
Semi-online three-dimensional container loading

problems

Hiroo Saito1,a) Yukio Asari1,b)

概要：We consider an online version of the three-dimensional container loading problem. In the online

case sizes of the future items are not known in advance and items must be packed in the container

right after their arrival. We introduce semi-online container loading problems relaxing one of the online

conditions and propose deepest-bottom-left based Monte Carlo Tree Search and heuristics that sorts

temporary buffered items, respectively. The computational results show that the algorithms improve the

density (volume utilization) against the genuine online case.

1. Introduction

The container loading problem, also known as the three-

dimensional packing problem, is a widely-studied NP-hard

combinatorial optimization problem [5]. This problem is a

modelling of packing small items into a container without

overlap as much as possible and there are many applica-

tions in logistics and supply chains. There are numerous

problem variants (see a survey [13]) for practical applica-

tion such as item orientation, item balance, weight, mul-

tiple container, priority of items, etc.

This paper deals with an online version of the single

container loading problem for density (volume utilization)

maximization. Such problem is worthwhile for the situa-

tion where real-time processing is necessary. The online

container loading problem has the following conditions

which are different from the ordinary static or offline one,

and they make the problem difficult to optimize.

(1) Sizes of the future items are not known in advance.

(2) Items must be packed in the container right after their

arrival.

(3) Each item arrives one by one.

(4) Skip or pass an item is prohibited (if we cannot pack

the current arrived item in the container, then termi-

1 Infrastructure Systems and Development Center,
Toshiba Infrastructure Systems & Solutions Corporation,
1, Komukai-Toshiba-cho, Saiwai-ku, Kawasaki 212-8581,
Japan

a) hiroo4.saito@toshiba.co.jp
b) yukio.asari@toshiba.co.jp

nate).

(5) Items are irrevocable (we cannot move afterwards the

items in the container once packed).

There are similar conditions in the online bin packing

problem where the number of bins is minimized [4]. The

paper [7] deals with the multiple container case and pro-

posed a heuristics approach. They proposed an empty

maximal spaces based heuristics choosing a container

among the containers that has the largest fill ratio. How-

ever, it is not trivial to apply their approach because we

deal with the single container case here.

We propose semi-online container loading problems re-

laxing one of the conditions (1) and (2). More precisely,

we consider the problem where one of the following con-

ditions holds.

(1’) Sizes of the future items are known in advance (let k

be the number of the known future items),

(2’) There is a buffer which temporary stores small num-

ber of input items (let b be the capacity of the buffer).

Thanks to these relaxed conditions, searching packing po-

sitions according to the future input item sizes or choosing

an item from the buffer is possible which would be helpful

to improve density.

Figure 1 is an illustration of the online and semi-online

container loading problems where n is the number of in-

put items. We define the semi-online problem P (k, b), the

precise definition is given in the next section, and P (0, 0)

becomes the (genuine) online problem. In particular, we

deal with the following two problems in this paper.

1

IPSJ SIG Technical Report Vol.2019-AL-171 No.3
2019/1/29

ⓒ 2019 Information Processing Society of Japan

(1) The problem P (n − 1, 0): every input size is known

in advance and the buffer is not available, namely

k = n− 1 and b = 0.

(2) The problem P (0, b): the future input sizes are not

known in advance and the buffer is available, though

its capacity is limited, namely k = 0 and b ≥ 1.

We propose a Monte Carlo Tree Search (MCTS) based

heuristics for P (n−1, 0) and an online version of deepest-

bottom-left position based heuristics for P (0, b), respec-

tively. And we show that the relaxed conditions improve

density by computational results.

The rest of this paper is organized as follow. In Sec-

tion 2 we describe our problems in detail. In Section 3

we propose a Monte Carlo Tree Search and an online ver-

sion of deepest-bottom-left position based heuristics. In

Section 4 we show a computational experiments of our

algorithms for data randomly generated from an actual

logistics items. Finally, we give conclusions in Section 5.

2. Problem description

We define a semi-online container loading problem

P (k, b), which is an extension of the online one.

Let (wi, li, hi) be the size of an item i = 1, 2, . . . , n,

and (W,L,H) be the size of the single container. The

shapes of item and container are cube. We put items in

the container without overlap and within the container.

And the objective is to maximize their density (volume

utilization). We assume that each item is provided one by

one from an item set whose output will be input of our

system.

It is noteworthy that our system has buffer which is a

storage for items and is a relatively small space to tempo-

rary store the input items. Our system also has the size

data list which stores item size data. Given a nonnegative

integer b for the capacity of the buffer and a nonnega-

tive integer k for the length of the list of future input size

data, we describe our problem in the form of procedure as

follows.

