
An Efficient Algorithm for Enumerating Chordal Bipartite
Induced Subgraphs in Graphs

Kazuhiro Kurita1,a) KunihiroWasa2 Takeaki Uno2 Hiroki Arimura1

Abstract: In this paper, we propose a characterization of chordal bipartite graphs and an efficient enumeration algo-
rithm for chordal bipartite induced subgraphs. A chordal bipartite graph is a bipartite graph without induced cycles
with length six or more. It is known that chordal bipartite graphs have several characterizations. One of them is as
follows: A bipartite graph B is chordal bipartite if and only if a hypergraph corresponding to B is β-acyclic. By using
the characterization of β-acyclic hypergraphs, we show that a graph is chordal bipartite if and only if it has a special
vertex elimination ordering. We call this vertex ordering chordal bipartite elimination ordering (CBEO). Moreover,
we propose an algorithm ECB which enumerates all chordal bipartite induced subgraphs in O(kt∆2) time per solution,
where, k is the degeneracy, t is the maximum size of Kt,t as a subgraph, and ∆ is the degree.

Keywords: Output-sensitive enumeration, Chordal bipartite graph, Elimination ordering, Degeneracy, Biclique, Re-
verse search.

1. Intorduction
The chordality of graphs has been studied well. A graph G is

chordal if any cycle with length four or more in G has a chord. A
chord of a cycle is an edge which connects two vertices in a cycle
and this edge is not included in a cycle. If G is a chordal, many
NP-complete problems can be solved in polynomial time [10],
e.g. minimum coloring, maximum clique, minimum clique cover,
and maximum independent set problem. Moreover, chordality of
a bipartite graph has been also studied. A chordal bipartite graph
is a bipartite graph without any induced cycles with length six
or more. There are many characterizations of chordal bipartite
graphs [4, 11, 17]. In addition, the graph chordality is related to
the hypergraph acyclicity [3, 4]. In particular, Ausiello et. al.
show that a hypergraph is β-acyclic if and only if its bipartite in-
cident graph is (6, 1)-chordal. We call a graph G is (a, b)-chordal
if any cycle C which has the length a or more has at least b chords.
A bipartite graph is (6, 1)-chordal if and only if a graph is chordal
bipartite. In other words, a hypergraph is β-acyclic if and only if
its bipartite incident graph is chordal bipartite.

In this paper, we address the chordal bipartite induced sub-
graph enumeration problem. We propose amortized O(kt∆2) time
algorithm for the problem. To evaluate the efficiency of enumer-
ation algorithms, we often measure in terms of the size of input
and the number of output. An enumeration algorithm is poly-
nomial delay if the maximum interval between two consecutive
solutions is polynomial. Moreover, an enumeration algorithm is
amortized polynomial if the total running time is O(Mpoly(N))
time, where M is the number of solutions and N is the input

1 Hokkaido University, Sapporo, Hokkaido, Japan
2 National Institute of Informatics, Hitotsubashi, Tokyo, Japan
a) k-kurita@ist.hokudai.ac.jp

size. In enumeration area, there are some polynomial delay al-
gorithms for chordal subgraphs and acyclic subhypergraphs enu-
meration [7, 13, 18, 20, 22]. Especially, Wasa et. al. proposed an
enumeration algorithm for chordal bipartite induced subgraphs
in bipartite graphs. In [22], Wasa et. al. proposed amortized
O(nk3) time enumeration algorithm. However, Wasa points out
that the time complexity of this algorithm is incorrect. Espe-
cially, Lemma 8 is incorrect in [22]. Correctly, it enumerates
all solutions in amortized O(nk2∆) time. In this paper, we pro-
pose chordal bipartite induced subgraph enumeration algorithm
ECB for general graphs. ECB enumerates amortized O(kt∆2) time,
where k is the degeneracy, t is the size of a maximum biclique Kt,t

of G, and ∆ is the degree of G. This algorithm achieves amortized
O(poly(∆)) time enumeration. Since ∆ and t are at most n and k,
respectively, our algorithm is more efficient than the result of [22]
in general cases.

In ECB, we use a similar technique as enumeration of chordal
induced subgraphs. Kiyomi and Uno [13] use a special ver-
tex ordering, called the perfect elimination ordering (v1, . . . , vn).
In this ordering, any vertex vi is simplicial in G[Vi≤], where
Vi≤ = {v j ∈ V | i ≤ j}. A vertex is called simplicial if an in-
duced subgraph of neighbors becomes a clique. Kiyomi and Uno
developed a constant delay enumeration algorithm for chordal in-
duced subgraphs [13] by using this ordering. Likewise a perfect
elimination ordering of chordal graph, β-acyclic hypergraphs has
a vertex elimination ordering [8]. We show that a graph is chordal
bipartite if and only if a graph has a special vertex elimination or-
dering. We call this vertex ordering a chordal bipartite elimina-
tion ordering (CBEO). To define CBEO, we use a weak-simplicial
vertex [17].
Main results: We show that a graph G is chordal bipartite if
and only if G has a vertex elimination ordering CBEO. To define

1

IPSJ SIG Technical Report Vol.2019-AL-171 No.9
2019/1/30

ⓒ 2019 Information Processing Society of Japan

CBEO, we use the notion of a weak-simplicial vertex. In this pa-
per, we proved that any chordal bipartite graph has at least two
weak-simplicial vertices. Hence, by removing a weak-simplicial
vertex, we can eliminate all vertices in a graph. In addition,
we show a new characterization of a weak-simplicial vertex. A
vertex v is weak-simplicial if and only if an induced subgraph
G[
∪

u∈N(v) N[u]] is bipartite chain graph [21].
Using CBEO, we propose an enumeration algorithm ECB. This

algorithm enumerates chordal bipartite induced subgraphs in
amortized O(kt∆2) time, where k is the degeneracy of a graph,
t is the maximum size of Kt,t as a subgraph, and ∆ is the de-
gree of G. Note that t is bounded by k. Hence, ECB enumerates
chordal bipartite induced subgraphs in constant amortized time
for constant degree graphs. When ECB generates one solution,
ECB checks only a local structure of an input graph, so it is ef-
ficient for sparse graphs. In enumeration algorithm area, there
are efficient algorithms for sparse graphs [6, 9, 12, 14, 15, 18, 19].
Especially, the degeneracy of graphs is used for constructing ef-
ficient enumeration algorithms. In our proposed algorithm, we
also use the degeneracy of graphs.

