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Abstract: Some reports stated that the most important issue of smartphones is their large battery consumption. In-
formation on the power consumption of each application is important for users and administrations of application
distributing sites. Especially, information on power consumption of each application in the screen-off state is impor-
tant because understanding the behavior of an application in the state is difficult. Naturally, the power consumption
of a device increases and decreases by installing and uninstalling an application, respectively. However, the sizes of
increase and decrease in power consumptions depend on the device. We think there are two types of dependencies,
which are hardware and software dependencies. The hardware dependency is that the power consumption of an ap-
plication depends on the hardware elements of the device. The software dependency is that the power consumption
of an application depends on the other applications installed on the device. We then argue that consideration of these
dependencies are essential for estimation of the power consumption of each application. In this paper, we focus on the
software dependency and propose a method for estimating the size of increase and decrease in power consumptions
of the device by installing and uninstalling an application considering software dependency. The proposed method
monitors starts and ends of functions such as GPS usage and WakeLock, then estimates the parts of the power con-
sumptions of each application separately. We estimate the GPS usage time and WakeLock time for evaluation of the
proposed method and show that the proposed method can estimate these more accurately than the standard method
of the Android operating system. Our evaluation demonstrated that the proposed method decreased the difference
between the estimated and actual sizes of decreases in power consumption by 89% at most.
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1. Introduction

Estimating the battery consumption of each application indi-
vidually is essential for users to save on power consumption,
which is the most important problem in recent smartphones [1],
[2]. The Android operating system, which is one of the most
popular smartphone operating systems and has the largest market
share [3], has a function whereby the operating system can in-
voke an application at the specified time without user operation.
This function allows applications to run in the screen-off state
and consume battery power. In order to reduce battery consump-
tion by uninstalling a non-important application, understanding
the power consumption of each application is required. How-
ever, the sizes of the increased and decreased power consumption
by installing and uninstalling an application depends on the de-
vice [4], [5]. As far as we know, there is no method for obtaining
this information.

There are two types of dependencies, caused by hardware and
software. Software dependency implies that the power consump-
tion of an application depends on the other applications installed
on the device.
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The Android operating system estimates the power consump-
tion of each application individually based on the monitored
times of various factors such as WakeLock. In addition, it was
demonstrated that execution of WakeLock and power consump-
tion have a strong relationship [6]. Therefore, in order to accu-
rately estimate the power consumption of each application, it is
essential to improve the accuracy of the monitoring and estimat-
ing times considering the dependency. We propose a method for
estimating the power consumption with consideration of software
dependency [4], [5] only for applications which use GPS. The
method was effective for applications using GPS. However, the
effectiveness of other factors, i.e., WakeLock, CPU, and Wi-Fi,
was not discussed.

We define the software dependency as follows. The size of
decreased power consumption by uninstalling an application de-
pends on the other applications that are installed in the device.
We call this dependency software dependency. The size of power
consumption decreased by uninstalling an application that utilizes
a function, e.g., GPS, is large if the other applications do not uti-
lize the function. It is small if some other applications utilize the
function and the periods of usages overlap. In case of the num-
ber of application that uses a certain function at a certain period
is changed from one to zero by uninstallation, the usage of the
function at the period changes from busy to idle and the power
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consumption decreases. In case of the number of applications
that use the function changes from n + 1 to n such that n > 0, the
usage of the function does not change, i.e., from busy to busy, and
the consumption does not decrease.

In this paper, we focus on the software dependency and pro-
pose a method for estimating the sizes of increased and decreased
power consumptions of a device by installing and uninstalling an
application considering software dependency. We then estimate
the GPS usage time and WakeLock time for evaluation of the pro-
posed method and show that the proposed method can estimate
these more accurately than the standard method of the Android
operating system. We consider the software dependency with
examples of GPS and WakeLock in this paper. It is mainly be-
cause these usages are important for discussing power consump-
tion [4], [7]. This paper is an extended version of the previously
published work of Refs. [4], [5], [7], [8].

