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概要：Let S be a set of n points in the plane, and let DT (S) be the planar graph of the Delaunay

triangulation of S. For a pair of points a, b ∈ S, denote by |ab| the Euclidean distance between a and b.

Denote by DT (a, b) the shortest path in DT (S) between a and b, and let |DT (a, b)| be the total length

of DT (a, b). Dobkin et al. were the first to show that DT (S) can be used to approximate the complete

graph of S in the sense that the stretch factor |DT (a,b)|
|ab| is bounded above by ((1 +

√
5)/2)π ≈ 5.08.

Recently, Xia improved this factor to 1.998. In this paper, we prove that if the points of S are in convex

position, then the stretch factor of DT (S) is less than 1.82. A set of points is said to be in convex

position, if all points form the vertices of a convex polygon.

凸位置にある点集合のドローネ三角形分割の stretch factorについて

1. Introduction

Let S be a set of n points in the plane, and let G(S)

be such a graph that each vertex corresponds to a point

in S and the weight of an edge is the Euclidean distance

between its two endpoints. For a pair of points u, v in the

plane, denote by uv the line segment connecting u and

v, and |uv| the Euclidean distance between u and v. For

a pair of points a, b ∈ S, denote by G(a, b) the shortest

path inG(S) between a and b, and let |G(a, b)| be the total
length of path G(a, b). The graph G(S) is said to approxi-

mate the complete graph of S if |G(a,b)|
|ab| , called the stretch

factor of G(S), is bounded above by a constant, indepen-

dent of S and n. It is then desirable to identify classes of

graphs that approximate complete graphs well and have

only O(n) edges (in comparison with O(n2) edges of com-

plete graphs), as these graphs have potential applications

in geometric network design problems [3], [7], [8].

Denote by DT (S) the planar graph of the Delaunay tri-
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angulation of S. Dobkin et al. [5] were the first to give a

stretch factor ((1+
√
5)/2)π ≈ 5.08) of Delaunay triangu-

lations to complete graphs, which was later improved to

2π/(3 cos(π/6)) ≈ 2.42 by Keil and Gutwin [9]. Recently,

this factor has been improved to 1.998 by Xia [11]. On

the other hand, Xia and Zhang [12] gave a lower bound

1.5932 on the stretch factor of DT (S). Determining the

worse possible stretch factor of the Delaunay triangulation

has been a long standing open problem in computational

geometry.

Cui et al. [4] have also studied the stretch factor of

DT (S) for the points in convex position. A set of points

is said to be in convex position, if all points form the

vertices of a convex polygon. The currently best known

stretch factor in this special situation is 1.88, due to a work

of Amani et al. on the stretch factor of planar graphs

[1]. Notice that the planar graph studied by Amani et

al. is not the Delaunay triangulation of the given point

set. (Dumitrescu and Ghosh [6] have also shown that

every spanning graph of the vertices of a regular 23-gon

has stretch factor at least 1.4308.) Although studying the

convex case may not lead to improve upper bounds for

the general case, it shows a large possibility in obtaining
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a better upper bound on the stretch factor of DT (S) and

may give some intelligent hints for the general case.

In this paper, we prove that |DT (a,b)|
|ab| < 1.82 holds for a

set S of points in convex position. Our result is obtained

by showing that there exists a convex chain between a and

b in DT (S) such that it is either contained in a semidisk

of diameter ab, or enclosed by segment ab and a simple

(convex) chain that consists of a circular arc and one or

two line segments. The total length of the simple chain is

less than 1.82|ab|.

2. Preliminary

Without loss of generality, assume that no four points

of S are cocircular in the plane. The Voronoi diagram

for S, denoted by V or(S), is a partition of the plane into

regions, each containing exactly one point in S, such that

for each point p ∈ S, every point within its corresponding

region, denoted by V or(p), is closer to p than to any other

of S. The boundaries of these Voronoi regions form a pla-

nar graph. The Delaunay triangulation of S, denoted by

DT (S), is the straight-line dual of the Voronoi diagram

for S; that is, we connect a pair of points in S if and only

if they share a Voronoi boundary. Since DT (S) is a planar

graph, it has O(n) edges.

The bisector of two points u and v, denoted by Bu,v,

is the perpendicular line through the middle point of

segment uv. For a pair of points a, b ∈ S, denote by

DT (a, b) the shortest path in DT (S) between a and b,

and |DT (a, b)| the total length of path DT (a, b).