2. Preliminaries
2.1 Hypergraphs

Let H = (V,E) be a hypergraph. V is a set of vertices and E
is a set of subsets of V . We call an element of E a hyperedge.
H(v) is the set of edges {e ∈ H | v ∈ e}. A sequence of edges
C = (e1, . . . , ek) is a berge cycle if there exists k distinct ver-
tices v1, . . . , vk such that vk ∈ e1 ∩ ek and vi ∈ ei ∩ ei+1 for each
1 ≤ i < k. A berge cycle C = (e1, . . . , ek) is a pure cycle if k ≥ 3
and ei ∩ e j , ∅ hold for any distinct i and j, where i and j satisfy
one of the following three conditions: (I) |i − j| = 1, (II) i = 1
and j = k, or (III) i = k and j = 1. A cycle C = (e1, . . . , ek)
is a β cycle if the sequence of (e′1, . . . , e

′
k) is a pure cycle, where

e′i = ei \
∩

1≤ j≤k e j. We call a hypergraph H β-acyclic if H has
no β cycles. We call a vertex v a β leaf (or nest point) if e ⊆ f or
e ⊇ f hold for any pair of edges e, f ∈ H(v). A bipartite graph
I(H) = (X,Y, E) is a incidence graph of a hypergraphH = (V,E)
if X = V , Y = E, and E includes an edge {v, e} if v ∈ e, where
v ∈ V and e ∈ E.

2.2 Graphs
Let G = (V, E) be a simple graph, that is there is no self loops

and multiple edges. u, v ∈ V are adjacent if there is an edge
{u, v} ∈ E. The sequence of vertices π = (v1, . . . , vk) is a path if vi
and vi+1 are adjacent for each 1 ≤ i ≤ k − 1. If v1 = vk holds in
a path C = (v1, . . . , vk), we call C a cycle. The distance dist(u, v)
between u and v is the length of a shortest path between u and v.
We call a graph H = (U, F) a subgraph of G = (V, E) if U ⊆ V
and F ⊆ E hold. A subgraph H = (U, F) is an induced subgraph
of G if F = {{u, v} ∈ E | u, v ∈ U} hold. In addition, we denote
an induced subgraph as G[U]. The neighbor of v is the set of
vertices {u ∈ V | {u, v} ∈ E} and denoted by NG(v). In addition,
we denote N(v) ∩ X as NX(v), where X is a subset of V . If there
is no confusion, we denote NG(v) as N(v). The set of vertices
N[v] = N(v) ∪ {v} is called the closed neighbor. We define the
neighbor with distance k and the neighbor with distance at most

10

9
8

6
2

7

3
5

1

4

12 11

(A) An input graph G

10

9
8

6
2

7

3
5

1

4

12 11

(B) A chordal bipartite induced subgraph

9

8

6

2

7

3

1

1211

(C) Bipartite representation

Fig. 1 (A) is an input graph G and (B) is one of the solutions B = (X,Y, E).
(C) is a graph drawn by dividing X and Y .

k as Nk(v) = {u ∈ V | dist(u, v) = k} and N≤k(v) =
∪

1≤i≤k N(v)k,
respectively. We say v is incident to an edge e = {u, v} and e is
the incident edge of u and v. For a vertex set X, we define the set
of neighbors N(X) =

∪
v∈X N(v) \ X. The degree of v d(v) is the

size of N(v). The degree of a graph G is the maximum size of
d(v) in V . Let U be a subset of V . For vertices u, v ∈ V , u and v
are comparable if N(v) ⊆ N(u) or N(v) ⊇ N(u) hold. Otherwise,
u and v are incomparable.

Let B = (X,Y, E) be a bipartite graph. We call B is a chordal
bipartite graph if there is no induced cycles with length four or
more. Moreover, B is biclique if any pair of vertices x ∈ X and
y ∈ Y are adjacent. We denote a biclique as Ka,b if |X| = a and
|Y | = b. In this paper, we consider only the case a = b and the
size of a biclique Kt,t is t.

Finally, we define our problem, chordal bipartite induced sub-
graph enumeration problem.
Problem 1 (Chordal bipartite induced subgraph enumeration
problem). Output all chordal induced subgraphs in an input
graph G without duplication.

In Fig. 1, we show an input graph G and one of the solu-
tions. In this paper, we propose an efficient enumeration al-
gorithm ECB to solve chordal bipartite enumeration problem in
amortized O(tk∆2) time.

3. A Characterization of Chordal Bipartite
Graph

In this section, we propose a characterization of chordal bipar-
tite graphs. In addition, we show that a vertex v is weak-simplicial
in a bipartite graph B if and only if B[N≤2(v)] is bipartite chain.
To show the our characterization, we use the following two theo-
rems.
Theorem 1. (Theorem 1 of [1]) I(H) is chordal bipartite if and
only ifH is β-acyclic.

