
平面的グラフ上で距離ラベルを高速に計算する
分散アルゴリズム

泉 泰介1,a)

概要：グラフ G = (V,E,w)の距離ラベルとは，任意の 2頂点 u, v ∈ V 間の Gにおける距離を

それら 2頂点に割り当てられたラベル LG(u), LG(v)の情報のみから計算可能であるような，V

中の各頂点へのラベル付け LG である．本研究では，平面的グラフに対してラベルサイズ Õ(D)

ビットの距離ラベルを構成する，CONGESTモデル上での分散アルゴリズムを提案する (Dはグ

ラフ Gのホップ直径を表す)．提案アルゴリズムは Gが重みなしグラフの場合 Õ(D)ラウンド，

重み付きグラフの場合は Õ(D2)ラウンドで動作する．また，このアルゴリズムを用いて，平面

的グラフにおける重み付き最短経路問題の厳密解，ならびに直径の (1 + ϵ)-近似解 (ϵは定数)を

同様の時間で与える分散アルゴリズムを併せて提示する．

キーワード：分散アルゴリズム，CONGESTモデル，距離ラベル，平面的グラフ

Distribted Construction of Distance Labels in Planar Graphs

Taisuke Izumi1,a)

Abstract: The distance labeling of a graph G = (V,E) is the assignment LG of a label to each
node such that the distance between any two nodes u, v ∈ V is computed only from their labels
LG(u) and LG(v). In this paper, we newly propose the distributed algorithm which constructs the
exact distance labels of Õ(D) bits (where D is the hop diameter of G) in the CONGEST model.
The construction time is Õ(D) rounds if G is unweighted, and Õ(D2) rounds if G is weighted.
Utilizing this algorithm as a building block, we also show two distributed algorithms for solving the
exact weighted single-source shortest path and the (1 + ϵ)-approximate diameter for any constant
ϵ. The running time of these algorithms have the same asymptotic bound as the distance-label
construction.

Keywords: distributed algorithm, CONGEST model, distance labeling, planar graph

1. Introduction

1.1 Background and Motivation

There is absolutely no objection to claiming that

1 Nagoya Institute of Technology, Gokiso-cho, Showa-ku,
Nagoya, Aichi, 466-8555, Japan.

a) t-izumi@nitech.ac.jp.

the shortest path problem is one of the kings in fun-

damental graph problems, which has a huge number

of applications in various areas, including distributed

computing (e.g., distance-vector routing). The the-

ory of distributed graph algorithms tackles how to

solve fundamental graph problems in distributed

1

Vol.2019-AL-171 No.12
2019/1/30

ⓒ 2019 Information Processing Society of Japan

IPSJ SIG Technical Report

ways. The distributed complexity of shortest-path

problems in the CONGEST model receives much at-

tention. The CONGEST model is one of the stan-

dard message-passing models often used in distribute

graph algorithms, which runs following synchronous

rounds, and each link can transfer only a “short”

(i.e., O(log n)-bit) message per one round (where n

is the number of nodes). The inherent limitation of

bandwidth precludes any centralized solution by ag-

gregating the whole topological information of the

network, and thus the computation must proceed in

parallel at each node only using a partial information

of the input graph, which is the central difficulty in

the CONGEST model.

In this paper we consider various types of distance

computation: The weighted single-source shortest

path, distance labeling, and diameter. In the last

decade, these problems are widely studied, and their

distributed complexity in the CONGEST model at-

tains much progress (mainly with respect to time).

Since all the distance problems are categorized into

the global problems, they exhibit the universal lower

bound of Ω(D) rounds, where D is the hop diam-

eter of the input graph, and the terminology “uni-

versal” means the lower bound holding for any in-

stances. Conversely, attaining (near) Õ(D)-round

upper bounds is the ultimate goal in the algo-

rithm design. However, in the general case, almost

all distance problems have much expensive lower

bounds: The (approximate) shortest path problem in

weighted graphs faces the typical Ω̃(
√
n+D)-round

lower bound [1], and the exact diameter and all-pair

shortest paths (APSP) have more expensive lower

bounds of Ω̃(n) rounds [2]. These bounds are ob-

tained by showing some instances which have a small

cut (communication bottleneck) but a large amount

of information must be transferred through the cut,

and thus those expensive lower bounds are a kind

of “existential” bounds (i.e., holding only for specific

hard-core instances). This observation brings us an

interest of exploring reasonable graph classes which

allow fast distance computation, and it is actually

the primary motivation of this paper.