The rest of this paper is organized as follows. Section 2 re-
views the related studies. Section 3 explains power consumption
in the screen-off state in Android and its estimation. Section 4 de-
scribes the proposed method for estimating power consumption
with consideration of software dependency. Section 5 evaluates
the proposed method. Section 6 discusses furthers improvement.
Section 7 presents discussion. Finally, Section 8 concludes the
paper.

2. Related Work

Power Consumption Estimation in Android: Many studies
on power consumption estimation have been published. Corral et
al. proposed a method for estimating power consumption using
the information provided by the operating system [9]. Kaneda et
al. modeled the power consumption of Wi-Fi devices. Motlhabi
et al. estimated the power consumption of Wi-Fi devices [10].
Murmuria et al. also modeled the power consumption of Wi-Fi
devices [11]. Friedman et al. discussed effective data transmis-
sion using Wi-Fi and showed that retransmission was ineffec-
tive with regard to power consumption [12]. In the work of
Refs. [13], [15], methods for estimating the break-even time of
disabling a network device were proposed. These studies did not
provide a method for estimating the power consumption of each
application.

The Android operating system estimates the power consump-
tion of each application by summing the monitored times of GPS
usage, WakeLock, Wi-Fi usage, CPU usage, and others. There-
fore, improving the accuracy of monitoring times is essential to
improving the estimation of the power consumption of each ap-
plication. A method for improving the accuracy of monitoring
the time of GPS usage was presented in the work of Ref. [4].

Static Estimation of Power Consumption: The following
studies deal with the power consumption estimation of the static
analysis of applications. Wu et al. tried to detect energy-drain
defects in Android applications [16]. Singhai et al. proposed
software-based methods for reducing the power consumption of
a mobile device running an Android application [17]. Couto et al.
presented a tool for monitoring and analyzing power consump-
tion in the Android ecosystem [18]. The tool instrumented the
source code of a given Android application and estimated the

power consumed by the application. Bao et al. analyzed Android
applications based on source code [19]. These studies are effec-
tive from the aspect of static analyses.

Dynamic Estimation of Power Consumption: Zhang et al.
proposed an automated power model construction technique that
used built-in battery voltage sensors and knowledge of battery
discharge behavior to monitor power consumption while explic-
itly controlling the power management and activity states of indi-
vidual components [20]. Mittal proposed a method that allowed
developers to estimate the energy consumption for applications
on their development workstations [21]. This method scaled the
emulated resources including the processing speed and network
characteristics to match the application behavior to that on a real
mobile device.

Alessio et al. investigated the feasibility of constructing power-
consumption-based sensors for the identification of security
threats (for example, battery-drain attacks) on Android-based
mobile devices [22]. Furusho et al. proposed a method for col-
lecting essential data to profile the energy consumption of ap-
plications running on the Android operating system [23]. Their
method analyzed the power consumption using a log collected
during application usage of a particular user. In the work of
Ref. [24], a method for monitoring application launching behav-
ior was proposed. These studies are effective with regard to
dynamic power consumption estimation. However, there is no
method for estimation considering software dependency.

Software Dependency of Power Consumption: The software
dependency of power consumption is discussed in Refs. [4], [6],
[7], [8], [25], [26]. The works of Refs. [25], [26] focused on the
relationship between broadcast intent [27], [28] and power con-
sumption. Broadcast intent is issued by some applications and
received by some other applications. Naturally, the number of is-
sued broadcast intents and receiver applications are expected to
depend on the installed applications. Broadcast intents are also
issued in the screen-off state. Receiver applications are invoked
at reception and consume power. This implies that power con-
sumption may have a dependency on installed applications.

These works investigated the relationship between the number
of receiving applications, power consumption per broadcast in-
tent issue, and installed applications. These studies then showed
that consumption per issue depended on the installed applica-
tions. In addition, these studies revealed that the number of issues
was also dependent on applications installed in the device.

These works argued only that there existed a software depen-
dency and did not propose something novel for improving power
consumption estimation. In the work of Ref. [4], a method for
estimating the power consumption considering software depen-
dency was discussed.