From Theorem 1, an incidence graph I(H) is chordal bipartite
if and only if H is β-acyclic. Next, we consider a property of
β-acyclic hypergraphs. Brault showed that β-acyclic hypergraphs
have at least two β leaves which are not adjacent [5].
Theorem 2. (Theorem 3.9 of [5]) A β-acyclic hypergraphH with
at least two vertices has two β leaves that are not neighbors in
H \ {V(H)}.

Even if H has multiple edges, Theorem 2 holds since the set
inclusion relation by edges is not changed.

A vertex v is weak-simplicial [17] if N(v) is an independent set
and any pair of neighbors of v are comparable. We show that the
relation of a β leaf and a weak-simplicial vertex.

LetV be a set of vertex subsets. V is totally ordered if for any
pair X,Y ∈ V of vertex subsets, either X ⊆ Y or X ⊇ Y . Similarly,

2

IPSJ SIG Technical Report Vol.2019-AL-171 No.9
2019/1/30

ⓒ 2019 Information Processing Society of Japan

a vertex v is totally ordered if any pair u, v of neighbors of v are
comparable.
Lemma 3. Let vH be a vertex in V(H) and vI(H) be the vertex in
V(I(H))) corresponding to vH . Then, vH is a β-leaf if and only
if vI(H) is a weak-simplicial vertex in I(H).

Proof. We assume that vH is a β-leaf inH . From the definition
of a β-leaf, vI(H) is also totally ordered. In addition, neighbors of
vI(H) form an independent set. Thus, vI(H) is a weak-simplicial
vertex.

We next assume that vI(H) is weak-simplicial. From the def-
inition, vI(H) is totally ordered. Thus, H(vH) is totally ordered.
Therefore, vH is a β-leaf inH and the statement holds. □

Lemma 4. Let B = (X,Y, E) be a chordal bipartite graph. If
there is no vertices v in B such that N(v) = X or N(v) = Y, then B
has at least two weak-simplicial vertices which are not adjacent.
Theorem 5. A bipartite graph B is a chordal bipartite if and
only if B has an elimination ordering (v1, . . . , vn) such that vi is a
weak-simplicial vertex in B[Vi≤] for any vi.

Proof. From Lemma 4, the only if part holds. We consider the
contraposition of the if part. Since B is not chordal bipartite, B
has an induced cycle C with length six or more. Since a vertex in
C is not weak-simplicial, we cannot eliminate all vertices from B
and the statement holds. □

Next, we show a characterization of a weak-simplicial vertex.
A bipartite graph B is bipartite chain if for any W ∈ {X,Y}, any
pair of vertices in W is comparable.
Lemma 6. Let B = (X,Y, E) be a chordal bipartite graph and
v be a vertex in B. Then, v is weak-simplicial if and only if an
induced subgraph B[N≤2[v]] is bipartite chain.

Proof. We assume that B[N≤2[v] is bipartite chain. From the
definition, any pair of vertices in N(v) is comparable. Hence, v is
weak-simplicial.

We next prove the other direction. We assume that v is weak-
simplicial. Let x and y be vertices in N2(v). If x and y are
incomparable, then there are two vertices z ∈ N(x) \ N(y) and
z′ ∈ N(y) \ N(x). Note that z and z′ are neighbors of v. This con-
tradicts that any pair of vertices in N(v) is comparable. Hence,
x, y ∈ N2(v) are comparable and B[N≤2[v]] is bipartite chain. □

To prove the time complexity of ECB in Sect. 4, we give the two
upper bounds with respect to the number of vertices and edges in
bipartite chain graph. Note that t is the maximum size of Kt,t in
G as a subgraph.
Lemma 7. Let B be a bipartite chain graph and v be a vertex in
B. Then,

∣∣∣N2(v)
∣∣∣ is at most ∆.

Proof. Since B is bipartite chain, there is a maximum vertex u in
N(v) with respect to inclusion of neighbors. Hence, for any vertex
w ∈ N(v) \ {u}, N(w) ⊆ N(u) holds. Since N2(v) =

∪
w∈N(v) N(w),

N2(v) is equal to N(u). Hence, the statement holds. □

Lemma 8. Let B = (X,Y, E) be a bipartite chain graph. Then,
the number of edges in B is O(t∆), where t is the maximum size of
a biclique in B.

Algorithm 1: ECB enumerates all chordal bipartite induced
subgraphs in amortized polynomial time.

1 Procedure ECB(G) // G = (V, E): an input graph

2 RecECB((∅,V,G));
3 Procedure RecECB(X,C (X) ,G)
4 Output X;
5 for v ∈ C (X) do
6 if P (X ∪ {v}) = X then RecECB(X ∪ {v},C (X ∪ {v}) ,G) ;

Proof. Let v be a maximum vertex in X with respect to inclusion
of neighbors. If d(v) ≤ t, then the statement holds since the size
of N2(v) is at most ∆ from Lemma 7.