1.2 Our Contribution

Given a graph G, if it has an embedding into

the 2D-Euclidean plane without crossing edges, it

is called a planar graph. In the context of central-

ized graph algorithms, the planar graph enables effi-

cient solutions for many computationally hard prob-

lems. Recently, with the development of several

technical tools, the study on the distributed com-

plexity for planar graphs (and related classes un-

der the umbrella of minor-closed family) is emerg-

ing [5], [6], [7], [8], [9]. One of the results initiat-

ing this research direction is an Õ(D)-round MST

algorithm for planar graphs by Haeupler and Ghaf-

fari [5], [6]. Similar with the weighted shortest path,

MST also has ˜Ω(
√
n+D) rounds in general cases,

and thus the feasibility of such a fast (universally

optimal) MST algorithm raises up the question of

what problems can be accelerated like as MST, and

can achieve the universal optimality. The main con-

tribution of this paper is to answer this question pos-

itively for several distance problems. The precise

statement of our result is summarized as follows:

• For any planar graphs, it is possible to solve the

weighted single-source shortest path problem ex-

actly in Õ(D2) rounds.

• For any weighted planar graphs, the (1 +

ϵ)-approximate diameter can be computed in

Õ(D2) rounds. If the input graph is unweighted,

the running time is improved to Õ(D) rounds.

The key building block of the two algorithms above

is a distributed algorithm of constructing exact

distance labeling for weighted/unweighted planar

graphs, which assign each node with the label such

that the distance between two nodes u and v can

be computed from the two labels assigned to u and

v. The round complexity of the construction is

Õ(D2) for weighted graphs and Õ(D) for unweighted

graphs. While it is known that the centralized con-

struction of distance labeling for planar graphs [3],

its efficient distributed implementation is not ad-

dressed so far. The author believes that this part

may be of independent interest and potentially has

many other applications.

2

Vol.2019-AL-171 No.12
2019/1/30

ⓒ 2019 Information Processing Society of Japan

IPSJ SIG Technical Report

2. Preliminaries

2.1 CONGEST model

A distributed system consists of n nodes inter-

connected with m communication links. We model

it by an undirected weighted or unweighted graph

G = (VG, EG, wG), where VG = [0, n − 1] is the set

of nodes (i.e., each node is identified by an integer

value), EG ⊆ VG × VG is the set of links (edges),

and wG : E(G) → N is a function assigning each edge

with some integer weight. When we treat unweighted

graphs, we define wG(e) = 1 for any e ∈ EG, and

usually represents G as G = (VG, EG). Executions

of the system proceed with a sequence of consecutive

rounds. In each round, each process sends a (possi-

bly different) message to each neighbor, and within

the round, receives all messages from the neighbors.

After receiving the messages, it performs local com-

putation. The number of bits transmittable through

any communication link per one round is restricted

to O(log n) bits. Note that in weighted networks

the weight of each edge does not imply the delay

of communication. It is guaranteed that messages

transferred through weighted edges reach their des-

tinations within one round.

2.2 Notations

In the following argument, we denote the vertex

and edge sets of any graph H by VH and EH respec-

tively. The (weighted) distance bewteen u, v ∈ VG

with respect to a subgraph H (i.e., the length of

the shortest path between u and v in H) is denoted

by dH(u, v). For any node v ∈ VG and a subset

X ⊆ VG, we also define the distance set dG(u,X)

as dG(u,X) = {(v, dG(u, v)) | v ∈ X}. Given a

weighted graph G = (VG, EG, wG), its hop diameter

(the diameter of the unweighted graph (VG, EG)) and

weighted diameter (the diameter ofG in the standard

sense) are respectively denoted by D and Dw. If G

is an unweighted graph, D = Dw obviously holds.

