changing, and so on, thereby hangs a tale [21], [22]. Hence,
it is very difficult or even impossible to unify a single reason on
locality changing for one application.

Actually, we can make use of those appearances in another an-
gle: instead of pursuing those reasons of locality variation hardly,
we represent that energy values change greatly with different
fixed bank numbers, as shown in Fig. 1. And we consider that
those energy values during same period (i.e., from 4.5-th to 5.3-
th) but in different instruction flows (16 flows in total) are quite
different, while there only has one variable quantity (fixed bank
number) changed. So we can infer that the energy value with
five banks allocated, for example, must be quite different with
the rest fifteen energy values even they are in same sampling pe-
riod (similar locality too). In other words, there should have an
minimum energy bank number (may not be five banks here, de-
cided by feedback control result) during the period between 4.5-
th and 5.3-th. Hence, energy saving problem is shifted to find
every energy-lowest bank number corresponding to each locality.
Through spreading the above period to entire instruction flow, we
are motivated to employ controllable allocation method to rapidly
converge the allocated bank number into the minimum energy
value after a locality variation happens. That is to say, we try to
find the minimum energy bank numbers for every sampling pe-
riod particularly with controllable allocation. Moreover, we need
the long locality-stable period for applying our control method.
Actually, based on the second appearance, there are many stable
periods which can be gathered together to hold the majority of
entire instruction flow.

3. Controllable SLLC Design

3.1 System Architecture Design
Starting with a conventional static non-uniform cache archi-

tecture (sNUCA) [4], we design our controllable cache through
modifying cache scheduler with control loops. Note that sNUCA
cache works well in small but fast bank level distributing [15],
as a result, we reasonably map SLLC banks to threads at per-
bank granularity. Hence, our goal of low energy is converted into
dynamically adjusting mapped banks to threads with the help of
control loop. To actualize this loop in SLLC, as shown in Fig. 3,
we design three key components: (1) Metric evaluator, (2) In-
tensive cache controller, and (3) Cache co-scheduler. The met-
ric evaluator is designed for counting runtime information, and
then calculates desired metric values (see details in next subsec-
tion). In this paper, we define an interval as a number of clock
cycles (i.e., one million cycles as an interval) or a piece of dy-
namic instruction flow (i.e., dynamic instructions in a call of one
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Fig. 3 Controllable SLLC architecture. Contains a feedback based control
loop.

subroutine). If one interval is executed, we can do SLLC ac-
cess energy difference between current interval and the former
control interval. And the difference value is acting just as a feed-
back control signal to indicate demand of cache banks. Then,
our intensive cache controller can generate suitable bank incre-
ment rapidly through applying modified discrete PID control, and
the control results are converged to bank number which is cor-
responding to the lowest energy under current locality. Finally,
we use cache co-scheduler to coordinate the allocation of cache
banks in multi-thread parallel, and then one control loop ends
here. Consequently, our design can save much energy with opti-
mal banks allocated in most intervals.

3.2 Energy and Latency Evaluator
To provide feedback values for SLLC control, we first need

to trace runtime information change once in one interval. Note
that straightly achieving such information is difficult and costly in
modern embedded systems, but actually, our goal is to quantize
such information change corresponding to allocated bank num-
ber change in per-interval granularity. In other words, estimating
such information is more suitable for control purpose rather than
precise measuring. Hence, we count runtime events (i.e., hit num-
bers) in one interval, and calculate them with energy and latency
models in established technical level. Based on sNUCA model
in CACTI v6.5 [4], the average latency and energy of one shared
cache access can be written as follows:

LPerAccess = Phit ∗ (max(Ltag, Ldata) + Loutdriver + LPreChaege)

+ Pmis ∗ (Ltag + Lmemory) (1)

EPerAccess = Phit ∗ (Edyn−hit + Eleakage−hit) + Pmis ∗ (Edyn−mis

+ Eleakage−mis) (2)

Where Ltag, Ldata, Loutdriver and LPreCharge represent per access
latency in tag side, data side, multiplexor driver and pre-charge
operation respectively, and Lmemory depicts the off-chip access la-
tency. Phit and Pmis describe the probability of cache hit and miss
in one access respectively. Edyn−hit and Eleakage−hit represent the
per access dynamic energy and leakage energy in cache hit sce-
nario. Edyn−mis and Eleakgae−mis represent the per access dynamic
energy and leakage energy in cache miss scenario including en-
ergy on waiting off-chip access. Note that all the above param-
eters are calculated in detailed gate level analytical model which
covers all cache components. Fortunately, we can get those pa-

rameters through implanting CACTI tool in our test system. And
then latency and energy consumption in one interval can be cal-
culated with runtime information counted, while very little hard-
ware overhead can be ignored.