This paper is based on previous works [4], [5]. However,
these works did not present discussion on the power consumption
caused by WakeLock. The work of Ref. [6] focused on the esti-
mation of power consumption caused by WakeLock. However,
the proposed method in this previous work did not take account
of software dependency. In the work of Ref. [7], the method of
Ref. [4] was applied to WakeLock function and the method was
evaluated with benchmark applications. In the work of Ref. [8],
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the method was evaluated with practical applications.
In the work of Ref. [29], smartphone usage models based on

investigation of practical users usage, were introduced. The au-
thors analyzed the feedback data from practical users and logs in
practical used devices and showed the relationship between the
trends and the users properties.

3. Power Consumption in Screen-off State in
Android and its Estimation

3.1 Power Consumption in Screen-off State in Android
Device

An Android device in the screen-off state goes into the sleep
state without the user’s operation. In the sleep state, CPU process-
ing, display emitting, and communication are highly restricted,
and power consumption is significantly decreased. The Android
operating system can invoke an application using alarm and
broadcast intent even in the screen-off state [6].

This restriction in the sleep state may prevent an application
from working correctly [13], [15]. In order to avoid this problem,
the Android operating system has a WakeLock function that for-
bids a device to go into the sleep state. For example, a movie
application can keep its screen on during play with this function.
The WakeLock function has several modes for choosing locked
functions [14].

Naturally, the execution of WakeLock increases the power con-
sumption of the device [6]. Furthermore, a user cannot observe
the behavior of the application directly in the screen-off state.
Thus, it is not easy for the user to monitor requests, and this re-
moves an application that frequently executes WakeLock. To un-
derstand the battery consumption of each application, obtaining
accurate information on the WakeLock time of each application
is important.

3.2 Estimation of Power Consumption of Each Application
in Android Operating System

The Android operating system has a standard method that mon-
itors and manages the power consumption of each application. A
user can access this function via the Battery function of the Set-

ting application. We refer to this as the standard method in this
paper. The Android operating system, including this standard ap-
plication and the Android framework, monitors starts and ends
of the usage of its devices such as its CPU and GPS, and exe-
cutions of WakeLock. The standard application manages these
times inside and then calculates the power consumption of each
application.

An application can make a function, e.g., GPS and WakeLock,
active or inactive by using APIs. It can be utilized while it is ac-
tive. In a period of usage, its power consumption increases. In the
case of GPS, the APIs are acquire and release, and the location
information can be obtained while it is active.

The WakeLock time of each application is summed only in
the screen-off state. Accurately monitoring these times is impor-
tant for the accurate estimation of the power consumption of each
application.

4. Proposed Method

In this section, we propose a method for estimating the time of
usage of a function or a device of each application. The method
monitors starts and ends of usage by each application and esti-
mates the usage time after uninstalling an application on a basis
of the monitored usage history considering overlapping.

The proposed method estimates the usage time of a target func-
tion after uninstalling each application as the following three
steps.
( 1 ) A user modifies the implementation of the Android operating

system for monitoring starts and ends of usages of a target
function.

( 2 ) The user let the device run with the modified operating sys-
tem with its applications. As a result, the history of starts and
ends of the target function is obtained. A period in which one
or more application(s) uses the target function is a period of
usage. A period in which no application uses the function is
a period of non-usage.

( 3 ) The user removes the starts and ends by a target application
from the history, we call this a modified history, for estimat-
ing the usage time of the target function after uninstalling the
target application. Similar to the second step, the usage time
of the target function can be predicted from this modified
history.

This method modifies the implementation of the Android op-
erating system in order to monitor starts and ends of usages of
functions or devices. In a case of GPS, a monitoring function is
inserted into the source code of implementations of request and
remove of the LocationManager. In a case of WakeLock, the
monitoring function is inserted into these of acquire and release

of WakeLock. Monitoring of request and remove of GPS can
be achieved by modifying LocationManagerService.java in
Android operating system. Monitoring of WakeLock can be
achieved by modifying BatteryStatsImpl.java. We moni-
tored partial WakeLock. The Android operating system asso-
ciates every application with a user ID in the Linux kernel. Thus,
the application that issues a start or an end of a usage is easily
identified by checking the process that issues it. All a user have
to do is to obtain the time and the information of the process of
each issue and store them, e.g. saving them to a file.