Given two graphs G1 and G2, we define their union

as G1 ∪ G2 = (VG1
∪ VG2

, EG1
∪ EG2

). The inter-

section of G1 and G2 is defined as the subgraph of

G1 ∪ G2 induced by VG1
∩ VG2

. We use notation

H ⊆ G to state that H is a subgraph of G.

Letting x = x0x1. . .xk−1 and y = y0y1. . .yj−1

be any two strings, we denote its concatenation

x0x1. . .xk−1y0y1. . .yj−1) by x ◦ y =. We also use

the notation x ⊑ y if x is a prefix of y, and x ∥ y

if neither x ⊑ y nor y ⊑ x holds. Given a collection

X of strings, x ∈ X is called maximal with respect

to X if no y ∈ X \ {x} satisfies x ⊑ y.

2.3 Assumptions

The node with the minimum identitier is treated as

the special node called the root of G, and referred as

r. We define TBFS as an arbitrary (unweighted) BFS

tree rooted by r, where “unweighted” means that

it is a shortest-path tree constructed with omitting

edge weights. For simplicity of presentation, we as-

sume that the height of TBFS is equal to D. Since the

actual height of TBFS is Θ(D), this assumption does

not affect the correctness of any asymptotic analysis

hereafter. We define ABFS(v) as the path to the root

from v in TBFS. Given a subgraph H of G, TBFS(H)

represents the subgraph of TBFS which spansH (that

is, TBFS(H) is a spanning forest of H). We regard a

subgraph of TBFS as a set of rooted trees. That is, for

any connected component C ⊆ TBFS, the node clos-

est to r (with respect to TBFS) is the root of C The

set of the root nodes for all connected components

in TBFS(H) is denoted by RBFS(H).

Throughout this paper, we assume that each node

v knows the following information: The value of n

and D, the identifier of r, and ABFS(v) (as the se-

quence of nodes from v to r). This assumption is

not essential because all of the information becomes

available by a trivial O(D)-round preprocessing.

2.4 Distance labeling Scheme

A distance labeling scheme for a graph family G is

defined as the pair (LG, fG) of two functions deter-

mined by the input graph G ∈ G, which are respec-

tively called a node-labeling function and a distance-

decoder function respectively. The node labeling

function LG : V (G) → {0, 1}∗ assigns a label to

each node, and the decoder function fG : {0, 1}∗ ×

3

Vol.2019-AL-171 No.12
2019/1/30

ⓒ 2019 Information Processing Society of Japan

IPSJ SIG Technical Report

{0, 1}∗ → N recovers the distance between any two

nodes u and v from LG(v) and LG(u), i.e., for any

u, v ∈ V (G), fG(LG(u), LG(v)) = dG(u, v) holds.

The size of a distance labeling scheme is defined as

the maximum label size maxv∈V (G),G∈G |L(v)|.

3. Construction of Distace Labels

3.1 A Brief Overview of the Construction by

Gavoille et al.

Our algorithm is based on the distance labeling

scheme by Gavoille et al. [3]. It constructs the la-

bel of each node following the recursive partition of

the input graph by vertex separators. The idea is

roughly as follows: First, the algorithm partitions

the graph into three disjoint subgraphs G+, S, G−

using a balanced vertex separator S. The nodes in

Ga (a ∈ {+,−}) recursively construct the distance

label for Ga. In addition, each node v ∈ VG also

maintains the distance set dG(v, VS). Since S is a

vertex separator, the distance between two nodes

u ∈ V (G+) and v ∈ V (G−) can be computed as

dG(u, v) = minw∈VS
(dG(u,w) + dG(w, v)). In the

case of u, v ∈ VGa ((a ∈ {+,−}), we can compute

the distance as dG(u, v) = min{minw∈VS
(dG(u,w) +

dG(w, v)), fGa(LGa(u), LGa(v))}. The depth of this

recursive construction is at most O(log n) because of

the balancing property of S. Hence provided that

the upper bound s of the separator size, we can ob-

tain a distance labeling scheme with O(s log2 n)-bit

size.