3.3 Intensive Cache Controller Design
For a runtime sequence S , we split S into {1, 2, . . .N} intervals

orderly where n ∈ {1, 2, . . .N} stands for the n-th interval. Based
on runtime energy and latency evaluations, we can achieve energy
and latency values of application x in n-th interval, denoted as
Ex[n] and Lx[n]. If energy per access is chosen as the controlled
volume, we can calculate the difference values of application x in
each interval, denoted as follows.

ex[n] = Ex[n] − Ex[n − 1], n ∈ {2, . . .N} (3)

As shown in Fig. 1, energy per access values are highly re-
lated with allocated cache banks. Once a large ex[n] appears in
n-th interval, which is caused by locality change, current allo-
cated bank number is inefficient also. Thus, the goal of our con-
trol design is shifted to dynamically adapt bank numbers for new
locality. Note that Fig. 1 shows a similar concave-curve of en-
ergy values along with cache bank increasing. As a consequence,
we can treat those intervals as sampling periods in control the-
ory, and then control the allocated bank number through evaluat-
ing energy change. Similar with the closed-loop feedback con-
trol model [3], the bank increment value �Cbank (integer value)
can be represented with energy difference values in our negative
feedback based discrete retroaction control model. And our in-
crement Proportional−Integral−Derivative (PID) based intensive
cache controller is represented as follows:

�Cbank = KP ∗ (ex[n] − ex[n − 1]) + KI∗ex[n] + KD

∗ (ex[n] − 2ex[n − 1] + ex[n − 2]) (4)

Where KP is the proportional ratio, KI and KD are the period-
dependent integral ratio and derivative ratio, respectively.

To effectively tune those PID parameters, we should take a full
consideration on several features of our control system: (1) We
employ intervals to act as the sampling periods, and each energy
per access value from its corresponding interval acts as the con-
trolled volume value. Then, we can achieve a series of discrete
controlled volume values and their corresponding sampling peri-
ods (intervals) to be controlled. (2) Our control outputs are not
convergent to an exclusive bank value, but convergent to some
bank values that each value is highly related on the concomitant
locality. (3) Plenty of hardware and computing time are needed
to achieve very accurate control outputs. Instead, we tend to sac-
rifice some accuracy for using minimal hardware and computing
time in our control system. Note that all control outputs are even
normalized to be integer bank numbers, so that there is a trade-
off between control accuracy and hardware overhead, and energy
saving is the primary goal in our control design. Based on above
considerations, many methods such as self-tuning method are not
suitable in our control system, because of their complex imple-
menting structures [3], [23]. As it is difficult to achieve these pa-
rameters directly, we employ a static tuning method for deciding
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Fig. 4 Hit rate profiling along with allocated bank increasing. Bank number
varies from one to sixteen.

the values of PID parameters through experimental searching.
Firstly, we set KD and KP to be zero, and then run a group of

tests with the value of KI , which changes from zero to k under the
granularity of 0.05 (cut-and-try value), where k is an experiential
constant and is assigned as five in our tests, so that there are one
hundred test combinations in this group. Meanwhile, we com-
pare the achieved average energy values and find an approximate
KI , which is corresponding to the minimum energy value among
current group of tests. Secondly, we set KI as the approximate
KI and KD as zero, and then run a group of tests with KP value
varying from zero to k under the granularity of 0.01. After that,
we can decide the first parameter KP through energy comparing.
Thirdly, we set KP as the decided value and KD as zero, and run a
group of tests again with KI varying to decide the parameter KI .
Finally, we set KP and KI as the decided values, and run a group
of tests with KD varying under the granularity of 0.05 to decide
the parameter KD. Note that each test combination only takes
about dozens of seconds, and the total time of eight hundred test
combinations added up is less than ten hours on tuning parame-
ters for a single benchmark, so that the cost of this one time job
is acceptable for embedded systems.

Note that our controller uses incremental PID method to
greatly simplify calculation circuits, thus required area and en-
ergy overhead are ignorable. In other word, �Cbank is related to
three latest energy difference values during four intervals, so that
fine control effect can be easily achieved through control parame-
ter tuning, and control results are tolerable with steady state error.

