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Reconfiguring spanning and induced subgraphs
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Abstract: Subgraph reconfiguration is a family of problems focusing on the reachability of the solution
space in which feasible solutions are subgraphs, represented either as sets of vertices or sets of edges, satis-
fying a prescribed graph structure property. Although there has been previous work that can be categorized
as subgraph reconfiguration, most of the related results appear under the name of the property under
consideration; for example, independent set, clique, and matching. In this paper, we systematically clarify
the complexity status of subgraph reconfiguration with respect to graph structure properties.

1. Introduction

Combinatorial reconfiguration [5], [6], [12] studies the

reachability/connectivity of the solution space formed by

feasible solutions of an instance of a search problem. More

specifically, consider a graph such that each node in the

graph represents a feasible solution to an instance of a search

problem P , and there is an edge between nodes representing

any two feasible solutions that are “adjacent,” according to

a prescribed reconfiguration rule A; such a graph is called

the reconfiguration graph for P and A. In the reachability

problem for P and A, we are given source and target so-

lutions to P , and the goal is to determine whether or not

there is a path between the two corresponding nodes in the

reconfiguration graph for P and A. We call a desired path

a reconfiguration sequence between source and target so-

lutions, where a reconfiguration step from one solution to

another corresponds to an edge in the path.

1.1 Subgraph reconfiguration

In this paper, we use the term subgraph reconfigura-

tion to describe a family of reachability problems that take

subgraphs (more accurately, vertex subsets or edge subsets

of a given graph) as feasible solutions. Each of the indi-

vidual problems in the family can be defined by specifying

the node set and the edge set of a reconfiguration graph, as
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Fig. 1 A reconfiguration sequence ⟨E0, E1, E2, E3⟩ in the edge
variant under the TJ rule (also under the TS rule) with
the property “a graph is a path,” where the edges forming
solutions are depicted by thick lines.

follows. (We use the terms node for reconfiguration graphs

and vertex for input graphs.)

Nodes of a reconfiguration graph. The set of feasi-

ble solutions (i.e., subgraphs) can be defined in terms of a

specified graph structure property Π which subgraphs must

satisfy; for example, “a graph is a tree,” “a graph is edgeless

(an independent set),” and so on. By the choice of how to

represent subgraphs, each specific problem in the family can

be categorized into one of three variants. (See also Table 1.)

If a subgraph is represented as an edge subset, which we will

call the edge variant, then the subgraph formed (induced)

by the edge subset must satisfy Π. For example, Fig. 1 il-

lustrates four subgraphs represented as edge subsets, where

Π is “a graph is a path.” On the other hand, if a sub-

graph is represented as a vertex subset, we can opt either to

require that the subgraph induced by the vertex subset sat-

isfies Π or that the subgraph induced by the vertex subset

contains at least one spanning subgraph that satisfies Π; we

will refer to these as the induced variant and spanning vari-

ant, respectively. For example, if Π is “a graph is a path,”

then in the induced variant, the vertex subset must induce

a path, whereas in the spanning variant, the vertex subset is

feasible if its induced subgraph contains at least one Hamil-

tonian path. Figure 2 illustrates feasible vertex subsets of

the induced variant and spanning variant. In the figure, the

vertex subset V ′
1 is feasible in the spanning variant, but is
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Table 1 Subgraph representations and variants

Subgraph representations Variant names Known reachability problems

edge subset edge spanning tree [6]
matching [6], [11], and b-matching [11]
clique [7]
independent set [6], [8]

vertex subset induced induced forest [10]
induced bipartite [10]
induced tree [13]

spanning clique [7]
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Fig. 2 Reconfiguration sequences ⟨V0, V1, V2, V3, V4⟩ in the in-
duced variant under the TJ rule and ⟨V ′

0 , V
′
1 , V

′
2 ⟩ in the

spanning variant under the TJ rule with the property “a
graph is a path,” where the vertices forming solutions are
depicted by colored circles, and the subgraphs satisfying
the property by thick lines.

not feasible in the induced variant, because it contains a

spanning path but does not induce a path. As can be seen

by this simple example, in the spanning variant, we need to

pay attention to the additional complexity of finding a span-

ning subgraph and the complications resulting from the fact

that the subgraph induced by the vertex subset may contain

more than one spanning subgraph which satisfies Π.

