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points in convex position

Xuehou Tan'®  Shingo Oowaki! Bo Jiang?

BEZE : Let S be a set of n points in the plane, and let DT(S) be the planar graph of the Delaunay
triangulation of S. For a pair of points a,b € S, denote by |ab| the Euclidean distance between a and b.
Denote by DT (a,b) the shortest path in DT'(S) between a and b, and let |DT'(a, b)| be the total length
of DT'(a,b). Dobkin et al. were the first to show that DT'(S) can be used to approximate the complete
graph of S in the sense that the stretch factor % is bounded above by ((1 4+ +/5)/2)7 ~ 5.08.
Recently, Xia improved this factor to 1.998. In this paper, we prove that if the points of S are in convex
position, then the stretch factor of DT(S) is less than 1.82. A set of points is said to be in convex
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On the stretch factor of Delaunary triangulations of

position, if all points form the vertices of a convex polygon.
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1. Introduction

Let S be a set of n points in the plane, and let G(5)
be such a graph that each vertex corresponds to a point
in S and the weight of an edge is the Euclidean distance
between its two endpoints. For a pair of points u, v in the
plane, denote by uv the line segment connecting u and
v, and |uv| the Euclidean distance between u and v. For
a pair of points a,b € S, denote by G(a,b) the shortest
path in G(S) between a and b, and let |G(a, b)| be the total
length of path G(a,b). The graph G(S) is said to approxi-
mate the complete graph of S if %, called the stretch
factor of G(S), is bounded above by a constant, indepen-
dent of S and n. It is then desirable to identify classes of
graphs that approximate complete graphs well and have
only O(n) edges (in comparison with O(n?) edges of com-
plete graphs), as these graphs have potential applications
in geometric network design problems [3], [7], [8].

Denote by DT'(S) the planar graph of the Delaunay tri-
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angulation of S. Dobkin et al. [5] were the first to give a
stretch factor ((1+4+/5)/2)m = 5.08) of Delaunay triangu-
lations to complete graphs, which was later improved to
27/ (3cos(n/6)) =~ 2.42 by Keil and Gutwin [9]. Recently,
this factor has been improved to 1.998 by Xia [11]. On
the other hand, Xia and Zhang [12] gave a lower bound
1.5932 on the stretch factor of DT'(S). Determining the
worse possible stretch factor of the Delaunay triangulation
has been a long standing open problem in computational
geometry.

Cui et al. [4] have also studied the stretch factor of
DT(S) for the points in convex position. A set of points
is said to be in convex position, if all points form the
vertices of a convex polygon. The currently best known
stretch factor in this special situation is 1.88, due to a work
of Amani et al. on the stretch factor of planar graphs
[1]. Notice that the planar graph studied by Amani et
al. is not the Delaunay triangulation of the given point
set. (Dumitrescu and Ghosh [6] have also shown that
every spanning graph of the vertices of a regular 23-gon
has stretch factor at least 1.4308.) Although studying the
convex case may not lead to improve upper bounds for

the general case, it shows a large possibility in obtaining
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a better upper bound on the stretch factor of DT(S) and
may give some intelligent hints for the general case.

In this paper, we prove that % < 1.82 holds for a
set S of points in convex position. Our result is obtained
by showing that there exists a convex chain between a and
b in DT(S) such that it is either contained in a semidisk
of diameter ab, or enclosed by segment ab and a simple
(convex) chain that consists of a circular arc and one or
two line segments. The total length of the simple chain is

less than 1.82|ab|.
2. Preliminary

Without loss of generality, assume that no four points
of S are cocircular in the plane. The Voronoi diagram
for S, denoted by Vor(S), is a partition of the plane into
regions, each containing exactly one point in S, such that
for each point p € S, every point within its corresponding
region, denoted by Vor(p), is closer to p than to any other
of S. The boundaries of these Voronoi regions form a pla-
nar graph. The Delaunay triangulation of S, denoted by
DT(S), is the straight-line dual of the Voronoi diagram
for S; that is, we connect a pair of points in S if and only
if they share a Voronoi boundary. Since DT(.S) is a planar
graph, it has O(n) edges.

The bisector of two points v and v, denoted by B, ,,
is the perpendicular line through the middle point of
segment uv. For a pair of points a,b € S, denote by
DT(a,b) the shortest path in DT(S) between a and b,
and |DT(a,b)| the total length of path DT'(a,b).