3.4 Dynamic Cache Co-scheduling
In this section, we draw fairness guarantee into our cache co-

scheduler design. The original intention on fairness is to prevent
thread starving [14], for example, hot threads will occupy most
SLLC banks with LRU replacement policy, causing inefficient
thread starving in the rest of threads. However, absolute fair-
ness in SLLC allocating just brings about low efficiency on bank-
desired threads. In fact, bank demand of one thread is highly rel-
evant to application behaviors [11]. Thus, we employ three SPEC
benchmarks as examples to show that hit rate curves change with
allocated bank increasing. As shown in Fig. 4, hit rate in bzip2
shows great improvement in first three banks and then remains
unchanged despite of bank increasing. But for other benchmarks,
hit rate curves are diverse in both range ability and steady val-
ues although same bank number is allocated. Those appearances
inspire us to classify applications into three types: (1) Rapid in-
creasing application (R-app), i.e., 401.bzip2, (2) Gradual increas-

Fig. 5 HNTA difference profiling along with bank allocating order. The
number of horizontal axis stands for the ordinal number.

ing application (G-app), i.e., 403.gcc, and (3) Sharp increasing
application (S-app), i.e., 450.soplex. And those application types
are determined through experimental selections as follows.

As to an application x, we first run the application in our
platform with allocated bank number ranging from one to N

respectively, and then we can calculate the average Hit Num-
bers per Thousand Accesses value (HNTA), expressed as Hn

(n ∈ {1, 2, . . .N}). Consider that the (n − 1)-th test has the same
experimental conditions as the n-th test except the difference on
allocated bank number, so that the difference of HNTA values
between Hn and Hn−1 seems to be only related to the additional
cache bank and such difference, expressed as hn, can be formu-
lated as follows:

hn = Hn − Hn−1 H0 = 0, n ∈ {1, 2, . . .N} (5)

where h1 represents the HNTA value in allocated one bank case,
and the rest of hn values can represent the improvement of HNTA
when the n-th bank is allocated. In other word, hn can be re-
garded as the potential hit improvement corresponding to n-th
bank. As shown in Fig. 5, we plot the HNTA difference values
of three benchmarks as examples to reveal such improvement.
Clearly, we can observe that (1) Among the improvement val-
ues of bzip2 benchmark, first four banks contribute the majority
of hits while the rest of banks from fifth to sixteenth contribute
very few hits. (2) The improvement values of gcc benchmark are
always increasing with more banks, even the rate of such incre-
ment in last several banks is much lower than the one in the first
several banks. (3) As the reuse distance of soplex benchmark is
large, many hits can be achieved when allocated bank number ex-
ceeds such distance [21]. Hence, we employ an evaluation metric
to estimate the application types based on above appearances in
improvement values. And such metric named as Mx (x stands for
application x) is formulated as follows:

Mx =

∑N
n=1 hn −∑N/2

n=1 hn
∑N

n=1 hn − hmin

(6)

Where hmin here is set as h1. And if Mx exceeds a threshold
TS−app (Mx > TS−app), we can characterize the application x as
S-type application. If Mx is smaller than TS−app and is larger
than a threshold TG−app (TS−app > Mx > TG−app), we character-
ize the application x as G-type application. And if Mx is smaller
than TG−app (Mx < TG−app), very few hits can be achieved with
allocated banks after N/2-th bank, so that we characterize the ap-
plication x as R-Type application. Note that the threshold values
(TS−app and TG−app) are specially used for our platform and can
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be explored by sensitive analyses on the SPEC benchmark set.
Here, we set TG−app = 0.06 and TS−app = 0.27 which can be
employed to classify all the benchmarks into three types clearly.

For R-app, we should ensure first several banks allocated and
then is inclined to add few banks. For G-app, if we allocate
or reduce several banks from stead values, energy change is in
a relative small amplitude. And for S-app, bank numbers allo-
cated should exceed its sharp point (nine banks for soplex) at
least. Consequently, we set up the minimum bank numbers for
each application through off-line training to efficiently prevent
thread starving. After that, the priority order of bank allocation
should be R-app first, S-app second and G-app last. Then we
can adjust the control amplitude on bank allocating by reason-
ably setting proportional control ratios KP, KI and KD (details
see Section 3.6). In an extreme case, bank demands of all appli-
cations exceed available SLLC banks, we can reduce some banks
of G-app with few performance overhead. And in most cases, our
co-scheduling policy can well balance the trade-off between fair-
ness and efficiency based on application behavior analyses and
dynamic runtime control.

3.5 Locality-aware Interval Design
A simple method to generate control intervals is to divide entire

instruction flow into equal parts, or to employ a certain amount
of clock cycles as one interval [6], [9]. Those methods can be
easily actualized in control system and has the advantage of syn-
chronous control for all threads, meaning that all threads can
share same control intervals if we endow each thread with in-
dependent control hardware. However, such division method
loses sight of tracing application locality change (shown in Fig. 2)
which may cause acute vibration within control intervals. To en-
sure control stability, we should ease the interference causing by
locality change. Thus, we try to find more stable intervals which
can closely trace locality change. Inspired by SPEC CPU2006
benchmark analysis [5], dynamic instructions from several sub-
routines called frequently can take the majority of total instruc-
tions while static instructions counted in those subroutines are
very few, meaning that there may be thousands of calls in one
hot subroutine and each call in same subroutine represent very
similar locality as well as application behaviors. In other words,
continuous calls on same subroutine show stable locality in a pe-
riod, and calls switched on other subroutines may bring sharp
locality change. And we choose hot subroutines for all bench-
marks based on runtime selection, and those hot subroutines are
repeatedly called during executing, as a result, dynamic instruc-
tions counted in those calls can take more than ninety percent
of all instructions (as listed in Table 1). Thus, those subroutine
calls cover majority of instruction sequence and are more suit-
able to act as control intervals for tracing locality change rather
than equal-cycle based intervals. To implement our control inter-
vals, we insert interval start and end marks into subroutine source
codes to indicate control intervals.