We then assume that d(v) > t. We consider the number of edges
in G[N(v) ∪ N2(v)]. Let (u1, . . . , ud(v)) be a sequence of vertices
in N(v) such that N(ui) ⊆ N(ui+1) for 1 ≤ i < d(v). For each
d(v)− t+1 ≤ i ≤ d(v), since |N(ui)| is at most ∆, the sum of |N(ui)|
is at most O(t∆). We next consider the case for 1 ≤ i ≤ d(v) − t.
Since N(ui) is a subset of N(u j) for any i < j, |N(ui)| is at most t.
If |N(ui)| is greater than t, then B has a biclique Kt+1,t+1. Hence,
the number of edges in B is O(t∆) and the statement holds. □

4. Enumeration of Chordal Bipartite Induced
Subgraphs

In this section, we propose an amortized O(kt∆2) time enu-
meration algorithm ECB. ECB is based on reverse search [2].
ECB enumerates all solutions by traversing on a tree structure
F (G) = (S(G),E(G)), called the family tree, where S(G) is a
set of solutions in an input graph G. Note that F (G) is directed.
To define F (G), Let X be a solution. we first define the parent-
child relationship on solutions by using Theorem 5. We denote
the set of weak-simplicial vertices in G[X] as WS (X). In what
follows, we number the vertex index from 1 to n and compare
the vertices with their indices. The parent of X is defined as
P (X) = X \ max{WS (X)} and a solution X is a child of Y if
P (X) = Y . Let ch(X) be the set of children of X. We define the
parent vertex pv(X) as max{WS (X)}. For any pair of solutions X
and Y , (X,Y) ∈ E(G) if Y = P (X). From Theorem 5, any solution
reaches an empty set by recursively removing the parent vertex
from the solution. Hence, the following lemma holds.
Lemma 9. The family tree forms a tree.

Next, we show that ECB enumerates all solutions. For any
vertex subset X ⊂ V , We denote X≤v = X ∩ V≤v, where
V≤v = {u ∈ V | u ≤ v}. An addible weak-simplicial ver-
tex set is AWS (X) = {v ∈ V \ X | v ∈ WS (X ∪ {v})}, that
is, any vertex v in AWS (X) of a solution X generates new so-
lution X ∪ {v}. We define a candidate set C (X) as follows:
C (X) = AWS pv(X)<(X)∪(AWS (X)∩N≤2(pv(X))). Note that C (X)
is a subset of AWS (X). We show that the relation between ch(X)
and C (X).
Lemma 10. Let X and Y be distinct solutions. If Y is a child of
X, then pv(Y) ∈ C (X).

Proof. Suppose that Y is a child of X. Let v = pv(Y) =
max{WS (Y)} and u = pv(X) = max{WS (X)}. Note that v belongs
to AWS (X). If u < v, then v ∈ AWS pv(X)<(X) and thus v ∈ C (X).
Otherwise, u is not included in WS (Y) since v has the maximum

3

IPSJ SIG Technical Report Vol.2019-AL-171 No.9
2019/1/30

ⓒ 2019 Information Processing Society of Japan

Algorithm 2: ECB enumerates all chordal bipartite graphs in
amortized O(kt∆2) time.

1 Procedure RecECB(X,C (X) ,G)
2 Output X;
3 for v ∈ C (X) do
4 WS ← UpdateWS(X, v,G);
5 if P (X ∪ {v}) = X then
6 AWS ← UpdateAWS(X, v,G);
7 Computes C and L(X ∪ {v}) from AWS and L(X),

respetively;
8 RecECB(X ∪ {v},C,G);
9 Procedure UpdateWS(X, v,G)

10 for u ∈ NX(v) do
11 if u ∈ WS∧ there is a vertex w ∈ NX(u) is incomparable to u.

then WS ← WS \ {u};
12 for w ∈ NX(u) ∩WS do
13 if w and v are incomparable then WS ← WS \ {w} ;
14 return WS ;
15 Procedure UpdateAWS(X, v,G)
16 AWS ← AWS (X);
17 for u ∈ N(v) do
18 if u ∈ AWS then
19 if There is a vertex w ∈ NX(u) which is incomparable to u.

then AWS ← AWS \ {u};
20 else if u ∈ X then
21 for w ∈ N(u) ∩ AWS do
22 if w and v are incomparable. then

AWS ← AWS \ {w} ;
23 return AWS ;

index in WS (Y). From the definition of a weak-simplicial vertex,
there are two vertices in NY (u) which are incomparable in G[Y].
Since u is totally ordered in G[X], v must be in N≤2(u). Hence,
the statement holds. □

In what follows, we call a vertex v ∈ C (X) generates a child if
X ∪ {v} is a child of X. From Lemma 9 and Lemma 10, ECB can
do a DFS traversal on F (G).
Theorem 11. ECB enumerates all solutions.

In the remaining of this paper, we will show the time com-
plexity of ECB. There are two bottlenecks of ECB. (1) Some ver-
tices in C (X) does not generate a child and (2) the maintenance
of WS (X), AWS (X), and C (X) consumes time. A trivial bound
of redundant vertices in C (X) is O(∆2) since only vertices in
(AWS (X)∩N≤2(pv(X)) may not generate a child. To evaluate the
number of such redundant vertices precisely, we use a degeneracy
ordering. A graph G is k-degenerate if any induced subgraph of
G has a vertex with degree k or less. The degeneracy of a graph is
the smallest such number k. Note that k ≤ ∆. Matula et. al. [16]
showed that a k-degenerate graph G has a following vertex order-
ing: For each vertex v, the number of neighbors smaller than v is
at most k. This ordering is called a degeneracy ordering G (See
Fig. 2). By using a degeneracy ordering, we show that the num-
ber of redundant verticdes is at most k∆. In what follows, we fix
a degeneracy ordering and WS (X) and AWS (X) are sorted by a
degeneracy ordering.
Lemma 12. Let v be a vertex in G. Then,

∣∣∣{u < v | u ∈ N≤2(v)}
∣∣∣ ≤

k∆.

Proof. We consider N<v(v). Since |N<v(v)| is less than k, the
number of neighbors of N<v(v) is at most k∆.

10

9
8

6
2

7

3
5

1

4

12 11

An input graph G

10 9 862 7 3 51 412 11

A degeneracy ordering of G

Fig. 2 It is a degeneracy ordering of G. The degeneracy of G is three. In
this ordering,

∣∣∣N≤2
<v (v)
∣∣∣ is at most k∆ for any vertex v.