We now briefly review an important idea of Dobkin et
al’s work [5].

quence of the points of S, whose Voronoi regions intersect

Let a = ag, a1, ..., a;y, = b be the se-
segment ab (Fig. 1). If a Voronoi edge happens to be
on segment ab, either of the points defining that Voronoi
edge can be chosen as the one on the direct path from a
to b. The path obtained in this way is called the direct
path from a to b [5].

1 A one-sided, direct path from a to b.
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The direct path from a to b is said to be one-sided if all
points of the path are to the same side of the line through
a and b. See Fig. 1. If the direct path from a to b is
one-sided, then it has length at most 7|ab|/2.

Lemmal (Dobkin et al. [5]) If the direct path from
a to b is one-sided, then it has length at most 7|ab|/2.

Let p; be the intersection point of ab with the Voronoi
edge between Vor(a;—1) and Vor(a;), for 1 <i < m. It
follows from the definition of the Voronoi diagram that p;
is the center of a circle that passes through a;_; and a;
but contains no points of S in its interior, see Fig. 1. All
points of the direct path from a to b are thus contained
in the circle of diameter ab, no matter whether the path

is one-sided or not.

3. The main result

Assume that the set S of given points is in convex po-
sition. For a point p in the plane, denote the coordi-
nates of p by p(z) and p(y), respectively. Assume also
that the direct path from a to b is not one-sided; oth-
erwise, % < /2 (= 1.58). Without loss of gen-
erality, assume that both a and b lie on the z-axis (i.e.,
a(y) = b(y) = 0), with a(x) < b(x).

We say segment ab properly intersects a Delaunay trian-
gle if it intersects the interior of the triangle (i.e., segment
ab does not intersect only at a vertex of the triangle).
Clearly, if a Delaunay triangle does not properly intersect
ab, then at least one of its vertices (and two edges inci-

dent to that vertex) can be deleted from DT(S), without
¢ DTt

properly intersects all triangles of DT'(.5).

Denote by SA[a,b] (SBla,b]) the portion of the convex
chain of S above (below) the line through a and b. The
union of SA[a, b] and SBla, b] is then the convex hull of the
points of S. For a point p on SAla,b], denote by SA[a, p]
(SA[p, b)) the portion of SA[a,b] from a to p (from p to b).
Analogously, for a point ¢ on SBJa,b], denote by SB]a, q]
(SBJg,b]) the portion of SBla,b] from a to ¢ (from ¢ to
b). Also, we denote by SA(a,b) (SB(a,b)) the open chain
of SAla,b] (SBla,b]).

Denote by C the circle of diameter ab. The main idea

affecting the value o . We assume below that ab

of our proof is the following. If the direct path from a
to b intersects segment ab an even number times, then
% < 7/2 (Lemma 3). For the difficult case that
the direct path from a to b intersects ab an odd number
times, we first show that either SA[a, b] or SBla, b| is con-
tained in the union of two semidisks; one is of diameter

ab and the other is of diameter bi, where 7 is a point on
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C. See Fig. 3. Denote by H the semidisk of diameter bi.
To bound the length of DT'(a,b), we may further draw a
tangent from point i to the convex chain of S contained
in H. As a final result, either SA[a,b] or SBla, b] is com-
pletely contained in the region bounded by segment ab
and a simple (convex) chain that consist of a circular arc
of diameter bi and one or two line segments.

Lemma2 Suppose that the first and last segments of
the direct path from a to b are below and above the line
through a and b, respectively. Then, there exists an angle
a > 0 such that |DT(a,b)|/|ab] < sin(a) + 7 cos(a)/2,
/4 < a < w/2, or |DT(a,b)|/|ab] < max{(sin(a) +
cos(a)(cos(a) +a)), (sin(a)+cos(a) (sin(2a) +7/2—2a)) },
a<m/4.

Proof. First, since it is assumed that a and b, with
a(x) < b(x), lie on the x-axis, the z-coordinates of points
of the direct path from a to b are monotonically increasing
(see Lemma 1 of [5]). Assume also that neither SAla, b]

nor SBla,b] is not completely contained in C; otherwise,

|DT(a,b)|
[ab]
Denote by ac and bd the first and last segments of the

< m/2 and we are done.

direct path from a to b respectively, as viewed from a.
From the lemma assumption, both ac and bd are con-
tained in C. Extend segments ac and bd until they touch
the boundary of C, say, at points ¢’ and d’' respectively,
see Fig. 2. Since Zac'b = Zad'b = /2, either Zc'ad' or
Zc'bd’ is at least m/2. In the following, we assume that
Zc'bd’ > /2, or equivalently, Zc'bd > /2.