Figure 1 illustrates the proposed method. Figure 1 (a) is a sam-
ple of a recorded history. It contains the time and the application
information. Figure 1 (b) is the visualized record. The function
is used in the periods of 2–8, 10–12, and 14–20. The total usage
time is 14. In this case, the proposed method estimates the usage
time of the function after uninstalling each application as follows.
The usage time after uninstalling application 1010 is obtained by
removing the usages by application 1010 from the history. The
modified history is shown in Fig. 1 (c). The estimated usage peri-
ods are 4–6, 10–12, and 16–18. The estimated total usage time is
6. The total usage time decreases by 8, i.e., from 14 to 6, by unin-
stalling the application 1010. The usage time after uninstalling
application 1011 is 14 as shown in Fig. 1 (d). This means that
uninstalling the application 1011 does not decrease the total us-
age time. The total usage time after uninstalling the application
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1012 is 12 and the size of decrease is 2.
The letters “s” and “e” indicate start and end of usage, re-

spectively. In the case of GPS, these are request and remove of
GPS. In the case of WakeLock, these are acquire and release of
WakeLock.

Unfortunately, the standard method of Android estimates the
usage time after uninstalling without considering overlapping.
If multiple applications share a usage, the time is divided by
the number of the sharing applications and each divided time is

Fig. 1 Concurrent usages of functions by applications.

allocated to every application. In the case of Fig. 1 (b), the us-
age time between 4 and 6 is shared by the applications 1010 and
1011. The usage time (2 s) is divided by the number of applica-
tions (two), and then the divided time (1 s) is allocated to both
applications. Similarly, the 2 s of usage time between16 and 18 is
divided into both applications. As a result, the standard method
estimates the usage time of the application 1011 as 2 s. Then, the
method predicts that the usage time decreases by 2 s, from 14 to
12, by uninstalling the application 1011. However, the usage time
does not decrease by uninstalling the application 1011.

The further improvement considering the software dependency
including system processes is discussed in Section 6.

5. Evaluation

5.1 Benchmark GPS Application
Here, we evaluate the proposed method using a benchmark ap-

plication that we implemented. The application sends request and
remove of GPS for LocationManager at start and 2 h later, respec-
tively. We performed four experiments, as shown in Fig. 2. In the
case of Type O, we invoked no application and left the device un-
touched for 2 h. We then measured the power consumption and
the GPS time. For Type A and Type B, we used applications A
and B, respectively.

For Type AB, we used applications A and B simultaneously.
Applications A and B are completely the same. The used de-
vice was a Nexus 7 (2013), which has the CPU Qualcomm
Snapdragon S4 Pro 1.5 GHz, 2 GB of memory, and Android op-
erating system 6.0.1 with a patch for the proposed method. The
proposed method estimated the power consumption with an as-
sumption that power consumption was proportional to the usage
time in all the experiment in this section.

The experimental results are shown in Figs. 3 to 6. The vertical
axis in Fig. 3 represents the actual size of the decrease in the bat-
tery of the device in 2 h. That in Fig. 4 represents the estimated
size of the battery consumed by each application, which is pro-
vided by the standard method of the Android operating system.

Fig. 2 The types of the experiments (benchmark application).
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Fig. 3 Experimental results (power consumption, benchmark application).

Fig. 4 Experimental results (power consumption of each application,
benchmark application).

Fig. 5 Monitored GPS usage with the proposed method (benchmark appli-
cation).

Fig. 6 Estimated and actual power consumption after uninstallation of ap-
plication A (benchmark application).

Figure 5 depicts the periods of GPS usage by Applications A
and B. Figure 6 shows the estimated and actual sizes of the de-
creased power consumption by uninstalling Application A from
the Type AB. “Type B (estimated by standard method)” repre-
sents the estimated size by the standard method. The size is 2% as
shown in Fig. 4. “Type B (estimated by proposed method)” repre-
sents the size estimated by the proposed method. The size is 0%
because the GPS usage time will not be decreased by installing
the Application A as shown in Fig. 5. “Type B (actual)” repre-
sents the measured size, which is the actual value. Therefore,

Fig. 7 Monitored GPS usage with the proposed method (practical applica-
tions).