3.6 Modified Discrete PID Control Algorithm
As shown in algorithm 1, we represent the pseudo-code of our

modified PID control design. If a trigger mark of one interval is

Table 1 Control interval and parameter tuning.

Benchmark Type Hot Sub. Capp(x)[0] PID-KP,KI ,KD

403.gcc G-app 19 5 0.89, 0.1, 0.2
444.namd G-app 13 7 0.82, 0.1, 0.3

445.gobmk G-app 15 7 0.74, 0.1, 0.25
401.bzip2 R-app 6 4 1.28, 0.2, 0.3
473.astar R-app 7 4 1.15, 0.2, 0.2

434.zeusmp R-app 9 5 1.07, 0.2, 0.3
450.soplex S-app 6 11 0.63, 0.1, 0.2

429.mcf S-app 8 13 0.71, 0.1, 0.25
482.sphinx3 S-app 12 9 0.68, 0.1, 0.2

Algorithm 1 Intensive SLLC increment Generating
Input:

Ex[n]: energy per access of app. x in n-th interval; Ex[0] = Ex[-1]= 0;

Capp(x)[n]: allocated banks of app. x in n-th interval; KP,KI ,KD and

Capp(x)[0] are listed in Table 1;

Rhit[n]: hit rate in n-th interval;

r, g and s: act as trigger marks of interval start for R-app, G-app and

S-app;

Bank: free bank set;

Output:

Capp(x)[n]+�Cbank: required bank in next interval;

1: x← application loading;

2: r, g, or s← application type;

3: for form n=1 to N−th interval appears do

4: ex[n] and Rhit[n] calculation;

5: �Cbank =KP∗{ex[n]- ex[n-1]}+ KI∗ex[n]+ KD∗{ex[n]-2ex[n-1]+ ex[n-

2]};
6: �Cbank= int[�Cbank]; //normalized in integer

7: if Rhit[n] > Rhit[n-1] then

8: �Cbank = -|�Cbank |; //banks decreased

9: else

10: continue;

11: end if

12: if �Cbank > Bank & one of r and s appears then

13: retire banks of G-app for R- and S-app until G-app banks are re-

duced to Capp(x)[0];

14: �Cbank=retired banks + Bank;

15: else

16: if �Cbank > Bank & g appears then

17: �Cbank= Bank;

18: end if

19: end if

20: return Capp(x)[n]+�Cbank

21: end for

detected, runtime information between this mark and the former
mark can be counted as values in n-th interval, then we can cal-
culate Ex[n] and Rhit[n]. Next, required bank increment �Cbank

is calculated with incremental PID formula (from lines 1 to 6).
In case of steady locality, energy values are very similar so that
�Cbank is almost equal to zero. And in case of large locality
change, if hit rate of n-th interval is increased, such appearance
represents that cache demand in n-th interval is smaller than the
one in last interval, in other words, previous allocated bank num-
ber are redundant for n-th interval, then control result is to reduce
some banks (lines 7 and 8). If the hit rate is decreased, cache
demand may be shifted to desire more banks allocated (lines 9
and 10). Moreover, in extreme rare case that free banks may be
less than required banks, we should retire some banks of G-app to
ensure the allocating priority of R-, G- and S-app, and remaining
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banks of G-app should be no less than Capp(x)[0] (from lines 12 to
19). Note that we amplify Ex[n] values by 107 in control acting
purpose to generate integral �Cbank.

Moreover, we decide the Capp(x)[0] for all benchmarks through
experimental exploring based on fixed bank number profiling
strategy (details see Section 4.1). The experimental platform is
set as four cores, 64 banks, and each core is partitioned with 16
banks, while all cores run the same application in 10 billion dy-
namic instructions. We set allocated bank number ranging from
1 to 16 for each core to run the application, and then we can cal-
culate sixteen average energy per access values from each test.
As shown in Fig. 1, we select the bank number corresponding to
the energy-lowest value as the Capp(x)[0], here, x stand for the ap-
plication x. Thus, we can decide a Capp(x)[0] especially for the
application x through statical exploring. Moreover, the Capp(x)[0]
values can be employed as the start bank number of our control
progress for preventing violent vibration in the beginning of feed-
back control loop. And also the fixed bank profiling results can
be treated as excellent comparing candidates to reveal the energy
efficiency of our controlled bank results.