Let 7 be the intersection point of C' with By 4, which is
vertically below segment ab. Since By 4 is perpendicular
to bd, and since Zbc'a = w/2 and Zc'bd > ©/2, By 4 in-
tersects segment ac’. Thus, segment bi intersects ac’, and

point ¢ is outside of the convex hull of S, see Fig. 2.

2 Illustration of the proof of Lemma 2.

Let e be the first point of SB[a,b] outside of C, as
viewed from a, and f the last point of SAa,b] such that
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Vor(e) and Vor(f) are adjacent. See Figs. 2 and 3. Then,
all the points of SBle, b] are vertically below segment bi.

Denote by R the chain formed by all bounded (or finite)
edges of regions Vor(g), g € SBle,b). See Figs. 2 and 3
for some examples, where R is shown in dotted and solid
line. Let us consider the first subchain of R, which con-
sists of the edges with positive slope, starting from its end-
point on By, q. From the convexity of Voronoi regions, the
slopes of edges of that subchain are monotonically decreas-
ing, as viewed from b. Also, Vor(d) is vertically above
By q. Thus, By 4 properly intersects the Voronoi region
of the point, which is immediately before b on SBa,b].
(Figs. 2 and 3). Analogously, for two adjacent regions
Vor(p) and Vor(q), p € SA[f,b) and ¢ € SBle, b), the bi-
sector B, , properly intersects the Voronoi region whose
defining point is immediately after ¢ on SB]a, b]. Since the
slopes of edges of the considered subchain are monotoni-
cally decreasing, the intersection points of these bisectors
B, , with By g are vertically below that subchain of R.
In other words, the considered subchain of R is vertically

above By 4 as well as bi.

3 A situation in which Zabi > 7 /4.

Note that R may have the other (second) subchain
that consists of the edges with negative slope. Clearly,
this subchain is vertically above bi, too. We now claim
that R has only one subchain consisting of the edges with
positive slope and possibly the other subchain consist-
ing of the edges with negative slope. Since the positive
slopes of edges on the first subchain of R are monotoni-
cally decreasing, and since each point of SA[f,b) is con-
nected by one or multiple edges of DT'(S) to one or sev-
eral (consecutive) points of SBle,b), both the z- and y-
coordinates of the first subchain of R are monotonically
decreasing, starting from the endpoint of that subchain on
By q. It then follows from the convexity of Voronoi regions
that the unbounded edges between Vor(u) and Vor(v),
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u,v € SBle,b], whose finite vertices are on the first sub-
chain of R, have to monotonically increase their cut an-
gles with segment bi, as viewed from b. (A cut angle of
segment bi with the unbounded edge between Vor(u) and
Vor(v) is defined as the angle formed by point b, the inter-
section point of two segments and the infinite point along
the unbounded edge.) If R has the second subchain con-
sisting of edges of negative slope, then the z-coordinates
(y-coordinates) of the second subchain are monotonically
decreasing (increasing), starting from the common point
of the two subchains. Also, the unbounded edges between
Vor(u') and Vor(v'), u',v" € SBle,b), whose finite ver-
tices are on the second subchain of R, excluding the com-
mon point of the subchains, increase their cut angles with
bi monotonically. Moreover, their cut angles (with bi)
have to be larger than 7/2, because of a sign change of
slopes of R’s edges. Observe that since all the points of
SBle,b] are vertically below bi, the unbounded Voronoi
edges formed by them have the monotonically increasing
cut angles with bi, as viewed from b. Hence, the rest edges
of R are all of negative slope, and our claim is proved.
(Note that there may exist a region Vor(w), w € SBle, b),
such that it has some Voronoi edges of positive slope and
the others of negative slope.) Therefore, any finite ver-
tex of the Voronoi region whose defining point belongs to
SBle,b) is vertically above By 4.