We now briefly review an important idea of Dobkin et

al.’s work [5]. Let a = a0, a1, . . ., am = b be the se-

quence of the points of S, whose Voronoi regions intersect

segment ab (Fig. 1). If a Voronoi edge happens to be

on segment ab, either of the points defining that Voronoi

edge can be chosen as the one on the direct path from a

to b. The path obtained in this way is called the direct

path from a to b [5].

a

a

a=a b=ap p p

1

2

0 1 2 3
3

図 1 A one-sided, direct path from a to b.

The direct path from a to b is said to be one-sided if all

points of the path are to the same side of the line through

a and b. See Fig. 1. If the direct path from a to b is

one-sided, then it has length at most π|ab|/2.
Lemma1 (Dobkin et al. [5]) If the direct path from

a to b is one-sided, then it has length at most π|ab|/2.
Let pi be the intersection point of ab with the Voronoi

edge between V or(ai−1) and V or(ai), for 1 ≤ i ≤ m. It

follows from the definition of the Voronoi diagram that pi

is the center of a circle that passes through ai−1 and ai

but contains no points of S in its interior, see Fig. 1. All

points of the direct path from a to b are thus contained

in the circle of diameter ab, no matter whether the path

is one-sided or not.

3. The main result

Assume that the set S of given points is in convex po-

sition. For a point p in the plane, denote the coordi-

nates of p by p(x) and p(y), respectively. Assume also

that the direct path from a to b is not one-sided; oth-

erwise, |DT (a,b)|
|ab| ≤ π/2 (≈ 1.58). Without loss of gen-

erality, assume that both a and b lie on the x-axis (i.e.,

a(y) = b(y) = 0), with a(x) < b(x).

We say segment ab properly intersects a Delaunay trian-

gle if it intersects the interior of the triangle (i.e., segment

ab does not intersect only at a vertex of the triangle).

Clearly, if a Delaunay triangle does not properly intersect

ab, then at least one of its vertices (and two edges inci-

dent to that vertex) can be deleted from DT (S), without

affecting the value of |DT (a,b)|
|ab| . We assume below that ab

properly intersects all triangles of DT (S).

Denote by SA[a, b] (SB[a, b]) the portion of the convex

chain of S above (below) the line through a and b. The

union of SA[a, b] and SB[a, b] is then the convex hull of the

points of S. For a point p on SA[a, b], denote by SA[a, p]

(SA[p, b]) the portion of SA[a, b] from a to p (from p to b).

Analogously, for a point q on SB[a, b], denote by SB[a, q]

(SB[q, b]) the portion of SB[a, b] from a to q (from q to

b). Also, we denote by SA(a, b) (SB(a, b)) the open chain

of SA[a, b] (SB[a, b]).

Denote by C the circle of diameter ab. The main idea

of our proof is the following. If the direct path from a

to b intersects segment ab an even number times, then
|DT (a,b)|

|ab| ≤ π/2 (Lemma 3). For the difficult case that

the direct path from a to b intersects ab an odd number

times, we first show that either SA[a, b] or SB[a, b] is con-

tained in the union of two semidisks; one is of diameter

ab and the other is of diameter bi, where i is a point on
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C. See Fig. 3. Denote by H the semidisk of diameter bi.

To bound the length of DT (a, b), we may further draw a

tangent from point i to the convex chain of S contained

in H. As a final result, either SA[a, b] or SB[a, b] is com-

pletely contained in the region bounded by segment ab

and a simple (convex) chain that consist of a circular arc

of diameter bi and one or two line segments.

Lemma2 Suppose that the first and last segments of

the direct path from a to b are below and above the line

through a and b, respectively. Then, there exists an angle

α > 0 such that |DT (a, b)|/|ab| ≤ sin(α) + π cos(α)/2,

π/4 ≤ α < π/2, or |DT (a, b)|/|ab| ≤ max{(sin(α) +
cos(α)(cos(α)+α)), (sin(α)+cos(α)(sin(2α)+π/2−2α))},
α < π/4.

Proof. First, since it is assumed that a and b, with

a(x) < b(x), lie on the x-axis, the x-coordinates of points

of the direct path from a to b are monotonically increasing

(see Lemma 1 of [5]). Assume also that neither SA[a, b]

nor SB[a, b] is not completely contained in C; otherwise,
|DT (a,b)|

|ab| ≤ π/2 and we are done.

Denote by ac and bd the first and last segments of the

direct path from a to b respectively, as viewed from a.