We next consider Nv<(v). The number of Nv<(v) is at most ∆.
Since u ∈ Nv<(v) is larger than v, a vertex in Nu<(u) is larger than
v. Hence, we consider vertices N<u(u). Since |N<u(u)| is at most k
for each u ∈ Nv<(v) and v is smaller than u,

∑
u∈Nv<(v) |N<v(u)| is at

most k∆ and the statement holds. □

Lemma 13. Let X be a solution. The number of vertices in C (X)
which do not generate a child is at most k∆.

Proof. Let v be a vertex in C (X). If pv(X) < v, then v gener-
ates a child. We assume that v < pv(X). Since v is in C (X),
v ∈ N≤2(pv(X)) and v is smaller than pv(X). From Lemma 12,
the number of such vertices is at most k∆. Hence, the statement
holds. □

Next, we show how to update a candidate set. From the defi-
nition of C (X), we can compute C (Y) in O(|C (Y)| + k∆) time if
we have AWS (Y). Moreover, if we have WS (X ∪ {v}), then we
can determine whether X ∪ {v} is a child of X or not in constant
time since WS (X ∪ {v}) is sorted. Hence, to obtain children of X,
computing AWS (X) and WS (X) dominate the computation time
of each iteration.

Here, we define some notations. For each v ∈ AWS (X) ∪
WS (X), L(X, v) is a vertex sequence (u1, u2, . . . , uk) such that
each ui is a smaller neighbor of v in G[X] and NX(ui) ⊆
NX(u j) holds for any i < j. In addition,

∪k
i=1 ui is equal

to NX(v) and L(X, u) stores each difference between N(ui) and
N(ui+1). We call L(X, v) a neighbor inclusion list of v. We
denote the set of neighbor inclusion lists as L(X). We de-
fine two vertex sets, DelW (X, v) = {u ∈ N(v)≤2 ∩ WS (X) |
u is not weak-simplicial in G[X ∪ {v}]} and DelA (X, v) = {u ∈
N(v)≤2 ∩ AWS (X) | u is not weak-simplicial in G[X ∪ {u, v}}, that
is, these vertex sets are sets of vertices that are removed from
WS (X) and AWS (X) after adding v to X.
Lemma 14. Let X be a solution, v = pv(X), and u be a vertex
in NX(v) ∩ WS (X). Then, u ∈ DelW (X, v) if and only if u has a
neighbor w in X which is not comparable to v.

Proof. If part: If u has a neighbor w in X which is incomparable
to v, then from the definition, u is not weak-simplicial.

Only if part: Let u be a vertex in DelW (X, v). Thus, there is a
pair of vertices w1 and w2 in NX∪{v}(u) which are incomparable. If
w1 or w2 is equal to v, then u has a neighbor w which is incompa-
rable with v. Hence, we assume that both w1 and w2 are not equal
to v. Since G[X ∪ {v}] is bipartite, w1 and w2 are not adjacent to v.
Hence, w1 and w2 are comparable in X ∪ {v} since after adding v
to X, the neighbors of w1 and w2 are not changed. However, this
contradicts w1 and w2 are incomparable. □

Let L(X, v, i) be the i-th vertex ui in L(X, v) and L(X, v, i<) be

4

IPSJ SIG Technical Report Vol.2019-AL-171 No.9
2019/1/30

ⓒ 2019 Information Processing Society of Japan

w2

w1

w3

u

v

3

2

1

w2

w1

w3

u

v

3

2

1

(A) When a vertex v is added, 
 u is a weak-simplicial

(B) When a vertex v is added, 
 u is not weak-simplicial

Fig. 3 Let X be a set of vertices {u, w1, w2, w3, 1, 2, 3}. In G[X], L(X, u) =
(w1, w2, w3). In case (A), a vertex u is still weak-simplicial. In case
(B), however, u is not weak-simplicial since N(v) includes only w1
and w3.

the set of vertices from u1 to ui in L(X, v).
Lemma 15. Let X be a solution, v = pv(X), and u be a vertex in
N2

X(v) ∩ WS (X). Then, u ∈ DelW (X, v) if and only if there exist
two integers i and j which satisfy the following three conditions:
i < j, L(X, u, i) ∈ NX∪{v}(v), and L(X, u, j) < NX∪{v}(v).

Proof. Let i and j be integers that satisfy the three condi-
tion. Since L(X, u, i) ∈ NX∪{v}(v) and L(X, u, j) < NX∪{v}(v) hold,
L(X, u, i) and L(X, u, j) are incomparable in G[X ∪ {v}]. Hence,
u ∈ DelW (X, v).

We prove the other direction. We assume that u ∈ DelW (X, v).
Hence, There is a pair of neighbors w1 and w2 of u such that
they are incomparable in X ∪ {v}. Without loss of generality,
NX(w1) ⊆ NX(w2) holds in X since u is in WS (X). Since w1 and
w2 are incomparable in X ∪ {v}, w1 is adjacent to v and w2 is not
adjacent to v. Here, let i and j be the positions of w1 and w2 in
L(X, u), respectively. From the definition of neighbor inclusion
list, j is larger than i since NX(w1) ⊆ NX(w2). Thus, the statement
holds. □

Lemma 16. Let X be a solution, v = pv(X), and u be a vertex
in N(v) ∩ AWS (X). Then, u ∈ DelA (X, v) if and only if u has a
neighbor w in X ∪ {u, v} which is incomparable to v.