Let u and v be two adjacent points on SB]g, b] such that
w is immediately before v on SB[g, b]. Then, u # b. Since
it is assumed that every triangle of DT'(S) properly in-
tersects ab, the Delaunay triangle with an edge uv has its
third vertex on SA[f,b). We claim that Zbui > 7/2. De-
note by D the circumcircle of the Delaunay triangle with
edge uv, centered at a Voronoi vertex o (Fig. 3). Since
point o is vertically above By 4, it is vertically above bi,
too. By definition of DT'(S), point b is on or outside of D.
Let k be the intersection point of D with the line through
b and o such that k is not contained in segment ob, see
Fig. 3. Since no point of S is contained in the interior of
D, point k is contained in the convex hull of S. Moreover,
since ¢ is outside of the convex hull of S and o is vertically
above bi and below ab, point k is contained in the triangle
with three verices a, b and 7. Hence, segment bi intersects
uk. Therefore, Zbui > ZLbuk > 7 /2.

It follows from our claim that SB[g,b] is contained in
the circle of diameter bi. Denote by H the semicircle of
diameter bi, which is vertically below bi. From the con-
vexity of S and the definition of points ¢ and g, SBJa, b]

is completely contained in the region bounded by ab, ai
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and H, see Figs. 2 and 3.

4 Tllustration of the inequality 8 > 2a.

Let us now describe a method to bound the length of
DT(a,b). Let « = Zabi. If a > 7/4, then |ai| = sin(«)|ab|
and |bi] = cos(a)|ab]. A simple argument (as in [10])
shows that the length of SB|a,b|, denoted by |SB]a,b]|,
is less than (sin(a) 4+ 7cos(a)/2)|ab|, see Fig. 3. Thus,
| DT (a,b)| < |SB[a,b]| < (sin(a) + 7 cos(a)/2)|ab|.

Assume below that a < w/4. Let j be the intersection
point of H with the horizontal line through point b, see
Fig. 4. So, ij is parallel to ab. Since Zbji = 7/2, we
have Zabj = 7/2. Thus, the line through b and j is tan-
gent to C. If the whole chain SBla, b] is vertically above
the line through i and j, then SBJa, b] is contained in the
convex region bounded by ba, ai, ij and the circular arc
ﬁ) of diameter bi, with the inscribed angle «. Since |ij| =
cos(a)|bi| = cos?(a)|ab| and ﬁ) = cos(a)alabl, we have
| DT (a,b)| < |SB[a,b]| < (sin(a)+cos(a)(cos(a)+a))|abl,
0<a<m/4

Finally, consider the situation in which some portion
of SBla,b] is below ij. To bound the length of SBa,b],
we draw a tangent from point ¢ to the portion of SBJa, b]
contained in H. (Recall that ¢ is outside of the convex
hull of S.) The tangent intersects H at a point, say, n
(# 1). Since a portion of SBa, b] is below segment ¢j and
the arc of H below ij is x-monotone, we have n(y) < j(y)
and n(z) < j(z). Thus, segment bn intersects C at a
point, say, m (# b), see Fig. 4.

Let 8 = Zibn. Since n and m are on H and C respec-
tively, Zbni = Zbma = /2. Two segments am and in
are thus parallel. Since in is tangent to SBla,b], it in-
tersects C' at a point, say, s (# ¢). Thus, two circular
arcs ai and ms of C are of the same length. So, we have
Zsbm = «. Let t be the intersection point of H with the
line through b and s. Since Zsti = Zbns = m/2, we have
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/tis = Zsbn = a. So, segment is intersects C' at a point,
say, | (# 1). Hence, Zlbs = «, see Fig. 4. This implies
that 8 = Zibm > 2« and Zabm > 3a as well. Since
Zjib =« and a + 8+ Zjib < 7/2, we obtain a < 7/8.

From the discussion made above, SB]a, b] is contained
in the convex region bounded by ba, ai, in and the cir-
cular arc nb of diameter b, with the inscribed angle
m/2 — 3. Since |ai| = sin(a)|ab|, |in| = cos(a) sin(3)|ab|
and \%| = cos(a)(m/2 — f3)|ab|, we have |SB[a,b]| <
(sin(a) +cos(a)(sin(B)+m/2—f))|ab|. Note that sin(3)—
B8 < sin(2a) —2a, 0 < 2a < B < 7/2. Thus, |DT(a,b)| <
(sin(a)4cos(a)(sin(2a) +7/2—2a))|abl, 0 < a < 7/8. By
notice the fact that (sin(a) 4 cos(a)(sin(2«) +7/2 — 2av))
is a monotonically decreasing function for 7/8 < a < 7 /4,
the proof is complete. [J

Lemma3 Suppose that both the first and last seg-
ments of the direct path from a to b are to the same side
of the line through a and b. Then, |DT(a,b)| < w|ab|/2.
Proof. Assume that the direct path from a to b is not one-
sided; otherwise, |DT'(a,b)|/|ab] < 7/2 and we are done.
Then, the direct path from a to b intersects segment ab
an even number times, as its first and last segments are
to the same side of the x-axis.