Following the framework by Gavoille et al., we

need to find the separator of Õ(D) nodes for attain-

ing our goal of Õ(D)-bit labels. While it is known

that any planar graph has a balanced separator S of

O(D) nodes, the separated subgraphs G+ and G−

might have the diameters larger than D, which pre-

vents us from applying the same separation strategy

to G+ and G− recursively. An approach to address

this matter is to decompose G into several subgraphs

which can overlap each other. For example, it is

easy to show that the diameters of the subgraphs

G+ ∪ S and G− ∪ S are both O(D), and thus we

can apply the recursive construction to them. Unfor-

tunately, this approach causes two other problems:

First, if decomposed subgraphs overlap, some edge

e can be shared among many separated subgraphs.

Then, when we want to run some algorithm concur-

rently in each decomposed subgraph (which is cru-

cial for the recursive construction), e may suffer high

congestion. Similarly, if a node v is shared among

many decomposed subgraphs, v must maintain the

distance labels for all subgraphs containing v. It im-

plies that the size of v’s label for the whole graph G

can become huge, which is the second problem we

point out.

The technical ingredient of our algorithm for re-

solving the problems above is twofold: The first idea

is to introduce a new graph decomposition scheme

called (l, c, d, s)-decomposition, which characterizes

the properties so that we can construct a small-size

distance labeling efficiently, as well as a fast dis-

tributed algorithm for obtaining that decomposition

in planar graphs. The second idea is to propose

a new scheme of label construction not relying on

recursive calls, which is very close to the original

scheme but substantially saves the size of labels. In

the remainder of this section, we introduce the con-

cepts above, and present our distributed algorithm

for constructing the labels, provided that a decom-

position is given. The decomposition algorithm itself

is explained in Section 4.

3.2 (l, c, d, s)-Decomposition: Definition

Each subgraph generated in the (l, c, d, s)-

decomposition scheme is indexed by some string

x over alphabet [0, n − 1]. The initial graph is

defined as Gϕ = G, where ϕ is the string of length

zero. The length |x| of x implies the depth of

the recursion, and the progress of the recursion by

depth one decomposes Gx into several subgraphs

Gx◦0, Gx◦1, . . . , Gx◦k, which are called the children

of Gx. The decomposition is recursively applied to

each child until its size (w.r.t. the number of nodes)

becomes sufficiently small. Let C(x) be the set of

indices i ∈ [0, n − 1] such that Gx◦i is defined. In

the decomposition process, a separator Sx ⊆ Gx

is associated with each subgraph Gx. We formally

4

Vol.2019-AL-171 No.12
2019/1/30

ⓒ 2019 Information Processing Society of Japan

IPSJ SIG Technical Report

specify the properties that (l, c, d, s)-decomposition

must satisfy:

Definition 1 A (l, c, d, s)-decomposition of G is

an index set B ⊆ [0, n − 1]∗ and two collections

G = {Gx}x∈B and S = {Sx}x∈B of subgraphs of

G satisfying the following conditions:

(1) (Hierarchical Decomposition) Any child of

Gx is a subgraph of Gx, and their union

∪i∈C(x)Gx◦i is equal to Gx.

(2) (Small-Size Separation) The number of ver-

tices in Sx is bounded by s, and for any two

different children Gx◦i and Gx◦j (i, j ∈ C(x))

of Gx, their intersection Gx◦i ∩ Gx◦j is a sub-

graph of Sx. In addition, if x is maximal with

respect to B, Gx = Sx holds.

(3) (Low-Congestion) For any e ∈ EG and h ∈
[0, l], there exists at most c strings x ∈ B with

length |x| = h such that Gx contains e.

(4) (Low-Dilation) The diameter ofGx is bounded

by d.