Proof. We assume that u has a neighbor w which is incompara-
ble to v. From the definition of weak-simplicial, u is not a weak-
simplicial vertex in X ∪ {u, v}. We prove the other direction. We
assume that u ∈ DelA (X, v) hold. Since u ∈ DelA (X, v), There
exists a pair w1 and w2 of neighbors of u which are incomparable
in X ∪ {u, v}. If w1 or w2 is equal to v, then u has a neighbor w
which is incomparable to v. We next assume that w1 and w2 are
distinct from v. If v is adjacent to w1, w2, or both of them, then at
least one of them is incomparable to v in X∪{v} and the statement
holds. Otherwise, w1 and w2 are comparable in X∪{u, v} since w1

and w2 are comparable in G[X ∪ {v}]. It is contradiction to w1 and
w2 are incomparable and the statement holds. □

Lemma 17. Let X be a solution, v = pv(X), and u be a vertex
in N2(v) ∩ AWS (X). Then, u ∈ DelA (X, v) if and only if there
are two integers i and j which satisfies the following conditions:
i < j, L(X ∪ {v}, u, i) ∈ NX∪{v}(v), and L(X ∪ {v}, u, j) < NX∪{v}(v).

Proof. We assume that there are two integers i and j. Since
L(X ∪ {v}, u, i) is adjacent to v and L(X ∪ {v}, u, j) is not adja-
cent to v, L(X ∪ {v}, u, i) and L(X ∪ {v}, u, j) are incomparable.
Hence, u ∈ DelA (X, v). We prove the other direction. We assume
that u ∈ DelA (X, v). Hence, u has a pair of vertices w1 and w2

vw2w3 w1

u

54321

A comparison of v and L(X, u, i), where u is a weak-simplicial vertexFig. 4 A comparison between two neighbors of a weak-simplicial vertex. In
this case, we compare w1 with v. It can be done in O(|N(w1)|) time.
Next, we compare w2 with v. Since N(w1) is included in N(w2), this
comparison is done in O(|N(w2) \ N(w1)|) time.

which are incomparable in X ∪ {v}. Without loss of generality,
NX(w1) ⊆ NX(w2) hold. Since w1 and w2 are incomparable, w1 is
adjacent to v. Hence, a pair of integers i and j corresponding to
w1 and w2 satisfies all conditions and the statement holds. □

In the following lemmas, we show that WS (X) and AWS (X)
can be update if we have DelW (X, v) and DelA (X, v).
Lemma 18. Let X be a solution, Y be a child of X, and v = pv(Y).
Then, WS (Y) = (WS (X) \ DelW (X, v)) ∪ {v}.

Proof. If a vertex is weak-simplicial in Y , then this is also
weak-simplicial in any induced subgraph of Y . Thus, WS (Y) ⊆
(WS (X) \ DelW (X, v)) ∪ {v} holds. We next show WS (Y) ⊇
(WS (X) \DelW (X, v))∪ {v}. It is easily see that v ∈ WS (Y). Let u
be a vertex in WS (X) \ DelW (X, v). Since u < DelW (X, v), u is a
weak-simplicial in X ∪ {v}. Hence, u ∈ WS (Y) and the statement
holds. □

Lemma 19. Let X be a solution, Y be a child of X, and v be a
vertex pv(Y). Then, AWS (Y) = AWS (X) \ DelA (X, v).

Proof. Let u be a vertex in AWS (Y). We prove u is included
in AWS (X) \ DelA (X, v). From the definition of an addible
candidate set, u ∈ AWS (X) holds. If u ∈ DelA (X, v), then
u is not weak-simplicial in X ∪ {u, v}. Since u ∈ AWS (Y),
u < DelA (X, v). We prove the other direction. Let u be a ver-
tex in AWS (X) \ DelA (X, v). From the definition of AWS (X) and
DelA (X, v), u is weak-simplicial in X∪{v, u}. Hence, u ∈ AWS (Y)
and the statement holds. □

From Lemma 18 and Lemma 19, we can obtain WS (X ∪ {v})
and AWS (X ∪ {v}) by removing DelW (X, v) and DelA (X, v) from
WS (X) and AWS (X) and adding v to WS (X), respectively. Note
that by just removing redundant vertices, WS (Y) and AWS (Y)
can be easily sorted if WS (X) and AWS (X) were already sorted.
Next, we consider the time complexity of computing DelW (X, v)
and DelA (X, v).
Lemma 20. Let X be a solution and v be a vertex in C (X). Then,
we can compute DelW (X, v) in O(t∆) time.

Proof. We first compute vertices in WS (X) ∩ NX(v) that remain
in WS (X ∪ {v}). From Lemma 14, u is included in DelW (X, v)
if and only if u has a neighbor w which is incomparable to v.
We consider a pair of vertices w1 and v, where w1 = L(X, u, 1).
We can decide whether w1 and v are comparable in O(|NX(w1)|)
time. Moreover, we can decide whether w2 and v are comparable
in O(|NX(w2) \ NX(w1)|) time since NX(w1) ⊆ NX(w2) holds (See
Fig. 4). Hence, by scanning from the head to the tail of L(X, u),
we can check whether u ∈ DelW (X, v) or not in O(

∣∣∣N(w|NX (u)|)
∣∣∣)
5

IPSJ SIG Technical Report Vol.2019-AL-171 No.9
2019/1/30

ⓒ 2019 Information Processing Society of Japan

time in total. Since O(
∑

u∈NX (v)

∣∣∣N(w|NX (u)|)
∣∣∣) = O(t∆) holds from 8,

we can find NX(v) ∩ DelW (X, v) in O(t∆) total time.
We next compute vertices in WS (X) ∩ N2

X(v) that remain in
WS (X ∪ {v}). From Lemma 18 and Lemma 15, w < WS (X ∪ {v})
if and only if the ℓ smallest vertices of L(X, v) are contained
in NX(w) ∩ NX(v), where ℓ is the number of neighbors of w in
X ∪ {v}. By scanning vertices with distance two from v, and
from Lemma 8, this can be done in linear time in the size of∑
w∈N2

X (v) |NX(w) ∩ NX(v)|, that is,
∑

u∈NX (v) |NX(u)| = O(t∆). □

Lemma 21. Let X be a solution and v be a vertex in C (X). Then,
we can compute DelA (X, v) in O(∆2) time.