Edges of a reconfiguration graph. Since we represent

a feasible solution by a set of vertices (or edges) in any vari-

ant, we can consider that tokens are placed on each vertex

(resp., edge) in the feasible solution. Then, in this paper,

we mainly deal with two well-known reconfiguration rules,

called the token-jumping (TJ) [8] and token-sliding (TS)

rules [2], [4], [8]. In the former, a token can move to any

other vertex (edge) in a given graph, whereas in the latter it

can move only to an adjacent vertex (adjacent edge, that is

sharing a common vertex.) For example, Fig. 1 and Fig. 2

illustrate reconfiguration sequences under the TJ rule for

each variant. Note that the sequence in Fig. 1 can also be

considered as a sequence under the TS rule. In the recon-

figuration graph, two nodes are adjacent if and only if one

of the two corresponding solutions can be obtained from

the other one by a single move of one token that follows

the specified reconfiguration rule. Therefore, all nodes in a

connected component of the reconfiguration graph represent

subgraphs having the same number of vertices (edges).

We note in passing that since in most cases we wish to re-

tain the same number of vertices and/or edges, we rarely use

the token-addition-and-removal (TAR) rule [6], [8], where we

can add or remove a single token at a time, for subgraph

reconfiguration problems.

1.2 Previous work

Although there has been previous work that can be cat-

egorized as subgraph reconfiguration, most of the re-

lated results appear under the name of the property Π under

consideration. Accordingly, we can view reconfiguration of

independent sets [6], [8] as the induced variant of subgraph

reconfiguration such that the property Π is “a graph is

edgeless.” Other examples can be found in Table 1. We here

explain only known results which are directly related to our

contributions.

Reconfiguration of cliques can be seen as both the span-

ning and the induced variant; the problem is PSPACE-

complete under any rule, even when restricted to perfect

graphs [7]. Indeed, for this problem, the rules TAR, TJ,

and TS have all been shown to be equivalent from the view-

point of polynomial-time solvability. It is also known that

reconfiguration of cliques can be solved in polynomial time

for several well-known graph classes [7].

Wasa et al. [13] considered the induced variant under the

TJ and TS rules with the property Π being “a graph is a

tree.” They showed that this variant under each of the TJ

and TS rules is PSPACE-complete, and that under the TJ

rule is W[1]-hard when parameterized by both the size of a

solution and the length of a reconfiguration sequence. They

also gave a fixed-parameter algorithm when parameterized

by both the size of a solution and the maximum degree of

an input graph, under both the TJ and TS rules. In closely

related work, Mouawad et al. [10] considered the induced

variants of subgraph reconfiguration under the TAR

rule with the properties Π being either “a graph is a forest”

or “a graph is bipartite.” They showed that these variants

are W[1]-hard when parameterized by the size of a solution

plus the length of a reconfiguration sequence.

1.3 Our contributions

In this paper, we study the complexity of subgraph re-

configuration under the TJ and TS rules. (Our results

are summarized in Table 2, together with known results,

where an (i, j)-biclique is a complete bipartite graph with

the bipartition of i vertices and j vertices.) As mentioned

above, because we consider the TJ and TS rules, it suffices

to deal with subgraphs having the same number of vertices

or edges. Subgraphs of the same size may be isomorphic

for certain properties Π, such as “a graph is a path” and

“a graph is a clique,” because there is only one choice of a

path or a clique of a particular size. On the other hand, for
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Table 2 Previous and new results