3.3 Constructing Distance Labels

The distance label LG(v) for each node v is rep-

resented by a triple (v, s(v), λ(v)), where s(v) is the

shortest string x satisfying v ∈ Sx. Note that s(v)

is well-defined because Sx = Gx holds for any max-

imal string x. The key idea of our scheme is that

λ(v) contains the distance set dGy (v, VSy) only for

any y ⊑ s(v). Since the total number of entries in

λ(G, v) is at most ls, the label size of this scheme

is bounded by O(ls log n) bits. Let Vλ(v) = {u ∈
V | (u, ·) ∈ λ(v)}, and dλ(v, u) = min(u,x)∈λ(v) x. If

u ̸∈ Vλ(v) holds, we define dλ(v, u) = ∞. Note that

dλ(v, u) is locally computed from LG(v). The dis-

tance computation function fG is defined as follows:

fG(LG(v1), LG(v2))

= min
u∈Vλ(v1)∩Vλ(v2)

dλ(v1, u) + dλ(u, v2).

We can show that this function correctly computes

the exact distance between two nodes.

Lemma 1 fG(LG(v1), LG(v2)) = dG(v1, v2).

3.4 Distributed Implementation

Assume that a (l, c, d, s)-decomposition is given

and each node v knows all x such that v ∈ Sx holds.

Let Gh be the set of subgraphs Gx satisfying |x| = h,

which we call level-h graphs. By the definition of

the (l, c, d, s)-decomposition scheme, all the level-h

subgraphs Gx ∈ Gh can run their own tasks highly

in parallel. Since some edge e can belong to sev-

eral subgraphs in Gh, the parallel runs of those tasks

cannot be completely independent due to the edge

congestion. Fortunately, our decomposition scheme

guarantees that any edge e is contained in at most c

subgraphs in Gh, we can complete any independent

r-round tasks executed in level-h subgraphs within

rc rounds 1. For the construction of distance labels,

we take two different approaches according to the

existence of edge weights:

Unweighted Graphs: If G is unweighted, each

node v ∈ Gx has to compute the distance set

dGx(v, VSx). To compute it, we can use the dis-

tributed bellman-ford algorithm [10], which provides

the construction of s BFS trees with different sources

in O(d+ s) rounds. Since we can run the algorithms

for the graphs with the same level in parallel (with

extra c factor), the total running time is O(cl(d+s))

rounds.

Weighted Graphs: If G is weighted, the following

task is executed in the bottom-up way (i.e., solving

the collection of tasks for level-h subgraphs in the

order of h = l, l − 1, · · · 0): In each task for Gx, the

distance labels of Gx is constructed, provided that

the distance labels for all children of Gx are given.

Let Lh(v) = {LGx(v) | Gx ∈ Gh ∧ v ∈ VGx}, and
C(x, v) be the subset of C(x) such that v ∈ Gx◦i

holds for any i ∈ C(x, v). The detailed construction

for Gx is stated below:

(1) If x is maximal with respect to B, the nodes

in Gx solve the all-pair shortest path problem

in the centralized way. That is, a leader node

(elected on demand) aggregates the whole infor-

1 While a more sophisticated algorithm achieves a better
bound of Õ(r+c) rounds [4], the bound rc is enough for
our application because we propose the decomposition
scheme with c = 2.

5

Vol.2019-AL-171 No.12
2019/1/30

ⓒ 2019 Information Processing Society of Japan

IPSJ SIG Technical Report

mation of Gx. After computing the APSP, the

leader broadcasts the result to all the nodes. If

x is not maximal, the following steps are applied

(2) For any v ∈ VSx and i ∈ C(x, v), v broadcasts

LGx◦i(v) to all nodes in Gx◦i.

(3) Following the broadcast information, each

node v ∈ VSx computes d̂Gx(v, u) =

mini∈C(x,v) dGx◦i(v, u) for all u ∈ VSx . Note

that dGx◦i(v, u) = fGx◦i(LGx◦i(v), LGx◦i(u))

holds and thus v can compute it using the label

LGx◦i(u) broadcast by u. All the computed

results are broadcast to all the nodes in Gx.

(4) Each node v ∈ VGx computes the all-pair short-

est paths among nodes in VSx with respect toGx

. More precisely, v locally constructs a weighted

complete graph Kx = (VSx , VSx × VSx , wKx)

such that wKx(v, u) = d̂Gx(v, u) holds for any

(u, v) ∈ EKx , and solves the APSP problem for

Kx.