In addition, we employ case studies for describing the algo-
rithm clearly. If the energy-lowest allocated bank number in
(n − 1)-th interval is Capp(x)[n-1] (locality remains stable before)
and we suppose that the locality is changed to be another one in
the next several intervals, and the allocated bank number for n-
th interval is still Capp(x)[n-1] because the bank increment of PID
control result in (n − 1)-th interval is zero. But the PID control
output in n-th interval tends to be changed towards two possible
directions as Capp(x)[n-1] is not acceptable anymore in n-th inter-
val [21]:
• Case 1: reuse distance during n-th interval is larger than the

one during (n − 1)-th interval (desire more banks).
• Case 2: reuse distance during n-th interval is smaller than

the one during (n − 1)-th interval (desire less banks).
In the former case, allocating more banks can help to improve

the hit rate toward the energy-lowest one (i.e., varying bank num-
ber from four to five in Fig. 1). But in the latter case, some banks
of Cn is redundant for the n-th interval (i.e., varying bank number
from six to five in Fig. 1). So that we can employ our control algo-
rithm for generating the required bank number in the next interval
corresponding to above two cases. Hence, we can firmly believe
that allocating more banks in the former case will bring some im-
provement on hit rate, and some energy can be saved also. But
in the latter case, allocating more banks only cause more energy
consumption while hit rate remains unchanged.

4. Experiments and Analysis

4.1 Experimental Setup
We employ a full-system modular platform, gem5 simulator

with detailed Ruby memory model, to constitute a four-core,
four-thread embedded system [7]. The system configuration de-
tails are listed in Table 2. Each core is allocated with private
L1 cache. And a 64-bank sNUCA cache is extended as shared
L2 cache. We count the runtime information with Ruby and
calculate energy consumption and latency with CACTI v6.5 [4].
We choose SPEC-cpu-2006v1.1 benchmarks as limited mounts

Table 2 Test system configurations.

Processor 4-core, 4-thread, 2.0 GHz, 1.1 V Vdd
Private L1 I/D 32 KB, 4-way, 64B line size, 2 cycles latency
SLLC 8 MB, 64B line size, 64 banks (128 KB, 16-

way, LRU per bank), 8 cycles latency
Main Memory Double Data Tate (DDR4 2,133 MHz, 1.2 V),

8 KB page size, 95 cycles latency
Tech/Temp 32 nm/70◦C

of embedded applications in one system [16]. In this paper, we
design three experimental strategies as follows:
• Fixed bank number profiling strategy: Each core has six-

teen banks partitioned and runs the benchmark separately,
while allocated banks consume both dynamic and static en-
ergy, and the rest of banks will consume leakage energy. The
energy per access values and hit rate values (all are mean
values) are calculated through averaging the values of four
cores.

• Fixed bank number profiling strategy with sleep mode [10]:
The setups in fixed banks are same with the former strategy,
and the difference is that the rest of banks will be set into
sleep mode for saving some leakage energy.

• Controllable bank profiling strategy: Sixteen banks are parti-
tioned to each core, while allocated banks consume both dy-
namic and static energy, and the difference contrasted with
the first strategy is that the rest of banks are set up in sleep
mode, in which those banks can be activated rapidly and
some leakage energy can be saved.

In order to classify all benchmarks by cache bank sensibility
and profiling control parameters, we employ three operations:
(1) Run all benchmarks with allocated bank number ranged from
one to sixteen to profile the hit rate and energy change, and then
achieve the initial required bank numbers Capp(x)[0] (i.e., five
banks for gcc in Fig. 1) and classify allocating type of R-, G- or
S-app for each application. (2) Use PIN dynamic instrumentation
tool to select hot subroutines of each benchmarks [17]. Through
inserting call marks into each subroutine, the tool allows us to
count three values in details, call numbers in one subroutine, dy-
namic instructions in one subroutine and static instructions in
one subroutine. Thus, we can select some hot subroutines ac-
cording to their call frequencies (limited by space, partly listed
in Table 1). (3) Do PID parameter tuning test for each applica-
tion. As described in Section 3.3, we achieve KP, KI and KD

through orderly adjusting each control parameter with criterion
that the lower energy, the better parameter. And we list the pro-
filing results in Table 1. Note that one embedded system usually
has several applications been executed, thus, those operations can
be easily pre-treated with off-line training. For parallel execution,
we also mix four benchmarks as one group to be executed in four
threads and details are listed in Table 3.