Fig. 8 Estimated and actual power consumption after uninstallation of ap-
plication A (practical applications).

Table 1 Power consumption of application by standard method.

the actual decreasing power consumption is 0%. This indicates
that the proposed method can estimate more accurately than the
standard method in the case of this benchmark application.

5.2 Practical GPS Application
Here, we evaluate the proposed method with practical GPS ap-

plications. We use the top 50 applications in the application rank-
ing in the category “Weather” in the Google Play Store on June
30, 2016.

Because five of those applications did not support the experi-
mental device, 45 applications were installed on the device. We
left the device untouched for 24 h and measured its power con-
sumption. The used device was the same as that of the previous
subsection.

Figures 7, 8, and Table 1 show the experimental results. Ta-
ble 1 shows the ranking of the power consumption of each ap-
plication reported by the standard method. Figure 7 shows the
periods of GPS usage presented by the proposed method. Fig-
ure 8 shows the estimated and actual sizes of the decreased power
consumption by uninstalling Application A, which is the top
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Fig. 9 Estimated and actual GPS time after uninstallation of application A
(practical applications non-always GPS).

Fig. 10 Estimated and actual power consumption after uninstallation of ap-
plication A (practical applications non-always GPS).

application in the ranking in Table 1. As shown in the table, the
size of reduction estimated by the standard method is 20%. The
total GPS time before uninstalling application A is 1,440 minutes
as shown in Fig. 7. The total GPS time after uninstallation can
be estimated from Fig. 7 by deleting the GPS usage of the appli-
cation A and the estimated total GPS usage time is also 1,440
minutes. Thus, the size of reduction estimated by the proposed
method is 0%. We actually uninstalled the application and mea-
sured the size of reduction. The values was 2%. The difference
between the actual and estimated values decreased by 89%.

This result also demonstrates that the proposed method can es-
timate more accurately than the standard method.

5.3 Practical GPS Applications (Non-always GPS)
Here, we evaluate the proposed method using appllications that

do not keep using GPS. In the evaluation in the previous subsec-
tion, two applications kept using GPS. In that case, it was easy
for the proposed method to predict the time of GPS usage after
uninstallation. We installed the top 50 applications in the free
application ranking of the “Weather” category on July 1, 2016,
in Google Play Store, except for five applications that the exper-
imental terminal did not support and two applications that kept
using GPS. Thus, 43 applications were installed. We left the ter-
minal untouched for 24 h and measured the transition of the value
of the remaining battery power. The used terminal was the same
as that in Sections 5.1 and 5.2.

The power consumption ranking provided by the standard
method is as follows. Applications A, B, C, and D consumed the
battery by 5%, 2%, 1%, and 1%, respectively. Figure 9 shows the
estimated and actual GPS times before and after uninstallation.
Figure 10 shows the estimated and actual power consumptions.

Fig. 11 GPS usage time for each application by proposed method.

The label allapp in the figure represents the experiments in which
all 43 applications were installed, i.e., before uninstallation. The
label without A indicates experiments with the 42 applications.
The application A was uninstalled from all 43 applications, i.e.,
after uninstallation.

Application A is the top application in the ranking by the stan-
dard method. The label estimated by proposed represents the
value estimated by the proposed method before uninstalling ap-
plication A. The label estimated by standard indicates the value
reported by the standard method. The label allapp GPSoff indi-
cates the experiments with all 43 applications and GPS disabled.
Figure 11 shows the period of GPS usage of each application es-
timated by the proposed method. The request and remove labels
in the figure indicate the times at which each application issued
commands for starting and ending the usage of GPS.

The standard and proposed methods estimated the size of de-
crease in power consumption as 5% and 6.2%, respectively. The
former is easily obtained. The ranking by the standard method
implies that uninstallation of the application decreases the power
consumption by 5%, as mentioned above. The latter is as fol-
lows. From Fig. 9, the proposed method estimates that the total
GPS usage time in the device is 300 min, which was obtained
from Fig. 11. In addition, the proposed method predicts the GPS
usage time after uninstalling application A as 197 min. That is,
the method predicts that uninstallation decreases the GPS time by
33%.