(5) Finally, for any i ∈ C(x, v) and

u ∈ Sx, each node v ∈ VGx◦i determines

minw∈VSx
dGx◦i(v, w) + dGx(w, u) as the dis-

tance between v and u (with respect to Gx).

Note that dGx◦i(v, w) can be locally computed

by v from the label LGx◦i(w) broadcast by w in

the first step.

The running time of this task is dominated by the

steps 1, 2, and 3. The first steps obviously finishes

in O(s2 rounds because |VGx | ≤ s holds. The second

step (over all Gx ∈ Gh) can be seen as a collection

of the tasks for all level-(h + 1) subgraphs where s

source nodes broadcast a message of O(ls log n) bits

in Gy. Using a pipelined scheduling it can be com-

pleted within O(c(ls2 + d)) rounds. The third step

consists of the same tasks as the second step, except

for the level and message size. The running time is

O(c(ls + d)) rounds. Thus, the total construction

time is O(Ocl(ls2 + d)) rounds.

Theorem 1 Let G be any graph, and assume that

a (l, c, d, s)-decomposition of G is given. Then there

exists a distributed algorithm constructing the dis-

tance labels for all nodes in G. The label size is

O(ls log n) bits,and the construction time is O(cl(s+

d)) rounds if G is unweighted, and O(cl(ls2 + d))

rounds if G is weighted.

4. Distributed Algorithm for

(l, c, d, s)-Decomposition

4.1 Path Separator in Planar Graphs

The key technical tool of our decomposition algo-

rithm is the use of path separators, which is known as

a variant of the seminal separator theorem by Lipton

and Tarjan [11]. The main statement of the existence

of the path separator is stated below.

Theorem 2 ([11]) Let G be any n-vertex planar

graph with hop diameter D (n ≥ 4). Then the graph

G can be separated into the three disjoint compo-

nents G+, G−, and S such that (1) both G+ and G−

respectively contain at most 3n/4 nodes, and (2) no

edge connecting G+ and G−, and (3) |S| ≤ 2D.

Since our algorithm utilizes several additional

properties of path separators, we concisely explain

the detailed structure of this theorem. Consider any

embedding of G. We take a pair of nodes (u1, u2)

such that both u1 and u2 are on the boundary of a

common face X. The unique path between u1 and

u2 in TBFS and a “fictional” edge between u1 and

u2 drawn in X induces a geometric cycle in the em-

bedded plane. Since this cycle does not cross any

edge in G, the path between u1 and u2 separates G

into the two components which are placed at the in-

side and outside of the cycle. Theorem 2 states that

an appropriate choice of (u1, u2) achieves a balanced

separation with respect to the number of vertices in

G+ and G−.

4.2 Decomposition via Path Separators

The decomposition scheme follows the recursive

application of Theorem 2. As we stated, a main dif-

ficulty in such a recursion is that the separated sub-

graph can have a diameter larger than D. As a first

step for avoiding this matter, we consider the decom-

position of G into two subgraphs H+ = G+ ∪ S and

H− = G− ∪ S for a separation {G+, S,G−}, instead
of G+ and G−. It guarantees the connectivity (and

6

Vol.2019-AL-171 No.12
2019/1/30

ⓒ 2019 Information Processing Society of Japan

IPSJ SIG Technical Report

thus the height D) of TBFS(H
+) and TBFS(H

−), but

edges in S can suffer high congestion. Our algorithm

in reality avoids high congestion by carefully assign-

ing each edge in S to G+ or G− for achieving both

low-congestion and low-dilation. The intuition of the

assignment strategy is very simple. Letting S be a

set of path separators, the set of (geometric) cycles

associated with each S ∈ S separates the embedded

plane into several regions, and all the separated sub-

graphs are placed in a single region. An edge e in a

separator is added to the separated subgraphs which

are located in the regions e touches. Since any edge

in the separator can touch at most two regions, this

assignment guarantees the congestion at most two.

For the detailed analysis, We introduce our decom-

position scheme in more precise way.