4.2 SLLC Access Energy Control Results and Analyses
We first separately test our design in per-application condition,

and benchmarks gcc, bzip2 and soplex are employed as exam-
ple for three application locality types of G-, R- and S-app. For
fair comparison, we uniformly skip first one hundred intervals
and count control details in next five hundred intervals. Then, we
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Table 3 Mixed benchmark groups.

Group Benchmark
∑

Capp(x)[0]
gabz gcc, namd, bzip2, zeusmp 20 banks
ngsm namd, gobmk, soplex, mcf 38 banks
azsm astar, zeusmp, soplex, mcf 33 banks
msgz mcf, sphinx3, gobmk, zeusmp 34 banks
azsg astar, zeusmp, soplex, gobnk 27 banks

ngbm namd, gobmk, bzip2, mcf 31 banks
smsg soplex, mcf, sphinx3, gobmk 40 banks
bazg bzip2, astar, zeusmp, gcc 18 banks

Fig. 6 Energy per access profiling in two scenarios: fixed Capp(x)[0] and
controlled bank allocated.

profile average energy per access values in each interval with two
scenarios that fixed Capp(x)[0] banks are allocated without control
and flexible Capp(x)[n] banks are allocated with control.

As shown in Fig. 6 (a), the energy values during each inter-
val vary from 1.64 × 10−7 J to 4.36 × 10−7 J around with fixed
Capp(x)[0] banks allocated while the energy per access value av-
eraged in five hundred intervals is about 2.85 × 10−7 J. Along
with locality varying, energy per access values vary in very large
range too, for example, such value is even doubled at 204-th in-
terval around. As to locality stable periods, energy values also
remain stable in a number of intervals. For example, energy per
access is about 2.98×10−7 J between 165-th and 203-th intervals.
In the other scenario, we allocate flexible Capp(x)[n] banks based
on control results to closely follow after locality change. For each
locality change, allocated banks at this time is unfitted with new
locality, resulting in high energy values. Then, we can achieve
suitable bank number for next interval through PID-based con-
trol computing, and this bank number can be quickly stabilized
as optimal number according with the new locality. Thus, energy
per access values with control are much lower than non-control
ones. We also profile each Capp(x)[n] values corresponding to in-
terval sequence in Fig. 7 (a). We can observe that controlled bank
choices vary from three banks to seven banks, and some choices
are associated to reveal similar locality in one interval period. For
example, bank choice is always four between 165-th and 203-th
interval while application locality keeps stable during this inter-

Fig. 7 Controlled bank number profiling in three benchmarks.

val period, and more twenty percent energy can be saved than
non-control scenario.

Figures 6 (b) and (c) show energy per access profiling results
on R-app (bzip2) and S-app (soplex) benchmarks, respectively.
Energy values of bzip2 vary from 1.52 × 10−7 J to 3.06 × 10−7 J
around and average energy value is about 2.47 × 10−7 J with
fixed four banks allocated. For soplex, energy values range from
3.95× 10−7 J to 7.62× 10−7 J while average value is 5.96× 10−7 J
with eleven banks allocated. In the control scenario, both R-app
and S-app show similar appearances as G-app that energy values
are closely related to locality change. And average values are
about 2.15 × 10−7 J and 4.89 × 10−7 J, respectively.

In order to analyze the appearances of energy varying, we
should consider two key parameters, hit rate and bank number,
where hit rate mostly affects dynamic energy consumption and
bank number is related to static energy consumption. Along with
allocated bank increasing, hit rate is raising fast in first several
banks and next increases very slow. On the contrary, the num-
ber of costly off-chip memory accesses is firstly reducing very
fast and next keep steady as allocated bank increasing. In other
words, with allocated bank increasing, energy consumption first
reduce fast due to hit rate rising, and if hit rate goes smooth, dy-
namic energy will remain unchanged as well as the off-chip ac-
cess number. Then, we can get a low-energy allocation of banks
that start from this number of allocated banks, and adding more
banks only wastes more static energy and has few hit rate im-
proved. Unfortunately, those low-energy allocation points are not
changeless but change acutely with application locality. Thus, the
goal of our SLLC control design is turned to trace locality varying
and then generates those low-energy bank numbers (Capp(x)[n]).

To well actualize our control design, we need some new con-
trol intervals which can make a clear distinction between locality
steady and locality change, instead of intervals partitioned blindly
by execution time. Inspired by application analyses in Ref. [5],
hot subroutine calls which take majority of dynamic instructions
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Fig. 8 Average energy per access comparisons of fixed banks and controlled banks allocated on all bench-
marks.

act as natural intervals to trace locality change. Normally, calls on
same subroutine show very similar locality and hit rate, that is to
say, energy per access values are nearly equal in those calls. From
experimental results in Fig. 6, we can affirm that same allocated
banks correspond with similar energy values. During application
executing, one subroutine is usually called by many times in an
executing period, and those calls stick together to show their spe-
cial locality. In other words, energy values may change acutely
among those executing periods which belong to different subrou-
tine calls. Hence, more energy can be saved with our locality-
aware interval design.