Comparing the values of allapp and allapp GPSoff indicates
that the power consumed by the GPS is 18%. Uninstallation
changes this from 18% into 18% × (197/300) = 11.8%. In other
words, the proposed method predicts that uninstallation will de-
crease the consumption by 6.2%. Figure 10 shows that the actual
size of the decreased power consumption was 7%. Therefore,
we can conclude that the proposed method can predict the power
consumption more accurately.

5.4 Benchmark WakeLock Application
Here, we evaluate the proposed method using a benchmark ap-

plication that executes WakeLock.
The Android operating system manages the WakeLock time of

each application in the standard setting application. We modified
the source code of the application, which is an open-source ap-
plication, so that it outputs the WakeLock times managed in it.
We then assumed that uninstalling the application decreased the
WakeLock time by this value. For example, if application A’s
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Fig. 12 The behavior of the applications for the evaluation.

WakeLock time that the standard application manages is w s,
we assume that uninstalling application A decreases the total
WakeLock time of the device by w s. Exactly writing, this value
is not a value for prediction of GPS usage time but for estima-
tion of the power consumption of each application. However, the
Android operating system provides no information on GPS us-
age time. Thus, we compare this value with the GPS usage time
predicted by the proposed method for discussion.

We also measured the actual decreased WakeLock time when
uninstalling the application by comparing the total WakeLock
times before and after uninstalling the application. The time of
each measurement was 30 min. The display went to the screen-
off state 2 min after being untouched. Figure 12 illustrates the
behaviors of the benchmark applications and the screen. Appli-
cations A and B are applications that we implemented for this
evaluation. Both of these applications were invoked at almost the
same time. These applications went into the background mode
just after their invocation.

We define the time at which these applications went to the
background state as time 0. Application A requested 60 s of
WakeLock at time 60, i.e., WakeLock from 60 s to 120 s.

Application B requested 10 min of WakeLock at 110 s, i.e.,
WakeLock from 110 s to 710 s. The display went to the screen-
off state at 120 s. Even though the screen went to the off state, the
device and CPU stayed awake during WakeLock. The modes of
all the WakeLocks are PARTIAL WAKE LOCK [14].

All applications installed on the device are Android Open
Source Project (AOSP) standard applications. The used de-
vice is the same, i.e., the Nexus 7 (2013). The operat-
ing system is Android 6.0.1 with our modification described
above. In order to obtain the measured WakeLock time
of each application, we modified the implementation of the
calculateApp() method and the calculateRemaining()
method in WakelockPowerCalculator.java in the Android
operating system. These methods are for calculating the battery
consumption of each application caused by WakeLock.

The experimental results are depicted in Fig. 13. The results
with the label A + B (measured) shows the total WakeLock time
in the device calculated in the Android operating system and re-
ported for both applications A and B. That with A+ B (estimated

by proposed) is the WakeLock time estimated by the proposed
method according to the recorded starts and ends of WakeLock.
That with A (estimated by proposed) shows the WakeLock time
after uninstallation of application B as estimated by the pro-
posed method. That with A (estimated by standard) shows the
WakeLock time after uninstalling as estimated by the standard
method. We obtained this from the report of the modified set-

ting application. The data with label A (actually) represent the

Fig. 13 The experimental results.

Table 2 Target applications (1/2).

Table 3 Target applications (2/2).

actual WakeLock time afterward. This was obtained by actual
measurement.

Comparing the results of A (estimated by standard) and A (esti-

mated by proposed), we can see that the proposed method always
provided fine estimated results, while the standard method did
not always do so. The average difference between the actual time
and the estimated time by the proposed method is 37 s, while that
of the standard method is 104 s. From these results, we conclude
that the proposed method improved the accuracy of the estimation
of the Android operating system.

5.5 Practical WakeLock Applications
Here, we evaluate the proposed methods using sets of applica-

tions on a basis of practical application usage models [29]. We
installed the applications in a set into the same device, which was
Nexus 7, and left the device untouched 24 hours. Every appli-
cation set is described in Tables 2 and 3. Both of the standard
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Fig. 14 Estimated and actual WakeLock times after uninstallation (Sce-
nario 1).