Property Π Edge Induced Spanning
variant variant variant

path NP-hard (TJ) PSPACE-c. (TJ, TS) PSPACE-c. (TJ, TS)
[Theorem 2] [Theorems 7] [Theorems 7]

cycle P (TJ, TS) PSPACE-c. (TJ, TS) PSPACE-c. (TJ, TS)
[Theorem 3] [Theorems 7] [Theorems 7]

tree P (TJ) PSPACE-c. (TJ, TS) P (TJ)
[Theorem 6] [13] PSPACE-c. (TS)

[Theorems 9, 8]
(i, j)-biclique P (TJ, TS) PSPACE-c. for i = j (TJ) NP-hard for i = j (TJ)

[Theorem 5] PSPACE-c. for fixed i (TJ) P for fixed i (TJ)
[Theorem 10] [Theorems 11, 12]

clique P (TJ, TS) PSPACE-c. (TJ, TS) PSPACE-c. (TJ, TS)
[Theorem 4] [7] [7]

diameter PSPACE-c. (TS) PSPACE-c. (TS)
two [Theorem 13] [Theorem 13]

any XP for solution XP for solution XP for solution
property size (TJ, TS) size (TJ, TS) size (TJ, TS)

[Theorem 1] [Theorem 1] [Theorem 1]

the property “a graph is a tree,” there are several choices

of trees of a particular size. (We will show an example in

Section 3 with Fig. 4.)

As shown in Table 2, we systematically clarify the com-

plexity of subgraph reconfiguration for several fun-

damental graph properties. In particular, we show that

the edge variant under the TJ rule is computationally in-

tractable for the property “a graph is a path” but tractable

for the property “a graph is a tree.” This implies that

the computational (in)tractability does not follow directly

from the inclusion relationship of graph classes required as

the properties Π; one possible explanation is that the path

property implies a specific graph, whereas the tree property

allows several choices of trees, making the problem easier.

We omitted proofs for the claims marked with (*) from

this extended abstract.

1.4 Preliminaries

Although we assume throughout the paper that an input

graph G is simple, all our algorithms except for Theorem 1

can be easily extended, with small modifications, to graphs

having multiple edges. We denote by (G,Vs, Vt) an instance

of a spanning variant or an induced variant whose input

graph is G and source and target solutions are vertex sub-

sets Vs and Vt of G. Similarly, we denote by (G,Es, Et)

an instance of the edge variant. We may assume without

loss of generality that |Vs| = |Vt| holds for the spanning and

induced variants, and |Es| = |Et| holds for the edge variant;
otherwise, the answer is clearly no since under both the TJ

and TS rules, all solutions must be of the same size.

2. General algorithm

In this section, we give a general XP algorithm when the

size of a solution (that is, the size of a vertex or edge subset

that represents a subgraph) is taken as the parameter. For

notational convenience, we simply use element to represent

a vertex (or an edge) for the spanning and induced variants

(resp., the edge variant), and candidate to represent a set

of elements (which does not necessarily satisfy the property

Π). Furthermore, we define the size of a given graph as the

number of elements in the graph.

Theorem 1 (*). Let Π be any graph structure property

such that we can check if a candidate of size k satisfies

Π in f(k) time, where f(k) is a computable function de-

pending only on k. Then, all of the spanning, induced,

and edge variants under the TJ or TS rules can be solved

in time O(n2kk + nkf(k)), where n is the size of a given

graph and k is the size of a source (and target) solution.

Furthermore, a shortest reconfiguration sequence between

source and target solutions can be found in the same time

bound, if it exists.

3. Edge variants

In this section, we study the edge variant of subgraph

reconfiguration for the properties of being paths, cycles,

cliques, bicliques, and trees.

We first consider the property “a graph is a path” under

the TJ rule.

Theorem 2. The edge variant of subgraph reconfigu-

ration under the TJ rule is NP-hard for the property “a

graph is a path.”

Proof. We give a polynomial-time reduction from the

Hamiltonian path problem. Recall that a Hamiltonian

path in a graph G is a path that visits each vertex of G ex-

actly once. Given a graph G and two vertices s, t ∈ V (G)

of G, the NP-complete problem Hamiltonian path is to

determine whether or not G has a Hamiltonian path which

starts from s and ends in t [3].