4.3 Control Effects Analyses
In this section, we try to analyze the availability of our con-

trol design based on experimental results. We profile the control
results of each intervals (Capp(x)[n]) in executing sequence. As
shown in Fig. 7, allocated banks vary from two banks to seven
banks for gcc, from three to six banks for bzip2 and from nine
to fifteen banks for soplex. When the locality is stable, the differ-
ence of energy values is not large enough to trigger allocated bank
increment so that allocated bank number remains unchanged. For
example, bank number is always four between 165-th and 203-
th interval in the sequence of gcc. When the locality is changed
or there has a call on another subroutine, previous banks may be
unbefitting of the new cache demand of another subroutine. If en-
ergy value in n-th interval is much less than the value in (n−1)-th
interval and hit rate with old allocated banks is increased, the con-
trol result of n-th interval is to reduce allocated banks for adapt-
ing new locality (i.e., 163-th interval around in gcc). If energy is
enlarged and hit rate remains unchanged, some redundant banks
should be reduced for saving energy. And if energy value is in-
creased and hit rate is decreased, more cache banks are needed
to appease the hit rate reduction for dynamic energy saving (i.e.,
202-th interval of gcc). Moreover, we employ a PID controller
which is composed of a proportional controller for representing
locality change, an integral controller for eliminating static error
and a derivative controller for fast control regulating [3]. Thus,
new low-energy bank number which is suitable for new locality
can be achieved within several control intervals. Note that alter-
ation of allocated banks is in integer multiple of bank, and the
altering frequency is low enough to ignore the latency cost of
bank retirement as we use LRU replacement policy.

In addition, we only select the fixed bank number strategy for
comparing with our method, because energy curves of the strate-
gies with and without sleep mode are almost same. And the only

difference is that setting the rest banks (i.e., eleven banks in gcc)
into sleep mode can result in saving some leakage energy. In a
particular case, the average controlled bank number may be same
as the fixed bank number while their energy values are different
(i.e., from 20-th to 95-th in Fig. 7 (b)). This is because that the
occupied bank number is an average value while allocated bank
number to each core may be different at same clock. For exam-
ple, although controlled bank numbers may be 3, 3, 3 and 5 to
four cores, the integral number is always 4 which seems to ac-
complish nothing over fixed four bank method, but actually some
energy can be saved with our controllable method. Moreover, the
leakage energy of our method on the rest banks is smaller than
fixed banks method. As shown in Fig. 8, the average energy per
access values of fixed banks with sleep mode case can save energy
consumption by 4.28 percent over fixed banks case (5.65 percent
in gcc).

To analyze the bank allocation at per-interval level, we insert
start and end marks into selected subroutines and monitor their
call frequencies during specified profiling period along with in-
struction flow. We employ two profiling periods as examples
to illustrate two control effects, bank number increased and de-
creased. During the period from 193-th to 243-th in Fig. 7 (a), the
stable bank number is seven and the former stable bank number
is four. Note that during this period a subroutine is continually
accessed to do the function of semantic parsing. And the energy-
lowest value tested on this subroutine is corresponding to seven
bank as such subroutine has a long retire distance [21], meaning
that a lot of reuse data may be retired if allocated bank number is
small. Hence, four banks allocated to this subroutine will bring
about high energy value (190-th interval around in Fig. 6 (a)), and
such energy difference will trigger the control progress to work
exactly as the case 1 in Section 3.6, where the control output is
adding a bank until the energy difference is small enough (up to
seven banks). Considering another period from 239-th to 274-th
in Fig. 7 (a), bank demand tends to be five as the retire distance is
short here. So that the control progress will work as the case 2 in
Section 3.6 to generate smaller bank number.

In order to show the energy saving of our control design, we
calculate the average energy per access of each application with
and without control design. As shown in Fig. 8, the average en-
ergy value of all applications is about 4.07×10−7 J with Capp(x)[0]
allocated, and such value is 3.48×10−7 J with controllable banks.
Energy savings turn from 9.61 percent (omnetpp) up to 27.46 per-
cent (lbm) with average 17.34 percent energy improved. More-
over, we also test the fixed banks with sleep mode case to com-
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Fig. 9 Average energy per access during parallel executing.

Fig. 10 Occupied bank number during parallel executing. Range from least
banks to most banks occupied among intervals.

pare with our method, and about 13.62 percent energy can be
saved with our controllable method. Note that all control calcu-
lations are parallel with executing sequence which cost very few
latency overhead, and executing times of fixed banks and con-
trolled banks methods are differed within 0.3 percent.