(1) We first constructs an auxiliary graph G′
x. Let-

ting T ′
x be the minimal connected subgraph

of TBFS containing all nodes in Gx, we define

G′
x = Gx ∪ T ′

x.

(2) We apply Theorem 2 to G′
x, and find a balanced

separator S′
x of 2D nodes (with respect to T ′

x).

Let Sx = S′
x ∩ Gx. It is obvious that Sx sepa-

rates Gx into two subgraphs G+ and G−.

(3) Let Ix(y) = Sx ∩ Sy for x,y satisfying y < x.

Note that any Ix(y) is a path in TBFS. We define

I+ (resp. I−) as the subgraph consisting of all

Ix(y) where a node except for the two endpoints

is adjacent to a node in G+ (resp. G−).

(4) Each connected component in (G+∪Sx)\ I− or

(G− ∪ Sx) \ I+ becomes a chird of Gx.

The correctness of the algorithm is derived from

the two lemmas below:

Lemma 2 Let (B,G,S) be the decomposition of G

outputted by our algorithm. For any x ∈ B and

i ∈ C(x), |RBFS(x ◦ i)| ≤ |RBFS(x)|+ 2|x| holds.

Lemma 3 Let (B,G,S) be the decomposition of G

outputted by our algorithm. For any x ∈ B, if an
edge e ∈ EGx is contained in both I+ and I−, there

is no y < x such that e ∈ ESy .

Informally, Lemma 2 and Lemma 3 respectively

correspond to the low-dilation and low-congestion

properties of (l, c, d, s)-decomposition. Then we ob-

tain the following main theorem.

Theorem 3 The algorithm above outputs the

(3 log n, 2, 9D log2 n, 8D)-decomposition.

4.3 Distributed Implementation

The decomposition proceeds in the top-down man-

ner. Thus, we can assume that when we consider

the decomposition of Gx for some x ∈ B, each node

v ∈ VGx knows if it belongs to Sy or not for any

y < x. Since the steps 3 and 4 are easily imple-

mented in the CONGEST model, the main challenge

of the distributed implementation is to compute S′
x.

For the computation of the balanced separator S′
x,

we can utilize the distributed algorithm of finding a

balanced path separator by Ghaffari and Parter [7],

which runs in Õ(D) rounds. It should be noted that

we cannot straightforwardly apply that algorithm for

implementing the first and second steps because we

have to run it in graph G′
x, not in Gx. Our main

idea of filling this gap is to simulate the execution

of the Ghaffari-Parter algorithm in G′
x on the top of

Gx. Let T̂x be the subgraph of T ′
x consisting of the

edges in EG′
x
\EGx . Our algorithm uses the following

strategy to simulate one-round execution in G′
x.

Communication through the edges in Gx: The

message is simply transmitted through the real edge.

Communication through the edges in T̂x: Let

V̂ = VG′
x
\ VGx . We first elect a leader vLx (with

the minium ID) from VGx , which takes the role of

simulating all the nodes in V̂ . For vLx to know the

topology of T̂x, each node v ∈ RBFS(Gx) broadcasts

ABFS(v) to all the nodes in Gx. It also enables each

node u ∈ Gx to detect its incident edges reaching T̂x,

i.e., (u, u′) such that u′ ∈ T̂x. We call those edges

unusable edges. For the local one-round simulation

of T̂x by vLx ,vLx must receive the messages transmit-

ted through unusable edges. Similarly, any node to

which an unusable edge is incident must receive the

message through it. All of those communication is

substituted by the broadcast operation in Gx.

Since the number of leaves in T̂x is bounded by

RBFS(Gx) = O(log2 n), we can also bound the num-

7

Vol.2019-AL-171 No.12
2019/1/30

ⓒ 2019 Information Processing Society of Japan

IPSJ SIG Technical Report

ber of unusable edges by O(log2 n). Thus the cost

of the one-round simulation above is d+D log2 n =

O(D log4 n) rounds (the broadcast of multiple mes-

sages is optimized by the pipelined scheduling).

While the direct application of this strategy yields

a Õ(D2)-round algorithm for finding Sx with using

only the communication links in Gx, we can improve

it to Õ(D) rounds by a few more optimization (we

omit the details for lack of space). Finally, we obtain

the following theorem.