For an instance (G, s, t) of Hamiltonian path, we con-

struct a corresponding instance (G′, Es, Et) of our prob-

lem, as follows. (See also Fig. 3.) Let n = |V (G)|. We

first add two new vertices v and x to G with two new

edges e1 = xv and e2 = vs. We then add two paths

Ps = ⟨s1, s2, . . . , sn+1, x⟩ and Pt = ⟨t1, t2, . . . , tn+1, x⟩,
where s1, s2, . . . , sn+1 and t1, t2, . . . , tn+1 are distinct new

vertices. Each of Ps and Pt consists of n + 1 edges; we de-

note by es1, e
s
2, . . . , e

s
n+1 the edges s1s2, s2s3, . . . , sn+1x

in Ps, respectively, and by et1, e
t
2, . . . , e

t
n+1 the edges
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Fig. 3 Reduction to the edge variant under the TJ rule for the
property “a graph is a path.”

t1t2, t2t3, . . . , tn+1x in Pt, respectively. We finally add

a new vertex w with an edge e3 = tw, completing the con-

struction of G′. We then set Es = {es1, es2, . . . , esn+1, e1, e2}
and Et = {et1, et2, . . . , etn+1, e1, e2}; these edge subsets

clearly form paths in G′. We have thus constructed our

corresponding instance (G′, Es, Et) in polynomial time.

We now prove that an instance (G, s, t) of Hamiltonian

path is a yes-instance if and only if the corresponding in-

stance (G′, Es, Et) is a yes-instance.

To prove the only-if direction, we first suppose that G has

a Hamiltonian path P starting from s and ending in t. Then,

we construct an actual reconfiguration sequence from Es to

Et using the edges in P . Notice that P consists of n − 1

edges. Thus, we first move the n− 1 edges es1, e
s
2, . . . , e

s
n−1

in Es to the edges in P one by one, and then move esn to

e3. Next, we move esn+1 to etn+1, and then move the edges

in E(P ) ∪ {e3} to etn, e
t
n−1, . . . , e

t
1 one by one. By the con-

struction of G′, we know that each of the intermediate edge

subsets forms a path in G′, as required.

We now prove the if direction by supposing that there ex-

ists a reconfiguration sequence ⟨Es = E0, E1, . . . , Eℓ = Et⟩.
Let Eq be the first edge subset in the sequence such that

E(Pt) ∩ Eq ≠ ∅; we claim that Eq contains a Hamiltonian

path in G. First, notice that the edge in E(Pt)∩Eq is etn+1;

otherwise the subgraph formed by Eq is disconnected. Since

|Eq| = |Es| = n + 3 and |E(Ps)| = n + 1, we can observe

that Eq contains no edge in Ps; otherwise the degree of x

would be three, or Eq would form a disconnected subgraph.

Therefore, the n + 2 edges in Eq \ {etn+1} must be chosen

from E(G) ∪ {e1, e2, e3}. Since |V (G)| = n and Eq must

form a path in G′, we know that Eq \ {etn+1} consists of

e1, e2, e3 and n−1 edges in G. Thus, Eq \{etn+1, e1, e2, e3}
forms a Hamiltonian path in G starting from s and ending

in t, as required.

We now consider the property “a graph is a cycle,” as

follows.

Theorem 3 (*). The edge variant of subgraph recon-

figuration under each of the TJ and TS rules can be

solved in linear time for the property “a graph is a cycle.”

The same statement holds for the property “a graph is

a clique,” and we obtain the following theorem. We note

that, for this property, both induced and spanning variants

(i.e., when solutions are represented by vertex subsets) are

PSPACE-complete under any rule [7].

Theorem 4 (*). The edge variant of subgraph recon-

figuration under each of the TJ and TS rules can be

solved in linear time for the property “a graph is a clique.”

