1BEERALIE S

SWXEE 7077329 Vol.i2 No.1 10 (Jan. 2019)

RRBE

Fofoe & RENRY AN T SEEIC 2) — 2 3 VfEamDEA

K g

T
==
wlis

2018F8RA1H R

Tofte HIZL > TIRESN/Z) =TV a VICL D AT YEHTIE, ML 7077 208ENPS) —Va vk
L, AEVELELTLF TV 27 POAFHPHIIIS T, A7 27 FOXEY) OFEIT - i
SR BEYRNEIIEAT AL, Z070, 7a7 I Wtéx%'}@%ljﬁc)‘ RS O B LT L
WIIA, AR=TVaAL 7y aVICEBEHREAY v 7L DEMICELTCE 2720, Tu s T L0oMEIC
Lo TRFEFBEDAN =Ty A LEIZORD A, L2 L2 S, BEOREDS AZFHAIT T 2 it L
LTBY, M SHEENRE L7287 5 =< Y ADiEm P IRE IV v, Z T OREETIE, Th
SR I FREIH LT — Y a YHEsROEA AT,) =Y a Y PMHERWTRER A 7Y = 7 b LR
RURELRA TV 27 MIBGETAIET, AR—VaL sy gy EOEFHAE) SFHERMICL a2
F OB REMEICOW TR 21T). WRETHEHEOBEIIHMICEEZRET 2 I L PRETHY, T
WEMWE 707 T A0 %1T9 Ruby X Python & \Wo 7z A2) S NFik& 5. 29 L-SiENER
DL L, BNRBITORES 26, AV EZLELTLF 7V 27 Med_Ce— 7HEBUCKEMNL, &
A FAI AT ED R 20/, AR=VaL 7 a XA ELEL L, AV—7y hOIKT
RALFR D5 R ASEEIC 2 1) 9 5.

Presentation Abstract

Introduction of Region Inference for Dynamically-typed
Procedural Programming Languages

TAKAMASA SAICHI® ATUST MAEDAL:P)

Presented: August 1, 2018

Region-based memory management system proposed by Tofte et al. infers regions from lexical structure
of ML programs and inserts instructions to allocate/deallocate memory for objects at appropriate places in
programs, according to extents of the objects. In this way, the system eliminates the need for programmers to
manually specify memory allocation/deallocation. In addition, since memory management by garbage collec-
tion can be substituted to stack-like region-based management, possible improvement of throughput can be
expected, depending on the characteristics of the programs. Most studies, however, assumes statically-typed
languages and few are dealing with dynamically-typed languages and their performance with region-based
memory management. In this presentation, we introduce region inference in dynamically-typed procedural
languages by classifying objects into region-inferable and uninferable ones, and discuss the possibility of
eliminating the cost related to dynamic memory management such as garbage collection. We treat scripting
languages such as Ruby and Python as target language of the study. These language are procedural and
in which types of data objects are hard to decide statically. Because of the difficulty of static analysis,
most implementations of these languages have to store all memory-allocated objects into heap, relying solely
on garbage collection to dynamically manage memory, which may lead to potentially lower throughput or
undesirable pause of user programs.

1

a)
b)

This is the abstract of an unrefereed presentation, and it
should not preclude subsequent publication.

SR

University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
saichi@ialab.cs.tsukuba.ac.jp
maeda@cs.tsukuba.ac.jp

© 2019 Information Processing Society of Japan

10