From the lemma assumption, both ac and bd are con-

tained in C. Extend segments ac and bd until they touch

the boundary of C, say, at points c′ and d′ respectively,

see Fig. 2. Since ∠ac′b = ∠ad′b = π/2, either ∠c′ad′ or
∠c′bd′ is at least π/2. In the following, we assume that

∠c′bd′ ≥ π/2, or equivalently, ∠c′bd ≥ π/2.

Let i be the intersection point of C with Bb,d, which is

vertically below segment ab. Since Bb,d is perpendicular

to bd, and since ∠bc′a = π/2 and ∠c′bd ≥ π/2, Bb,d in-

tersects segment ac′. Thus, segment bi intersects ac′, and

point i is outside of the convex hull of S, see Fig. 2.

図 2 Illustration of the proof of Lemma 2.

Let e be the first point of SB[a, b] outside of C, as

viewed from a, and f the last point of SA[a, b] such that

V or(e) and V or(f) are adjacent. See Figs. 2 and 3. Then,

all the points of SB[e, b] are vertically below segment bi.

Denote by R the chain formed by all bounded (or finite)

edges of regions V or(g), g ∈ SB[e, b). See Figs. 2 and 3

for some examples, where R is shown in dotted and solid

line. Let us consider the first subchain of R, which con-

sists of the edges with positive slope, starting from its end-

point on Bb,d. From the convexity of Voronoi regions, the

slopes of edges of that subchain are monotonically decreas-

ing, as viewed from b. Also, V or(d) is vertically above

Bb,d. Thus, Bb,d properly intersects the Voronoi region

of the point, which is immediately before b on SB[a, b].

(Figs. 2 and 3). Analogously, for two adjacent regions

V or(p) and V or(q), p ∈ SA[f, b) and q ∈ SB[e, b), the bi-

sector Bp,q properly intersects the Voronoi region whose

defining point is immediately after q on SB[a, b]. Since the

slopes of edges of the considered subchain are monotoni-

cally decreasing, the intersection points of these bisectors

Bp,q with Bb,d are vertically below that subchain of R.

In other words, the considered subchain of R is vertically

above Bb,d as well as bi.

図 3 A situation in which ∠abi ≥ π/4.

Note that R may have the other (second) subchain

that consists of the edges with negative slope. Clearly,

this subchain is vertically above bi, too. We now claim

that R has only one subchain consisting of the edges with

positive slope and possibly the other subchain consist-

ing of the edges with negative slope. Since the positive

slopes of edges on the first subchain of R are monotoni-

cally decreasing, and since each point of SA[f, b) is con-

nected by one or multiple edges of DT (S) to one or sev-

eral (consecutive) points of SB[e, b), both the x- and y-

coordinates of the first subchain of R are monotonically

decreasing, starting from the endpoint of that subchain on

Bb,d. It then follows from the convexity of Voronoi regions

that the unbounded edges between V or(u) and V or(v),
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u, v ∈ SB[e, b], whose finite vertices are on the first sub-

chain of R, have to monotonically increase their cut an-

gles with segment bi, as viewed from b. (A cut angle of

segment bi with the unbounded edge between V or(u) and

V or(v) is defined as the angle formed by point b, the inter-

section point of two segments and the infinite point along

the unbounded edge.) If R has the second subchain con-

sisting of edges of negative slope, then the x-coordinates

(y-coordinates) of the second subchain are monotonically

decreasing (increasing), starting from the common point

of the two subchains. Also, the unbounded edges between

V or(u′) and V or(v′), u′, v′ ∈ SB[e, b), whose finite ver-

tices are on the second subchain of R, excluding the com-

mon point of the subchains, increase their cut angles with

bi monotonically. Moreover, their cut angles (with bi)

have to be larger than π/2, because of a sign change of

slopes of R’s edges. Observe that since all the points of

SB[e, b] are vertically below bi, the unbounded Voronoi

edges formed by them have the monotonically increasing

cut angles with bi, as viewed from b. Hence, the rest edges

of R are all of negative slope, and our claim is proved.

(Note that there may exist a region V or(w), w ∈ SB[e, b),

such that it has some Voronoi edges of positive slope and

the others of negative slope.) Therefore, any finite ver-

tex of the Voronoi region whose defining point belongs to

SB[e, b) is vertically above Bb,d.

Let u and v be two adjacent points on SB[g, b] such that

u is immediately before v on SB[g, b]. Then, u ≠ b. Since

it is assumed that every triangle of DT (S) properly in-

tersects ab, the Delaunay triangle with an edge uv has its

third vertex on SA[f, b). We claim that ∠bui > π/2. De-

note by D the circumcircle of the Delaunay triangle with

edge uv, centered at a Voronoi vertex o (Fig. 3). Since

point o is vertically above Bb,d, it is vertically above bi,

too. By definition of DT (S), point b is on or outside of D.