4.4 Parallel Computing Control
To verify our control design in parallel computing case, we mix

applications into eight groups as workloads listed in Table 3, and
add three groups of all gcc, all bzip2 and all soplex. We normalize
the energy per access values of controllable SLLC to values of a
conventional 64 bank SLLC. As shown in Fig. 9, energy value
with all bzip2 workload can save 47.92 percent over conventional
case, and the least case is 31.86 percent with smsg group. The
control cache design can save average 39.71 percent energy com-
pared to conventional cache. And we also profile the occupied
bank numbers during runtime, as shown in Fig. 10, allocated bank
number in parallel varies from the least banks of 10 banks (all
bzip2 group) to the most banks of 53 (all soplex group) with av-
erage 29.7 banks. As can be seen, the optimal cache demands
are very different among workloads, and even in same workload
bank demands are varying acutely as locality change. As a result,
many banks produce very few benefit but consume a large pro-
portion of static energy. Our control design can save those static
energy and is adapting to locality change in per-interval granular-
ity for further energy saving.

4.5 Comparisons with Related Works
In this section, we compare our proposed SLLC design with

two kinds of low-energy SLLC designs: (1) reconfigurable SLLC
(R-SLLC) [9], [20]. Those designs employ search algorithms to
explore low-energy cache parameter combinations in time or cy-
cle based intervals. (2) phase based SLLC partitioning schemes
(P-SLLC) [2], [11]. Those schemes save energy by dynamically
partitioning SLLC spaces based on phase characteristics. For fair
comparison, we skip first ten billion cycles and then profile en-
ergy per access values and IPCs in next ten billion cycles. As

Fig. 11 Average energy per access comparisons over three SLLC optimiza-
tion designs.

Fig. 12 IPC comparisons over three SLLC optimization designs.

shown in Fig. 11, P-SLLC consumes more energy than other two
schemes in each workload group. On average controlled SLLC
scheme can save 11.6 percent energy compared to R-SLLC and
18.2 percent compared to P-SLLC, respectively. But for IPC of
four cores shown in Fig. 12, three schemes show very few differ-
ences that IPCs of R-SLLC and P-SLLC decrease on average 3.9
percent and 1.7 percent compared to controlled SLLC scheme. To
analyze at the insight, R-SLLC scheme can achieve very accurate
cache allocation by exploring in dozens of intervals, but in case
of locality change, such scheme needs many intervals explored to
achieve the new optimal bank number while energy values during
those intervals are not optimal ones. As to P-SLLC, this scheme
works through dynamically partitioning SLLC based on thread
parallel and phase tracing, and its allocating results are effective
but not very efficient because of its small exploring set. To com-
bine advantages of both, our controlled SLLC can fast trace lo-
cality change and control results are rapidly converged to efficient
values, then more energy are saved.

4.6 Latency and Hardware Overhead Analyses
To compare with the conventional sNUCA cache [4], we em-

ploy CACTI v6.5 tool to compute the hardware overhead of our
cache through estimating all components in transistor level. For
a 8 MB, 64B block size, 256 K entries sNUCA cache, it total
size can be calculated as 256 K entries × (34 bits tag side/entry +
512 bit data side/entry) = 140,800 Kbits. The additional hardware
mainly comes from three parts: (1) Runtime information evalu-
ator units and comparator. We employ eight counters to record
those information for calculating energy and latency values. The
total size is about 8 × 32 × 16 T flip-flop. (2) Intensive mem-
ory controller. In our discrete PID controller, it only needs sev-
eral add and multiply operations to calculate required bank incre-
ments. (3) SLLC co-scheduler. We implement two flag bits for
four threads on each bank to mark co-scheduling operation and
one bit for signing occupied or free status. With respect to four-
thread, 64 banks condition, additional size is about 3 × 64 bits.
Note that PID control operation works once in one interval, and
such operation only occupy dozens of cycles to compute �Cbank.
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Therefore, comparing with the interval length in millions of cy-
cles, control latency can be ignored and hardware overhead is less
than 0.6 percent over the conventional 8 MB sNUCA.

5. Conclusion

In this paper, we propose a controllable SLLC scheme to
largely save SLLC access energy. This scheme employs locality-
aware intervals to trace phase change, and a modified discrete
PID controller is designed to rapidly generate suitable bank in-
crements. After tuning PID parameters effectively, control results
are fast converged to low-energy bank allocating in case of both
locality stable and locality change. Experimental results show
that access energy with controlled SLLC scheme can be largely
saved compared to conventional SLLC, and our scheme also re-
veals more energy saving compare to related works, while its tiny
control latency and hardware overhead are negligible.
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