Online container loading problem P (k, b):

Step 1:Initialize the buffer B := ∅ and the size data

S := ∅.
Step 2:If the item set is empty, then goto Step 6.

Step 3:Receive an input item i.

Step 4:Get sizes of the current and the following k items

(n− i items when i ≥ n− k) to update the size data

S := S ∪ {(wi, li, hi), . . . , (wi+k, li+k, hi+k)}.
Step 5:If the number of items in the buffer is not full

(|B| < b), then put the item in the buffer B := B∪{i}

and goto Step 2.

Step 6:Choose an item j from the buffer and the current

one (j ∈ B ∪ {i}) and pack it in the container by an

algorithm using the size data S. If such a solution

does not exist, then exit.

Step 7:Update the buffer B := B ∪ {i} \ {j} and goto

Step 2 for the next item.

Note that we cannot skip any item. More precisely,

each item must be packed into a container and terminate

unless we can, as in Step 6. We also remark that the

order of items is fixed or limited due to the buffer con-

straints. Hence, a technique such as sorting items with

respect to their sizes, which is a common heuristics in

static container loading problem, is not always applica-

ble. For example, we have to pack an item immediately

when there is no buffer (b = 0). We assume that the size

of the buffer (not the capacity b but its volume) is large

enough to store any b items.

The problem P (k, b) contains several situations. For ex-

ample, P (n−1, n) and P (0, 0) are considered as the static

and online container loading problems, respectively. We

deal with the problem P (n−1, 0) and P (0, b). When these

relaxed problems are acceptable in actual application, we

have an improve of density.

3. Algorithms

We propose algorithms to choose an item and pack it

in the container in Step 6 of the problem P (b, k) in the

previous section.

Since our algorithms are based on the well-known

deepest-bottom-left (DBL) strategy [9], [10], [12], which is

an extension of two dimensional bottom-left strategy [3],

we give a brief description of it. Figure 2 is our coordinate

system where a corner of the container is located at the

origin. We define the position of an item by its corner clos-

est to the origin. Let positions of an item p = (x, y, z) and

q = (x′, y′, z′) and p is called more deep-bottom-left than

q if (z < z′) or (z = z′, y < y′) or (z = z′, y = y′, x < x′).

We applied a DBL strategy based heuristics that locates

input items one by one at its deepest-bottom-left position

without overlapping the already packed items.

Given a newly arrived item, we enumerate the set of po-

sitions to put the item against the already packed items

in the container. We use an algorithm to enumerate sta-

ble BL points in the two dimensional rectangle packing

problem [8]. We use the two-dimensional algorithm layer

by layer. The procedure first tries to put the item on

the ground of the container projecting the already packed

2

IPSJ SIG Technical Report Vol.2019-AL-171 No.3
2019/1/29

ⓒ 2019 Information Processing Society of Japan

Online problem (k=0, b=0)

Semi-online problem (k=0, b>0)

Semi-online problem (k=n-1, b=0)

container

container

container

buffer

図 1 Illustration of the online and semi-online container loading problems (sizes of the

items with dotted lines are unknown)

x

z

y

O
W

L

H

図 2 A container and items in the coordinate system (a black

dot is the position of an item)

items on the ground to reduce a three-dimensional prob-

lem to a two-dimensional problem. Figure 3 is an example

of our positions, where the five possible positions of the

item is illustrated by the red cube against the already

packed six items. We choose the deepest-bottom-left po-

sition among the enumerated positions in our algorithm.

We also adopt a simple stability check that stacking

an item on the already packed items is possible when its

overlap ratio is more than 0.5.

3.1 Monte Carlo Tree Search for P (n − 1, 0)

Since the problem P (n − 1, 0) assumes that the future

input item sizes are known in advance, it is possible to

search position of each input item. Monte Carlo tree

search (MCTS) is a search algorithm and there are many

applications to games such as computer Go [6]. Since

MCTS is based on random simulation called playout, it

is easy to apply it to several problem. We use the UCT

(the Upper Confidence Bound for Trees) algorithm [11] to

x

0
200

400
600

800
1000

y
0 100200300400500600700800

z

0
100
200
300
400
500
600
700
800

図 3 Item positions by the enumeration algorithm

our packing problem and node selection in a search tree is

performed based on the UCB1 value [2]. This adaptation

is straight-forward by the following correspondence: state

is a packed items in the container, actions are positions of

the newly arrived item against the already packed items,

and reward is their density. We denote the number of it-

erations of the UCT for each item by T which controls

the number of playout and is crucial for trade-off between

density improvement and computational time.