We next consider the property “a graph is an (i, j)-

E
s 
= E

0
E
1

E
2 
= E

t

Fig. 4 Reconfiguration sequence ⟨E0, E1, E2⟩ in the edge variant
under the TJ rule with the property “a graph is a tree.”

biclique,” as follows.

Theorem 5 (*). The edge variant of subgraph recon-

figuration under each of the TJ and TS rules can be

solved in polynomial time for the property “a graph is an

(i, j)-biclique” for any pair of positive integers i and j.

We finally consider the property “a graph is a tree” un-

der the TJ rule. As we have mentioned in the introduction,

for this property, there are several choices of trees even of

a particular size, and a reconfiguration sequence does not

necessarily consist of isomorphic trees (see Fig. 4). This

“flexibility” of subgraphs may yield the contrast between

Theorem 2 for the path property and the following theorem

for the tree property.

Theorem 6. The edge variant of subgraph reconfigu-

ration under the TJ rule can be solved in linear time for

the property “a graph is a tree.”

Proof. Suppose that (G,Es, Et) is a given instance. We

may assume without loss of generality that |Es| = |Et| ≥ 2;

otherwise |Es| = |Et| ≤ 1 holds, and hence the instance

is trivially a yes-instance. We will prove below that any in-

stance with |Es| = |Et| ≥ 2 is a yes-instance if and only if all

the edges in Es and Et are contained in the same connected

component of G. Note that this condition can be checked

in linear time.

We first prove the only-if direction of our claim. Since

|Es| = |Et| ≥ 2 and subgraphs always must retain a

tree structure (more specifically, they must be connected

graphs), observe that we can exchange edges only in the

same connected component of G. Thus, the only-if direc-

tion follows.

To complete the proof, it suffices to prove the if direction

of our claim. For notational convenience, for any feasible

solution Ei we denote by Ti the tree represented by Ei, and

by Vi the vertex set of Ti. In this direction, we consider the

following two cases: (a) Vs ∩ Vt = ∅, and (b) Vs ∩ Vt ≠ ∅.
We consider Case (a), that is, Vs ∩ Vt = ∅. Since Ts and

Tt are contained in one connected component of G, there ex-

ists a path ⟨v0, v1, . . . , vℓ⟩ in G such that v0 ∈ Vs, vℓ ∈ Vt

and vi /∈ Vs ∪ Vt for all i ∈ {1, 2, . . . , ℓ − 1}. Since Ts is a

tree, it has at least two degree-one vertices. Let vs be any

degree-one vertex in Vs \ {v0}, and let es be the leaf edge of

Ts incident to vs. Then, we can exchange es with v0v1, and

obtain another tree represented by the resulting edge subset

(Es ∪{v0v1})\{es}. By repeatedly applying this operation

along the path ⟨v1, v2, . . . , vℓ⟩, we can obtain a solution Ek

such that Vk ∩ Vt = {vℓ} ̸= ∅; this case will be considered

below.

We finally consider Case (b), that is, Vs∩Vt ≠ ∅. Consider
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the graph (Vs ∩ Vt, Es ∩ Et). Then, (Vs ∩ Vt, Es ∩ Et) is a

forest, and let G′ = (V ′, E′) be a connected component (i.e.,

a tree) of (Vs ∩ Vt, Es ∩ Et) whose edge set is of maximum

size. We now prove that there is a reconfiguration sequence

between Es and Et by induction on k = |Es\E′| = |Et\E′|.
If k = 0, then Es = E′ = Et and hence the claim holds.