Let k be the intersection point of D with the line through

b and o such that k is not contained in segment ob, see

Fig. 3. Since no point of S is contained in the interior of

D, point k is contained in the convex hull of S. Moreover,

since i is outside of the convex hull of S and o is vertically

above bi and below ab, point k is contained in the triangle

with three verices a, b and i. Hence, segment bi intersects

uk. Therefore, ∠bui > ∠buk ≥ π/2.

It follows from our claim that SB[g, b] is contained in

the circle of diameter bi. Denote by H the semicircle of

diameter bi, which is vertically below bi. From the con-

vexity of S and the definition of points i and g, SB[a, b]

is completely contained in the region bounded by ab, ai

and H, see Figs. 2 and 3.

H

C
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b
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図 4 Illustration of the inequality β ≥ 2α.

Let us now describe a method to bound the length of

DT (a, b). Let α = ∠abi. If α ≥ π/4, then |ai| = sin(α)|ab|
and |bi| = cos(α)|ab|. A simple argument (as in [10])

shows that the length of SB[a, b], denoted by |SB[a, b]|,
is less than (sin(α) + π cos(α)/2)|ab|, see Fig. 3. Thus,

|DT (a, b)| ≤ |SB[a, b]| ≤ (sin(α) + π cos(α)/2)|ab|.
Assume below that α < π/4. Let j be the intersection

point of H with the horizontal line through point b, see

Fig. 4. So, ij is parallel to ab. Since ∠bji = π/2, we

have ∠abj = π/2. Thus, the line through b and j is tan-

gent to C. If the whole chain SB[a, b] is vertically above

the line through i and j, then SB[a, b] is contained in the

convex region bounded by ba, ai, ij and the circular arc

ĵb of diameter bi, with the inscribed angle α. Since |ij| =
cos(α)|bi| = cos2(α)|ab| and ĵb = cos(α)α|ab|, we have

|DT (a, b)| ≤ |SB[a, b]| ≤ (sin(α)+cos(α)(cos(α)+α))|ab|,
0 < α < π/4.

Finally, consider the situation in which some portion

of SB[a, b] is below ij. To bound the length of SB[a, b],

we draw a tangent from point i to the portion of SB[a, b]

contained in H. (Recall that i is outside of the convex

hull of S.) The tangent intersects H at a point, say, n

(̸= i). Since a portion of SB[a, b] is below segment ij and

the arc of H below ij is x-monotone, we have n(y) < j(y)

and n(x) < j(x). Thus, segment bn intersects C at a

point, say, m (̸= b), see Fig. 4.

Let β = ∠ibn. Since n and m are on H and C respec-

tively, ∠bni = ∠bma = π/2. Two segments am and in

are thus parallel. Since in is tangent to SB[a, b], it in-

tersects C at a point, say, s (̸= i). Thus, two circular

arcs âi and m̂s of C are of the same length. So, we have

∠sbm = α. Let t be the intersection point of H with the

line through b and s. Since ∠sti = ∠bns = π/2, we have
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∠tis = ∠sbn = α. So, segment is intersects C at a point,

say, l (̸= i). Hence, ∠lbs = α, see Fig. 4. This implies

that β = ∠ibm ≥ 2α and ∠abm ≥ 3α as well. Since

∠jib = α and α+ β + ∠jib ≤ π/2, we obtain α ≤ π/8.

From the discussion made above, SB[a, b] is contained

in the convex region bounded by ba, ai, in and the cir-

cular arc n̂b of diameter bi, with the inscribed angle

π/2 − β. Since |ai| = sin(α)|ab|, |in| = cos(α) sin(β)|ab|
and |n̂b| = cos(α)(π/2 − β)|ab|, we have |SB[a, b]| ≤
(sin(α)+cos(α)(sin(β)+π/2−β))|ab|. Note that sin(β)−
β < sin(2α)− 2α, 0 < 2α ≤ β < π/2. Thus, |DT (a, b)| ≤
(sin(α)+cos(α)(sin(2α)+π/2−2α))|ab|, 0 < α ≤ π/8. By

notice the fact that (sin(α) + cos(α)(sin(2α) + π/2− 2α))

is a monotonically decreasing function for π/8 ≤ α < π/4,

the proof is complete. □
Lemma3 Suppose that both the first and last seg-

ments of the direct path from a to b are to the same side

of the line through a and b. Then, |DT (a, b)| ≤ π|ab|/2.
Proof. Assume that the direct path from a to b is not one-

sided; otherwise, |DT (a, b)|/|ab| ≤ π/2 and we are done.