Figure 4 is an example of a search tree of an instance

of the computational results in Section 4. Note that this

is a part of the tree because the total number of nodes is

about 5,800. The root node is an empty container and the

following children nodes are possible positions of an input

item against its parent node (the already packed items).

3

IPSJ SIG Technical Report Vol.2019-AL-171 No.3
2019/1/29

ⓒ 2019 Information Processing Society of Japan

0

1

2 3 4

8 9 5 6 7 10 11 12

16 17 18 19 13 14 15 23 24 25 26 20 21 22 29 30 31 43 44 45 46 47 27 28 37 38

51 52 53 75 76 77 78 79 66 67 68 69 70 71 72 73 74 32 33 34 35 36 39 40 41 42 48 49 50

図 4 An example of a search tree

3.2 Online DBL heuristics for P (0, b)

Sorting items in advance is a well-known technique in

the static container loading problem. Since the buffer is

available in the semi-online problem P (0, b), we give an

online sorting procedure as follows.

DBL heuristics for Step 6 of P (0, b):

Step 1:Sort the items in the buffer B. We denote the

sorted items by B = {1, 2, . . . , b}.
Step 2:Initialize the index i := 1.

Step 3:If i = b, then exit.

Step 4:Find the deepest-bottom-left position for the item

i in the container. If such position is not found, up-

date i := i+ 1 and goto Step 3.

Step 5:Output the item i with its deepest-bottom-left po-

sition and exit.

There are many keys for sorting items such as volume,

length, width, height, random, etc. In this paper, we sort

them with respect to their volume in descending order

(large item comes first) based on preliminary computa-

tional experiments.

4. Computational results

The dataset is generated as follows. We chose eight cube

items which are common in Japan *1. We set the container

size W = 1000[mm], L = 800[mm], H = 1500[mm], and

the frequency of each item in Table 1. We generated 100

instances each of which we randomly sampled n = 100

items according to the frequency.

We implemented our algorithms in C++. Computa-

tional experiments were conducted on a PC (Intel Xeon

CPU E5-2680 v4 2.40GHz). We compared static version

of deepest-bottom-left strategy (static BL), online ver-

sion of deepest-bottom-left strategy without buffer (on-

line BL), MCTS based search for the semi-online prob-

lem P (n − 1, 0) (semi-online MCTS), and online version

of deepest-bottom-left strategy with buffer (semi-online

BL).

The performance metrics are density and computational

time. The computational time for online problem is the

*1 https://www.post.japanpost.jp/service/you pack/package.html

worst one for each item. When an algorithm packs r-

items one by one from a set of input items i = 1, . . . , n

and let t1, . . . , tr be computational time for each item, the

time is max{t1, . . . , tr}. In static case, we take the total

computation time (t1 + · · ·+ tr).

Item category w[mm] l[mm] h[mm] Frequency

Huge 345 445 340 0.05

Large 315 395 225 0.05

Medium 255 315 175 0.3

Small 175 255 145 0.3

Sake bottle single 135 135 445 0.1

Sake bottle double 135 265 445 0.05

Wine bottle single 110 110 315 0.1

Wine bottle double 110 210 315 0.05

表 1 Item sizes and their frequencies

Table 2 summarizes the results showing the average

of density (density(m)), the standard deviation of den-

sity (density(sd)), and the average of computational time

(time) for the 100 instances. We remark that the time

for static case, (*) in Table 2, is the total of each item as

described above.

First the density of online BL is worse than static BL.

The average density degrades 78.0% to 50.9%. Since the

static BL sorts the items before packing, sizes of the se-

quence of input items tends to be identical and the shape

of packed items in the container becomes flat. This is ef-

fective for stacking items and we can pack items densely.

The online case, however, such situation does not hold

and the density degrades.

Using the future item information and the buffer is ef-

fective, respectively.

The average density of semi-online MCTS is improved

to 56.0% (the UCT iteration is T = 100). We also remark

that standard deviation of density is 6.6% and smaller

than 11.4% of the online BL one. This shows that search-

ing based on the future input is helpful to improve some

cases where simple heuristics fails. The computation is

very slow, however, it takes more than one second for

each item. Though it is slow, it might be applicable when

manipulation of robot arm takes few seconds, for example.