Proof. In the same fashion as Lemma 20, we can decide u ∈
AWS (X ∪ {v}) in O(∆) time. By applying the above procedure
for all vertices distance two from v, we can obtain all vertices
in DelA (X, v) in O(∆2) time since the number of edges can be
bounded in O(∆2). □

From Lemma 20 and Lemma 21, we can compute DelW (X, v)
and DelA (X, v) in O(t∆) and O(∆2) time for each v ∈ C (X), re-
spectively. Next, we show an update procedure for L(X ∪ {v})
from L(X).
Lemma 22. Let X be a solution, Y be a child of X, and v = pv(Y).
Then, we can compute L(Y) in O(∆2) time from L(X).

Proof. We first consider an update of L(Y, u) for each vertex
in u ∈ N(v) ∩ (AWS (Y) ∪ WS (Y)). From the definition of
L(X), neighbor inclusion lists that are modified in L(X) to ob-
tain L(Y) are contain vertices in N≤2(v). Since only the vertex
added to X is v, the neighbor inclusion lists of neighbors of v
are modified. Let wi = L(X, u, i) for 1 ≤ i ≤ |NX(u)|. We
can decide if NY (w1) ⊆ NY (v) or not in O(|w1|) time. As the
same strategy in Lemma 21, we can compare NY (v) and wi+1 in
O(|N(wi+1) \ N(wi)|) time. Hence, we can obtain L(Y, u) in O(∆)
time from L(X, u).

We next consider update of L(Y, u) for each u ∈ N2(v) ∩
(AWS (Y) ∪ WS (Y)). We separate NY (u) into two parts S 0 and
S 1, such that S 0 is the set of neighbors of v and S 1 is the remains.
We sort the vertices in S 0 and S 1 in the same ordering of L(X, u),
respectively. By concatenating S 0 onto the end of S 1, we can get
L(Y, u) in linear in the size of S 0, that is, |N(v) ∩ N(u)|. Hence,
the statement holds. □

From Lemma 10, Lemma 19, Lemma 18, and Lemma 22, we
can enumerate all children in O(|C (X)| t∆ + |ch(X)|∆2) time. In
the following theorem, we show the amortized time complexity
and space usage of ECB.
Theorem 23. ECB enumerates all solutions in amortized O(kt∆2)
time by using O(n∆) space, where n is the number of vertices and
m is the number of edges in an input graph.

Proof. In ECB, we use AWS (X), WS (X), andL(X) as data struc-
tures. WS (X) and AWS (X) demand linear space. In addition, a
list L(X, u) demands O(∆) space since L(X, u) store each differ-
ence between N(ui) and N(ui+1), where ui = L(X, u, i). Hence, the
total space usage of ECB is O(n∆) space. We consider the amor-
tized time complexity of ECB. From Lemma 11, ECB enumer-
ates all solutions. From Lemma 20, Lemma 21, and Lemma 22,

ECB computes all children and updates all data structures in
O(|C (X)| t∆+ |ch(X)|∆2) time. From Lemma 13, |C (X)| is at most
|ch(X)| + k∆. Hence, we need O((|ch(X)| + k∆)t∆ + |ch(X)|∆2)
time to generate all children. Note that O((|ch(X)| + k∆)t∆ +
|ch(X)|∆2) is bounded by O((|ch(X)| + kt)∆2). We consider the
total time to enumerate all solution. Since each iteration X needs
O((|ch(X)|+ kt)∆2) time, the total time is O(

∑
X∈S(|ch(X)|+ kt)∆2)

time. Since O(
∑

X∈S |ch(X)|∆2) is bounded by O(|S|∆2), the total
time is O(|S| kt∆2) time. Therefore, ECB enumerates all solution
in amortized O(kt∆2) time and the statement holds. □

Corollary 24. ECB enumerates all solutions in amortized con-
stant time by using O(n) space for constant degree graphs.

5. Conclusion
In this paper, we propose a vertex ordering CBEO by relaxing a

vertex ordering proposed by Uehara [17]. A bipartite graph B is
chordal bipartite if and only if B has CBEO, that is, this vertex or-
dering characterize chordal bipartite graphs. This ordering comes
from hypergraph acyclicity and the relation between β-acyclic hy-
pergraphs and chordal bipartite graphs. In addition, we also show
that a vertex v is weak-simplicial if and only if G[N≤2[v]] is bipar-
tite chain. By using these facts, we propose an amortized O(kt∆2)
time algorithm ECB based on the reverse search [2].

As future work, the following two enumeration problems are
interesting: Enumeration of bipartite induced subgraph for dense
graphs and enumeration of bipartite subgraph enumeration. For
dense graphs, ECB does not achieve an amortized linear time enu-
meration. If an input graph is biclique, then the time complexity
of ECB becomes O(nm) time. Hence, it is still open that there is an
amortized linear time enumeration algorithm for chordal bipartite
induced subgraph enumeration problem.