Fig. 15 Estimated and actual WakeLock times after uninstallation (Sce-
nario 2).

Fig. 16 Estimated and actual WakeLock times after uninstallation (Sce-
nario 3).

and proposed methods estimated the WakeLock time after unin-
stalling the target application in the set. The target applications
were the most battery-consuming applications reported by the
standard setting application and are marked with star mark ��
in the tables. We then measured the actual WakeLock times af-
ter uninstalling the application and compared the estimated and
actual values.

The estimated and actual WakeLock times after uninstalling
the target application are shown in Figs. 14 to 19. The data with
the labels estimated by proposed and estimated by standard indi-
cate the estimated values by the standard and proposed methods,

Fig. 17 Estimated and actual WakeLock times after uninstallation (Sce-
nario 4).

Fig. 18 Estimated and actual WakeLock times after uninstallation (Sce-
nario 5).

Fig. 19 Estimated and actual WakeLock times after uninstallation (Sce-
nario 6).

respectively. The data with the label actual indicates the actual
WakeLock time obtained by measuring. The other data, such as
data with the label estimated by P + C will be mentioned in the
next section.

Comparing the estimated values by the standard and proposed
methods, we can see that their accuracies are almost same. We
will discuss further improvement in the next section. In the case
of Scenario 6, the WakeLock time was increased by uninstalling
the application. We think this result is contrary to intuition and
will discuss it in the next section.

6. Further Improvement

6.1 Software Dependency of a System Process
First, we discuss the reason why the proposed method did not

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

Table 4 The time and times of WakeLock in 24 hours by GMS process ap-
plication sets in Section 5.5 before and after uninstallation.

largely outperform the standard method in cases of the practical
sets of applications. WakeLock is executed by not only applica-
tion processes but also system processes. Especially, the Google
Mobile Service (GMS) process executes WakeLock frequently.
GMS process provides many essential applications, functions,
and services of Google Play Services, such as Google location.
An application can use these functions via GMS process and the
process is invoked on receiving a request. The operating sys-
tem recognizes that the GMS process issued WakeLock in case
of WakeLock is executed by GMS process. However, many of
WakeLock executions by the GMS process are caused by an ap-
plication. The process rarely issues WakeLock without a request
by an application. Therefore, uninstallation of an application re-
moves or decreases WakeLocks by the application process and
by the GMS process. In other words, the number of WakeLocks
by the GMS process also has a dependency on installed soft-
ware. We argue that accurate estimation of time of WakeLocks
requires consideration of the software dependency of WakeLocks
by GMS.

Table 4 shows the time and times of WakeLocks in 24 hours
by the GMS process with application sets in Section 5.5 before
and after uninstallation. The table implies that uninstallation of
an application changes the time and times of WakeLocks by the
GMS process. These results support our hypothesis that accu-
rate estimation of WakeLock requires consideration of software
dependency of WakeLock of the GMS process.

In the case of the Scenarios 1 to 5, the number and total time
of WakeLocks by the GMS process decreased by uninstalling the
application. These results are naturally understood. In the case
of Scenario 6, those of WakeLocks increased by the uninstalla-
tion. This is contrary to intuition, as we described. In the follow-
ing subsections, we propose methods for improving estimation of
WakeLock considering software dependency of GMS.

6.2 Chaining
Here, we proposed a method for improving the estimation with

Chaining. The method deletes the GMS’s WakeLocks that started
during a WakeLock execution by the target application from the
WakeLock history in addition to the WakeLocks by the appli-
cation. The estimated WakeLock times by this method are de-
picted in Figs. 14 to 19 as estimated by P +C. “P” and “C” mean
“Proposed method” and “Chaining,” respectively. P+C means
“Proposed method and Chaining.” Similar to the previous sec-
tion, the proposed method estimated the power consumption with
an assumption that power consumption was proportional to the

usage time in all the experiment in this section. The improved
method P+C estimated moderately more accurately than the stan-
dard method in the Scenarios 1, 3, 4, and 5.