Without loss of generality, assume that both the first
and last segments of the direct path from a to b are verti-
cally above ab. Let ce (df) be the first (second) segment
of the direct path from a to b, which intersects ab.*! As-
sume also that ¢(z) < e(z) and d(z) > f(z), see Fig. 5.
Denote by u and v two intersection points of ab with B .
and By f, respectively. Let [ be the leftmost point of the
circle of radius uc (or ue), centered at u, and let r be the
rightmost point of the circle of radius vd (or vf), centered
at v. Since both ce and df belong to the direct path from
a to b, segment [r is completely contained in ab, see Fig.
5.

We show below that all points of SA[a,b] are con-
tained in C'. Clearly, it suffices to show that all points
of SA[c,d] are contained in C. Here, SA[c,d] denotes
the portion of SA[a,b] between ¢ and d. Denote by
¢ =p1,p2,...,Pk+1 = d the sequence of points on SAa, b].
Then, k£ > 2, and the Voronoi edges defined by all pairs
(pi,pi+1) (1 < i < k) do no intersect ab. Let us ex-
tend these Voronoi edges until they touch ab. Denote
by q1,q2,-..,qr the extended points on ab such that
lgipi| = |gipit1], for all 1 <i < k, see Fig. 5.

We first claim that u(z) < ¢(z) < v(z), for all

*1 There exists an instance in which the direct path from a to

b intersects ab four times.
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1 < ¢ < k. Notice that the slope of B., (Bq,f) is pos-
itive (negative). Assume that (p;,pit1), 1 < i < k, is
a pair of points such that the slope of the common edge
between Vor(p;) and Vor(p;y+1) is negative. From the
convexity of S, we have c(z) < p;(z) < pit1(z) < d(z).
Since both ¢ and d are on the direct path from a to b,
the lower vertex, say, w;, of the common edge between
Vor(p;) and Vor(p;+1) is to the right (left) of point u (v).
Hence, the line segment extended from that edge inter-
sects ab at a point (i.e., ¢;) that is to the right of w;. So,
we have u(x) < w;(z) < gi(z). On the other hand, the
line through w; and v intersects By, ;,.,, at point w; (see
Fig. 5). Since w;(y) > v(y)(= 0) and w;(z) < v(x), the
slope of the line through w; and v is negative. Since the
(negative) slope of B, ,,, is smaller than that of the line
through v and w;, we have ¢;(z) < v(z). If the slope of the
common edge between Vor(p;) and Vor(p;y1) is positive,

a symmetric argument can also show u(z) < ¢;(z) < v(z).

5 Illustrating the proof of Lemma 3.

Suppose now that u(z) < q1(z) < @(z) < ... <
gr(x) < v(z). In this case, |g1p2| = |g1p1] < |qru] + |up1].
Thus, the leftmost point of the circle of radius ¢;p2, cen-
tered at q1, is to the right of point [ on ab. Recall that [ is
the leftmost point of the circle of radius upy, centered at u,
on ab. Since u(z) < ¢1(z) < g2(z) < ... < gi(z) < v(x),
by an analogous argument, the leftmost point of the circle
of radius ¢;pj4+1 (2 < j < k), centered at g;, on ab is to the
right of the leftmost point of the circle of radius g;_1pj,
centered at g;_1, on ab. Hence, the leftmost points of all
circles of radius ¢;p;+1, centered at g; for all 1 < < k, are
to the right of point [ on ab. Analogously, the rightmost
points of all circles of radius ¢;p;, centered at ¢; for all
1 <i <k, are to the left of point r on ab.