We thus consider the case where k > 0 holds. Since G′ is

a proper subtree of Tt, there exists at least one edge et in

Et \E′ such that one endpoint of et is contained in V ′ and

the other is not. We claim that there exists an edge es in

Es \ E′ which can be moved into et, that is, the subgraph

represented by the resulting edge subset (Es ∪ {et}) \ {es}
forms a tree. If both endpoints of et are contained in Vs

(not just V ′), Es ∪ {et} contains a cycle; let C ⊆ Es ∪ {et}
be the edge set of the cycle. Since the subgraph Tt has no

cycle, there exists at least one edge in C \Et, and we choose

one of them as es. On the other hand, if just one endpoint

of et is contained in Vs, then we choose a leaf edge of Ts in

Es\E′ as es. Note that there exists such a leaf edge since G′

is a proper subtree of Ts. From the choice of es and et, we

know the subgraph represented by the resulting edge subset

(Es ∪{et}) \ {es} forms a tree; let Ek = (Es ∪{et}) \ {es}.
Furthermore, since Ek ∩Et includes E

′ ∪ {et} and the sub-

graph formed by E′∪{et} is connected, the subgraph formed

by Ek ∩ Et has a connected component whose edge set has

size at least |E′|+1. Therefore, we can conclude that Ek is

reconfigurable into Et by the induction hypothesis.

4. Induced and spanning variants

In this section, we deal with the induced and spanning

variants where subgraphs are represented as vertex subsets.

4.1 Path and cycle

The following is the main theorem of this subsection.

Theorem 7 (*). Both the induced and spanning vari-

ants of subgraph reconfiguration under the TJ and

TS rules are PSPACE-complete for each of the properties

“a graph is a path” and “a graph is a cycle.”

To prove the theorem, we give polynomial-time reduc-

tions from the shortest path reconfiguration prob-

lem, which can be seen as a subgraph reconfiguration

problem under the TJ rule. This problem is known to be

PSPACE-complete [1].

4.2 Tree

Wasa et al. [13] showed that the induced variant under

the TJ and TS rules is PSPACE-complete for the property

“a graph is a tree.” In this subsection, we show that the

spanning variant for this property is also PSPACE-complete

under the TS rule, while it is linear-time solvable under the

TJ rule.

We first give the hardness result.

Theorem 8 (*). The spanning variant of subgraph re-

configuration under the TS rule is PSPACE-complete

for the property “a graph is a tree.”

In contrast to Theorem 8, the spanning variant under the

TJ rule is solvable in linear time.

Theorem 9 (*). The spanning variant of subgraph re-

configuration under the TJ rule can be solved in linear

time for the property “a graph is a tree.”

4.3 Biclique

For the property “a graph is an (i, j)-biclique,” we show

that the induced variant under the TJ rule is PSPACE-

complete even if i = j holds, or i is fixed. On the other

hand, the spanning variant under the TJ rule is NP-hard

even if i = j holds, while it is polynomial-time solvable

when i is fixed.

We first give the following theorem.

Theorem 10 (*). For the property “a graph is an (i, j)-

biclique,” the induced variant of subgraph reconfigura-

tion under the TJ rule is PSPACE-complete even if i = j

holds, or i is any fixed positive integer.

To show the theorem, we give a polynomial-time reduction

from the maximum independent set reconfiguration

problem [14], which can be seen as a subgraph reconfig-

uration problem. This problem is known to be PSPACE-

complete under the TJ and TS rules [14].

We next give the following theorem.

Theorem 11 (*). For the property “a graph is an (i, j)-

biclique,” the spanning variant of subgraph reconfigu-

ration under the TJ rule is NP-hard even if i = j holds.

The theorem can be shown by a polynomial-time reduc-

tion from the balanced complete bipartite subgraph

problem, which is known to be NP-hard [3].

We now give a polynomial-time algorithm solving the

spanning variant for a fixed constant i ≥ 1.

Theorem 12. For the property “a graph is an (i, j)-

biclique,” the spanning variant of subgraph reconfig-

uration under the TJ rule is solvable in polynomial time

when i ≥ 1 is a fixed constant.

We give such an algorithm as a proof of Theorem 12. We

will refer to the i vertices in the bounded-size part of the

biclique as hubs, and the j vertices in the other part as ter-

minals. Let H ⊆ V (G) be an arbitrary vertex subset such

that |H| = i. We denote by C(H) ⊆ V (G) the set of all

common neighbors of H in G, i.e., C(H) =
∩

v∈H{u ∈
V (G) | uv ∈ E(G)}. We write C[H] = C(H) ∪ H. We

denote by S(H) the set of all solutions that contain (i, j)-

bicliques with the hub set H. We know that S(H) ̸= ∅ if

and only if |C(H)| ≥ j holds; if |C(H)| ≥ j, then H∪T is in

S(H) for any subset T ⊆ C(H) such that |T | = j. We also

observe that W ⊆ C[H] holds for any solution W ∈ S(H).