Then, the direct path from a to b intersects segment ab

an even number times, as its first and last segments are

to the same side of the x-axis.

Without loss of generality, assume that both the first

and last segments of the direct path from a to b are verti-

cally above ab. Let ce (df) be the first (second) segment

of the direct path from a to b, which intersects ab.*1 As-

sume also that c(x) < e(x) and d(x) > f(x), see Fig. 5.

Denote by u and v two intersection points of ab with Bc,e

and Bd,f , respectively. Let l be the leftmost point of the

circle of radius uc (or ue), centered at u, and let r be the

rightmost point of the circle of radius vd (or vf), centered

at v. Since both ce and df belong to the direct path from

a to b, segment lr is completely contained in ab, see Fig.

5.

We show below that all points of SA[a, b] are con-

tained in C. Clearly, it suffices to show that all points

of SA[c, d] are contained in C. Here, SA[c, d] denotes

the portion of SA[a, b] between c and d. Denote by

c = p1, p2, . . . , pk+1 = d the sequence of points on SA[a, b].

Then, k ≥ 2, and the Voronoi edges defined by all pairs

(pi, pi+1) (1 ≤ i ≤ k) do no intersect ab. Let us ex-

tend these Voronoi edges until they touch ab. Denote

by q1, q2, . . . , qk the extended points on ab such that

|qipi| = |qipi+1|, for all 1 ≤ i ≤ k, see Fig. 5.

We first claim that u(x) < qi(x) < v(x), for all

*1 There exists an instance in which the direct path from a to
b intersects ab four times.

1 ≤ i ≤ k. Notice that the slope of Bc,e (Bd,f ) is pos-

itive (negative). Assume that (pi, pi+1), 1 ≤ i ≤ k, is

a pair of points such that the slope of the common edge

between V or(pi) and V or(pi+1) is negative. From the

convexity of S, we have c(x) < pi(x) < pi+1(x) < d(x).

Since both c and d are on the direct path from a to b,

the lower vertex, say, wi, of the common edge between

V or(pi) and V or(pi+1) is to the right (left) of point u (v).

Hence, the line segment extended from that edge inter-

sects ab at a point (i.e., qi) that is to the right of wi. So,

we have u(x) < wi(x) < qi(x). On the other hand, the

line through wi and v intersects Bpi,pi+1
at point wi (see

Fig. 5). Since wi(y) > v(y)(= 0) and wi(x) < v(x), the

slope of the line through wi and v is negative. Since the

(negative) slope of Bpi,pi+1 is smaller than that of the line

through v and wi, we have qi(x) < v(x). If the slope of the

common edge between V or(pi) and V or(pi+1) is positive,

a symmetric argument can also show u(x) < qi(x) < v(x).

C
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図 5 Illustrating the proof of Lemma 3.

Suppose now that u(x) < q1(x) < q2(x) < . . . <

qk(x) < v(x). In this case, |q1p2| = |q1p1| < |q1u|+ |up1|.
Thus, the leftmost point of the circle of radius q1p2, cen-

tered at q1, is to the right of point l on ab. Recall that l is

the leftmost point of the circle of radius up1, centered at u,

on ab. Since u(x) < q1(x) < q2(x) < . . . < qk(x) < v(x),

by an analogous argument, the leftmost point of the circle

of radius qjpj+1 (2 ≤ j ≤ k), centered at qj , on ab is to the

right of the leftmost point of the circle of radius qj−1pj ,

centered at qj−1, on ab. Hence, the leftmost points of all

circles of radius qipi+1, centered at qi for all 1 ≤ i ≤ k, are

to the right of point l on ab. Analogously, the rightmost

points of all circles of radius qipi, centered at qi for all

1 ≤ i ≤ k, are to the left of point r on ab.