Let m be the midpoint of segment Ir, and let C’ be the
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circle of radius Im, centered at point m. If ¢; (1 <i < k) is
to the left of m on ab, then |mp;| < |ma;| + |gipi| < |ml].
(The latter inequality comes from the known fact that
the leftmost points of the circle of radius ¢;p;, centered
at ¢;, is to the right of point [ on ab.) Moreover, since ¢;
(1 <i < k)isto the left of m on ab, both m and p; 14 are to
the same side of By, p,.,,. Thus, |mp; 1] < |mp;| < [mi].
Hence, both p; and p;y1 are contained in C’. Analo-
gously, if ¢; is to the right of m on ab, both p; and
pir1 are contained in C’, too. Therefore, all points
¢ = pi1,p2,-..,Pkr1 = d are contained in C’. Since Ir is
completely contained in ab, an analogous argument shows
that all points of SA[e, d] are contained in C, too.
Finally, consider the situation in which u(z) < ¢1(z) <
g2(z) < ... < gx(z) < v(z) does not hold. For ease of pre-
sentation, let go(x) = u(z) and gr11(x) = v(z). Assume
that [i,j] is a maximal interval such that 1 < i < j <k
and ¢;(x) > g;(z), see Fig. 5. So, ¢;—1(z) < ¢;(z) and
gj(z) < gjt1(z).
situation in which [, 7] is the first (or leftmost) maxi-

Clearly, it is suffices to consider the

mal interval on [1,k]. Since ¢;(z) > giy1(x), both ¢

and p;1o are to the same side of B, and thus

i+1:Pi427
|gipite| < |gipi+1]- Analogously, since both ¢; and p;4i,
I >3andi+1 < j+1, are to the same side of By, | p.,,»
we have |gipi+1| < |¢ipi+i-1] < ... < |gipit1|. This im-
plies that points p;;o,...p;4+1 are all contained in the cir-
cle of radius ¢;p;y+1, centered at ¢;. The discussion on
Di+2,---Dj+1 is then the same as that on p;;1, and thus,
all points g;11,...,¢j+1 can be ignored. To continue the
discussion, we denote by ¢;; the intersection point of ab
with By, ., p.,» (J +1 < k), and consider ¢;,; as a new
point immediately after ¢; and before gj1o (j +1 < k).
Since [i,j] is a maximal interval on [1,k], we then have
qi(x) < qi41 < gj42(x). For the instance of Fig. 5, the
first maximal interval we considered is [1,2]. The inter-
section point g5 of ab with By, ,, is thus taken into con-
sideration, and point p3 is contained in the circle of radius
p2qh, centered at ¢5. This process can repeatedly be per-
formed, until an z-monotone sequence of the points ¢,, or
q,, is obtained. The rest discussion is the same as the situ-
ation in which u(z) < ¢1(z) < q2(z) < ... < gx(z) < v(z)
holds. Again, all points of SAc,d] are contained in C.

In summary, all points of SA[a,b] are contained in
C. From the convexity of S, |DT(a,b)| < |SA[a,b]| <
mlabl/2. O

We can now give the main result of this paper.

Theoreml1 Suppose that the set S of given points is

in convex position, and a and b are two points of S. In
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the Delaunay triangulation of S, there is a path from a to
b such that its length is less than 1.82|ab|.

Proof. Suppose that the direct path from a to b is not
one-sided; otherwise, |DT'(a,b)| < w|ab|/2 and we are
done. Let f; = sin(a) + mcos(e)/2, a € [rn/4,7/2),
and fo(a) = sin(a) + cos(a)(cos(a) + a) and f3(a) =
sin(a) + cos(a)(sin(2a) + 7/2 — 2a), a € (0,7/4). It
then follows from Lemmas 2 and 3 that |DT'(a,b)|/|abl <
max{r/2, f1(a), fa(a), fs(a)}. Since fi(a) = cos(a) —
wsin(a)/2 < 0, o € [7/4,7/2), fi(«) is a monotoni-
cally decreasing function. Thus, fi(«) < fi(n/4) < 1.82.
Moreover, since the function f;(«) is convex, ¢ = 2 or 3,
we can obtain f;(«) < 1.77 by letting f/(a) = 0. O

4. Concluding remarks

We have shown that the stretch factor of the Delaunay
triangulation of a set of points in convex position is less
than 1.82. We believe that the same stretch factor also
holds for the set of points in general position. A possible
way might be to examine two different paths between «a
and b; one above and the other below the line through
a and b. These two paths between a and b, although
they are non-convex, may give the same stretch factor as
SA[a,b] and SBla, b], which are used for the sets of points
in convex position. It is also a challenge open problem to
reduce the stretch factor of DT(S) further, so as to close
the gap to its lower bound (roughly about 1.60).
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