For chordal bipartite subgraph enumeration, it is not easy to ap-
ply the strategy of ECB for chordal bipartite subgraph enumeration
since ECB is based on CBEO. However, in subgraph enumeration
problem, we may be allowed to take much time generating all
children since the number of chordal bipartite subgraph is larger
than the number of induced chordal bipartite subgraph. Hence, an
amortized linear time enumeration of chordal bipartite subgraphs
is interesting.

References
[1] Ausiello, G., D’Atri, A. and Moscarini, M.: Chordality properties on

graphs and minimal conceptual connections in semantic data models,
J. Comput. Syst. Sci., Vol. 33, No. 2, pp. 179–202 (1986).

[2] Avis, D. and Fukuda, K.: Reverse search for enumeration, Discrete
Appl. Math., Vol. 65, No. 1, pp. 21–46 (1996).

[3] Beeri, C., Fagin, R., Maier, D. and Yannakakis, M.: On the desirabil-
ity of acyclic database schemes, J. ACM, Vol. 30, No. 3, pp. 479–513
(1983).

[4] Brandstadt, A., Spinrad, J. P. et al.: Graph classes: a survey, Vol. 3,
Siam (1999).

[5] Brault-Baron, J.: Hypergraph acyclicity revisited, ACM Comput.
Surv., Vol. 49, No. 3, p. 54 (2016).

[6] Conte, A., Grossi, R., Marino, A. and Versari, L.: Sublinear-Space
Bounded-Delay Enumeration for Massive Network Analytics: Maxi-
mal Cliques, Proc. ICALP 2016, LIPIcs, Vol. 55, Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, pp. 148:1–148:15 (online), DOI:
10.4230/LIPIcs.ICALP.2016.148 (2016).

[7] Daigo, T. and Hirata, K.: On generating all maximal acyclic subhy-
pergraphs with polynomial delay, In Proc. SOFSEM 2009, Springer,
pp. 181–192 (2009).

6

IPSJ SIG Technical Report Vol.2019-AL-171 No.9
2019/1/30

ⓒ 2019 Information Processing Society of Japan

[8] Duris, D.: Some characterizations of γ and β-acyclicity of hyper-
graphs, Inf. Process. Lett., Vol. 112, No. 16, pp. 617–620 (2012).

[9] Eppstein, D., Löffler, M. and Strash, D.: Listing All Maximal Cliques
in Large Sparse Real-World Graphs, J. Exp. Algorithmics, Vol. 18, pp.
3.1:3.1–3.1:3.21 (online), DOI: 10.1145/2543629 (2013).

[10] Gavril, F.: Algorithms for minimum coloring, maximum clique, mini-
mum covering by cliques, and maximum independent set of a chordal
graph, SIAM J. Comput., Vol. 1, No. 2, pp. 180–187 (1972).

[11] Huang, J.: Representation characterizations of chordal bipartite
graphs, J. Comb. Theory, Series B, Vol. 96, No. 5, pp. 673–683 (2006).

[12] Kanté, M. M., Limouzy, V., Mary, A. and Nourine, L.: Enumeration
of Minimal Dominating Sets and Variants, Proc. FCT 2011, Springer,
pp. 298–309 (2011).

[13] Kiyomi, M. and Uno, T.: Generating chordal graphs included in given
graphs, IEICE Trans. Inf. & Syst., Vol. 89, No. 2, pp. 763–770 (2006).

[14] Kurita, K., Wasa, K., Arimura, H. and Uno, T.: Efficient Enumera-
tion of Dominating Sets for Sparse Graphs, Proc. ISAAC 2018, pp.
8:1–8:13 (online), DOI: 10.4230/LIPIcs.ISAAC.2018.8 (2018).

[15] Kurita, K., Wasa, K., Uno, T. and Arimura, H.: Efficient enumera-
tion of induced matchings in a graph without cycles with length four,
IEICE Trans. Fundamentals, Vol. 101, No. 9, pp. 1383–1391 (2018).

[16] Matula, D. W. and Beck, L. L.: Smallest-last ordering and clustering
and graph coloring algorithms, J. ACM, Vol. 30, No. 3, pp. 417–427
(1983).

[17] Uehara, R.: Linear time algorithms on chordal bipartite and strongly
chordal graphs, Proc. ICALP 2002, Springer, pp. 993–1004 (2002).

[18] Wasa, K., Arimura, H. and Uno, T.: Efficient Enumeration of In-
duced Subtrees in a K-Degenerate Graph, Proc. ISAAC 2014, LNCS,
Vol. 8889, Springer, pp. 94–102 (online), DOI: 10.1007/978-3-319-
13075-0 8 (2014).

[19] Wasa, K. and Uno, T.: Efficient Enumeration of Bipartite Subgraphs
in Graphs, Proc. COCOON 2018 (Wang, L. and Zhu, D., eds.), Cham,
Springer International Publishing, pp. 454–466 (2018).

[20] Wasa, K., Uno, T., Hirata, K. and Arimura, H.: Polynomial delay and
space discovery of connected and acyclic sub-hypergraphs in a hyper-
graph, Proc. DS, Springer, pp. 308–323 (2013).

[21] Yannakakis, M.: The complexity of the partial order dimension prob-
lem, SIAM J. on Algebraic Discrete Methods, Vol. 3, No. 3, pp. 351–
358 (1982).

[22] 和佐州洋,有村博紀,宇野毅明 and平田耕一: 二部グラフ中に含まれ
る弦二部誘導グラフの列挙,研究報告アルゴリズム (AL), Vol. 2015,
No. 5, pp. 1–8 (2015).

7

IPSJ SIG Technical Report Vol.2019-AL-171 No.9
2019/1/30

ⓒ 2019 Information Processing Society of Japan