6.3 Proportional Distribution by Time
In this subsection, we propose a method with proportional

distribution by time. This method deletes the GMS’s Wake-
Locks from the history with the probability pt in addition to the
WakeLocks by the target application. pt is the ratio of the to-
tal time of WakeLocks by the uninstalled application divided by
the total WakeLocks time by all the applications including GMS
process. The estimated results by this methods are depicted in
Figs. 14 to 19 as estimated by P+T . “T” means “Proportional dis-
tribution by Time.” We can see that the improved method could
estimate the time very similar to the actual one in the case of Sce-
nario 1 and that its accuracy was worse than the other methods in
the case of Scenario 3.

6.4 Proportional Distribution by Number
Here, we propose a method with proportional distribution by

the number of WakeLocks. This method deletes the GMS’s
WakeLocks from the history with the probability pn in addition
to the WakeLocks by the target application. pn is the ratio of the
number of WakeLocks by the uninstalled application divided by
the number of WakeLocks by all the applications including GMS
process. The estimated results by this methods are depicted in
Figs. 14 to 19 as estimated by P + N. “T” means “Proportional
distribution by Number.” We can see that the improved method
could estimate the WakeLock time moderately more accurate in
the Scenarios 1, 3, 4, and 5.

6.5 Discussion on Improvement
From the evaluation in Section 5 and Sections 6.2 to 6.4, we

can say as follows. The proposed method in Section 4 can achieve
better accuracy than the standard method in most cases. The im-
proving methods in this section improve the accuracy more in
most cases. Even though the best improving method depends on
applications, these methods improved the accuracy of the pro-
posed method in Section 4. Therefore, we can conclude that con-
sideration of software dependency is effective.

However, these methods only predict the size of decrease in
WakeLock times by uninstallation based on the start times of
WakeLock or the statistical values. We think that monitoring re-
quests to the GMS process from applications processes is effec-
tive for improving this accuracy. Understanding the relationship
between WakeLocks by the GMS process and their causing appli-
cations must useful for choosing WakeLocks that will disappear
after uninstallation.

6.6 Estimation for Installation
To predict increased GPS time and power consumption after

installation of an application, an application behavior log should
be included in the system before installation. Given this log, our
system can estimate them without installation.
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7. Discussion

In this section, we discuss applications of the proposed method.
Naturally, accurate information, considering software depen-
dency, on the sizes of increased and decreased power consump-
tion by installing and uninstalling an application of each appli-
cation is useful for saving on power consumption. A user can
decide to uninstall or not an application with this information.

In addition, this information is profitable for managers of ap-
plication distributing sites. As far as we know, no distributing site
provides information on the power consumption of applications.
One of the reasons is that they cannot determine its power con-
sumption is large or small due to the software dependency. They
can conclude that the consumption is large or small with the pro-
posed method and the list of the installed application.

8. Conclusion

In this paper, we introduced power consumption’s dependency
on software and proposed a method for estimating the size of
the decrease in power consumption by uninstalling each appli-
cation considering this dependency. The method monitors starts
and ends of usages of each function and estimates the power con-
sumption after uninstalling an application based on this record.
In addition, we proposed an improving method based on GMS’s
software dependency for estimating WakeLock times. Our evalu-
ation demonstrated that the proposed method could estimate GPS
and WakeLock times more accurately than the standard method
of Android operating system for estimating power consumption.
The proposed method decreased the difference between the actual
and estimated sized of decreasing power consumption by 89% at
most.

For future work, we plan to evaluate our method with a variety
of applications and terminals.
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Appendix
Figures A·1 to A·6 show the history of starts and ends of

WakeLock of each application of the Scenarios 1 to 6 in Sec-
tion 5.5, respectively.

Fig. A·1 WakeLocks of each application (Scenario 1).

Fig. A·2 WakeLocks of each application (Scenario 2).

Fig. A·3 WakeLocks of each application (Scenario 3).

Fig. A·4 WakeLocks of each application (Scenario 4).

Fig. A·5 WakeLocks of each application (Scenario 5).

Fig. A·6 WakeLocks of each application (Scenario 6).
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