It should be noted that a solution in the spanning variant

is simply a vertex subset V ′ of V (G), and there is no re-

striction on how to choose a hub set from V ′. (For example,

if a solution V ′ induces a clique of size five, then there are

ten ways to choose a hub set from V ′ for (2, 3)-bicliques.)

Therefore, S(H)∩S(H ′) ≠ ∅ may hold for distinct hub sets

H,H ′.

We describe two key observations in the following. The
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first one is that for a hub set H, any two solutions W,W ′ ∈
S(H) are reconfigurable because we can always move ver-

tices in W \ W ′ into ones in W ′ \ W one by one. The

second one is that for any two distinct hub sets Ha and

Hb, if there exist Va ∈ S(Ha) and Vb ∈ S(Hb) such that

|Va \ Vb| = |Vb \ Va| ≤ 1 (this means that Va and Vb are re-

configurable by one reconfiguration step, or Va = Vb), then

all pairs of solutions in S(Ha) ∪ S(Hb) are reconfigurable.

Based on these observations, we construct an auxiliary

graph A for a given instance (G,Vs, Vt), as follows. Each

node in A corresponds to a set H of i vertices (hubs) in the

input graph G such that |C(H)| ≥ j; we represent a node

in A simply by the corresponding hub set H. Two nodes

Ha and Hb are adjacent in A if there exist Va ∈ S(Ha) and

Vb ∈ S(Hb) such that |Va \ Vb| = |Vb \ Va| ≤ 1. We first

prove the following lemma.

Lemma 1 (*). Let Hs and Ht be any two nodes in A such

that Vs ∈ S(Hs) and Vt ∈ S(Ht), respectively. Then, there

is a reconfiguration sequence between Vs and Vt if and only

if there is a path in A between Hs and Ht.

Our algorithm first constructs an auxiliary graph A, and

checks whether or not there is a path between Hs and

Ht; the correctness of the algorithm follows directly from

Lemma 1. However, it is not so obvious how to construct the

auxiliary graph A in the desired running time. Observe that

we can construct the node set of A in the desired running

time, because we just need to check whether |C(H)| ≥ j or

not for any vertex subset H ⊆ V (G) of exactly i vertices.

To construct the edge subset, we give the following lemma.

Lemma 2 (*). Any two nodes Ha and Hb in A are joined

by an edge in A if and only if all the following four condi-

tions hold:

(a) |C[Ha] ∩ C[Hb]| ≥ i+ j − 1;

(b) |Ha \ C[Hb]| ≤ 1;

(c) |Hb \ C[Ha]| ≤ 1; and

(d) |Ha ∪Hb| ≤ i+ j + 1.

Finally, we give the following lemma, which completes the

proof of Theorem 12.

Lemma 3 (*). The algorithm runs in O(n2i+1) time.

4.4 Diameter-two graph

In this subsection, we consider the property “a graph has

diameter at most two.” Note that the induced and spanning

variants are the same for this property.

Theorem 13 (*). Both induced and spanning variants

of subgraph reconfiguration under the TS rule are

PSPACE-complete for the property “a graph has diameter

at most two.”

5. Conclusions

The work in this paper initiates a systematic study of

subgraph reconfiguration. Although we have identi-

fied graph structure properties which are harder for the in-

duced variant than the spanning variant, it remains to be

seen whether this pattern holds in general. For the general

case, questions of the roles of diameter and the number of

subgraphs satisfying the property are worthy of further in-

vestigation. Another obvious direction for further research

is an investigation into the fixed-parameter complexity of

subgraph reconfiguration.
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