Theorem 4 There exists a distributed algo-

rithm in the CONGEST model which computes

(3 log n, 2, 9D log2 n, 8D)-decomposition in Õ(D)

rounds.

5. Applications

Our distance labeling scheme and its distributed

implementation can derives efficient solutions for

other distance problem in planar graphs. For lack

of space, we present only the results here.

Theorem 5 Let G = (V,E,w) be any weighted

planar graph, and X ⊂ V be the set of source nodes.

There exists a distributed algorithm constructing the

exact weighted shortest path trees for all sources

x ∈ X in Õ(D2 +D|X|) rounds.

Theorem 6 Let G be any (weighted) planar

graph. For any constant ϵ > 0, t here ex-

ists a distributed algorithm computing the (1 + ϵ)-

approximate diameter. The running time of the al-

gorithm is Õ(D2) rounds for weighted graphs, and

Õ(D) rounds for unweighted graphs.

Acknowledgement

This research was supported by Japan Science and

Technology Agency(JST) SICORP, and JSPS KAK-

ENHI Grant Number 16H02878.

参考文献

[1] Das Sarma, A., Holzer, S., Kor, L., Korman,
A., Nanongkai, D., Pandurangan, G., Peleg, D.
and Wattenhofer, R.: Distributed Verification and
Hardness of Distributed Approximation, Proc. of

the 43rd Annual ACM Symposium on Theory of
Computing, pp. 363–372 (2011).

[2] Frischknecht, S., Holzer, S. and Wattenhofer, R.:
Networks Cannot Compute Their Diameter in Sub-
linear Time, Proc. of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 1150–1162 (2012).

[3] Gavoille, C., Peleg, D., P 辿 rennes, S. and Raz,
R.: Distance labeling in graphs, Journal of Algo-
rithms, Vol. 53, No. 1, pp. 85 – 112 (2004).

[4] Ghaffari, M.: Near-optimal scheduling of dis-
tributed algorithms, Proceedings of the 2015 ACM
Symposium on Principles of Distributed Comput-
ing, ACM, pp. 3–12 (2015).

[5] Ghaffari, M. and Haeupler, B.: Distributed Algo-
rithms for Planar Networks I: Planar Embedding,
Proc. of the 48th ACM Symposium on Princi-
ples of Distributed Computing (PODC), pp. 29–38
(2016).

[6] Ghaffari, M. and Haeupler, B.: Distributed Al-
gorithms for Planar Networks II: Low-congestion
Shortcuts, MST, and Min-Cut, Proc. of the 27th
Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), pp. 202–219 (2016).

[7] Ghaffari, M. and Parter, M.: Near-Optimal Dis-
tributed DFS in Planar Graphs, Proc. of 31st In-
ternational Symposium on Distributed Computing
(DISC), Leibniz International Proceedings in In-
formatics (LIPIcs), Vol. 91, pp. 21:1–21:16 (2017).

[8] Haeupler, B., Izumi, T. and Zuzic, G.: Near-
Optimal Low-Congestion Shortcuts on Bounded
Parameter Graphs, Proc. of 30th International
Symposium on Distributed Computing (DISC),
pp. 158–172 (2016).

[9] Haeupler, B., Li, J. and Zuzic, G.: Minor Ex-
cluded Network Families Admit Fast Distributed
Algorithms, Proc. of the 2018 ACM Symposium
on Principles of Distributed Computing, (PODC),
pp. 465–474 (2018).

[10] Lenzen, C. and Peleg, D.: Efficient Distributed
Source Detection with Limited Bandwidth, Proc.
of the 2013 ACM Symposium on Principles
of Distributed Computing (PODC), pp. 375–382
(2013).

[11] Lipton, R. and Tarjan, R.: A Separator Theo-
rem for Planar Graphs, SIAM Journal on Applied
Mathematics, Vol. 36, No. 2, pp. 177–189 (1979).

8

Vol.2019-AL-171 No.12
2019/1/30

ⓒ 2019 Information Processing Society of Japan

IPSJ SIG Technical Report