Let m be the midpoint of segment lr, and let C ′ be the
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circle of radius lm, centered at pointm. If qi (1 ≤ i ≤ k) is

to the left of m on ab, then |mpi| < |mqi|+ |qipi| < |ml|.
(The latter inequality comes from the known fact that

the leftmost points of the circle of radius qipi, centered

at qi, is to the right of point l on ab.) Moreover, since qi

(1 ≤ i ≤ k) is to the left ofm on ab, bothm and pi+1 are to

the same side of Bpi,pi+1 . Thus, |mpi+1| < |mpi| < |ml|.
Hence, both pi and pi+1 are contained in C ′. Analo-

gously, if qi is to the right of m on ab, both pi and

pi+1 are contained in C ′, too. Therefore, all points

c = p1, p2, . . . , pk+1 = d are contained in C ′. Since lr is

completely contained in ab, an analogous argument shows

that all points of SA[c, d] are contained in C, too.

Finally, consider the situation in which u(x) < q1(x) <

q2(x) < . . . < qk(x) < v(x) does not hold. For ease of pre-

sentation, let q0(x) = u(x) and qk+1(x) = v(x). Assume

that [i, j] is a maximal interval such that 1 ≤ i < j ≤ k

and qi(x) > qj(x), see Fig. 5. So, qi−1(x) < qi(x) and

qj(x) < qj+1(x). Clearly, it is suffices to consider the

situation in which [i, j] is the first (or leftmost) maxi-

mal interval on [1, k]. Since qi(x) > qi+1(x), both qi

and pi+2 are to the same side of Bpi+1,pi+2 , and thus

|qipi+2| < |qipi+1|. Analogously, since both qi and pi+l,

l ≥ 3 and i+ l ≤ j+1, are to the same side of Bpi+l−1,pi+l
,

we have |qipi+l| < |qipi+l−1| < . . . < |qipi+1|. This im-

plies that points pi+2, . . . pj+1 are all contained in the cir-

cle of radius qipi+1, centered at qi. The discussion on

pi+2, . . . pj+1 is then the same as that on pi+1, and thus,

all points qi+1, . . . , qj+1 can be ignored. To continue the

discussion, we denote by q′i+1 the intersection point of ab

with Bpi+1,pj+2 (j + 1 ≤ k), and consider q′i+1 as a new

point immediately after qi and before qj+2 (j + 1 ≤ k).

Since [i, j] is a maximal interval on [1, k], we then have

qi(x) < q′i+1 < qj+2(x). For the instance of Fig. 5, the

first maximal interval we considered is [1, 2]. The inter-

section point q′2 of ab with Bp2,p4
is thus taken into con-

sideration, and point p3 is contained in the circle of radius

p2q
′
2, centered at q′2. This process can repeatedly be per-

formed, until an x-monotone sequence of the points qn or

q′m is obtained. The rest discussion is the same as the situ-

ation in which u(x) < q1(x) < q2(x) < . . . < qk(x) < v(x)

holds. Again, all points of SA[c, d] are contained in C.

In summary, all points of SA[a, b] are contained in

C. From the convexity of S, |DT (a, b)| ≤ |SA[a, b]| ≤
π|ab|/2. □
We can now give the main result of this paper.

Theorem1 Suppose that the set S of given points is

in convex position, and a and b are two points of S. In

the Delaunay triangulation of S, there is a path from a to

b such that its length is less than 1.82|ab|.
Proof. Suppose that the direct path from a to b is not

one-sided; otherwise, |DT (a, b)| ≤ π|ab|/2 and we are

done. Let f1 = sin(α) + π cos(α)/2, α ∈ [π/4, π/2),

and f2(α) = sin(α) + cos(α)(cos(α) + α) and f3(α) =

sin(α) + cos(α)(sin(2α) + π/2 − 2α), α ∈ (0, π/4). It

then follows from Lemmas 2 and 3 that |DT (a, b)|/|ab| ≤
max{π/2, f1(α), f2(α), f3(α)}. Since f ′

1(α) = cos(α) −
π sin(α)/2 < 0, α ∈ [π/4, π/2), f1(α) is a monotoni-

cally decreasing function. Thus, f1(α) ≤ f1(π/4) < 1.82.

Moreover, since the function fi(α) is convex, i = 2 or 3,

we can obtain fi(α) < 1.77 by letting f ′
i(α) = 0. □

4. Concluding remarks

We have shown that the stretch factor of the Delaunay

triangulation of a set of points in convex position is less

than 1.82. We believe that the same stretch factor also

holds for the set of points in general position. A possible

way might be to examine two different paths between a

and b; one above and the other below the line through

a and b. These two paths between a and b, although

they are non-convex, may give the same stretch factor as

SA[a, b] and SB[a, b], which are used for the sets of points

in convex position. It is also a challenge open problem to

reduce the stretch factor of DT (S) further, so as to close

the gap to its lower bound (roughly about 1.60).
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