4

IPSJ SIG Technical Report Vol.2019-AL-171 No.3
2019/1/29

ⓒ 2019 Information Processing Society of Japan

20 40 60 80 100
T

0.44

0.46

0.48

0.50

0.52

0.54

0.56

De
ns

ity

図 5 UCT iteration T and density

On the other side, the semi-online BL using the buffer

whose capacity is b = 5 improves the density to 54.1% and

the computation is fast. The demerit of this approach is

that it requires extra physical space to store items in ac-

tual application.

Figure 5 is the UCT iteration T and density. The den-

sity increases as the T increases saturating around T = 50.

When T is large, for example T = 100, the density is bet-

ter but it takes computational time more than as in Ta-

ble 2. It is slow because the number of playout amounts

to more than 5,000 when T = 100. When T is less than

T = 30, however, the density is worse than simple BL ap-

proach. Hence, sufficient number of simulation is neces-

sary to improve the density but it requires computational

cost.

Figure 6 is buffer capacity b and density. The density

increases as the b increases. The computational time is

12.0 [ms] and much faster than the MCTS method.

Figure 7 and Figure 8 are packing results of online-BL

and MCTS against an instance, respectively. In Figure 7,

the shapes of upper faces of the packed items are not flat.

Thus it is difficult to stack an item on them due to stabil-

ity check (we check overlap ratio is greater than 0.5). In

Figure 8, the search by MCTS avoids such situation.

5. Conclusions

We introduce semi-online container loading problems

relaxing the online problems and proposed heuristics algo-

rithms. The computational results show that such relax-

ing is effective to improve density against genuine online

problem. These semi-online setting could be acceptable in

some situations. The buffer which temporary stores the

input items is an easy solution to improve density. It re-

quires extra physical space, however, it might be difficult

0 1 2 3 4 5
Buffer capacity b

0.50

0.51

0.52

0.53

0.54

0.55

De
ns

ity

図 6 Buffer capacity b and density

x

0 100200300400500600700800
y

0
200

400
600

800
1000

z

0
200
400
600
800
1000
1200
1400

図 7 The packing result by online BL

x

0 100200300400500600700800
y

0
200

400
600

800
1000

z

0
200
400
600
800
1000
1200
1400

図 8 The packing result by MCTS

to apply in actual application. When the buffer is unavail-

able and the future item sizes are known in advance, the

MCTS based search also improves the density. The com-

putational time is very slow because a lot of simulation

is necessary, thus the application might be limited to the

case where manipulation of robot arm takes few seconds,

for example.

5

IPSJ SIG Technical Report Vol.2019-AL-171 No.3
2019/1/29

ⓒ 2019 Information Processing Society of Japan

k b density(m)[%] density(sd)[%] time[ms]

static BL n− 1 n 78.0 2.2 48.3(*)

online BL 0 0 50.9 11.4 3.2

semi-online MCTS n− 1 0 56.0 6.6 1127.5

semi-online BL 0 5 54.1 9.4 12.0

表 2 Summary of computational results

Acknowledgement

The authors thank Dr. Toshio Sato and Kentaro Yokoi

for their valuable comments.

参考文献

[1] S.D. Allen, E.K. Burke, and G. Kendall: A hybrid
placement strategy for the three-dimensional strip pack-
ing problem, European Journal of Operational Research,
209(3) (2011), pp. 219–227.

[2] P. Auer, N. Cesa-Bianchi, and P. Fischer: Finite-time
Analysis of the Multiarmed Bandit Problem, Machine
Learning 47 (2002), pp. 235–256.

[3] B.S. Baker, E.G. Coffman, and R.L. Rivest: Orthogonal
packings in two dimensions, SIAM Journal on Computing,
9(4) (1980), pp. 846–855.

[4] S. Berndt, K. Jansen, and K.-M. Klein: Fully Dynamic
Bin Packing Revisited, Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Tech-
niques (APPROX/RANDOM 2015), 40 (2015), pp. 135–
151.

[5] A. Bortfeldt and G. Wäscher: Constraints in container
loading–a state-of-the-art review, European Journal of
Operational Research, 229(1)(2013), pp. 1–20.

[6] C.B. Browne, E. Powley, D. Whitehouse, S.M. Lucas,
P.I. Cowling, et al.: A Survey of Monte Carlo Tree
Search Methods, IEEE TRANSACTIONS ON COMPU-
TATIONAL INTELLIGENCE AND AI IN GAMES, 4(1)
(2012), pp. 1–43.

[7] C.T. Ha, T.T. Nguyen, L.T. Bui, and R. Wang: An On-
line Packing Heuristic for the Three-Dimensional Con-
tainer Loading Problem in Dynamic Environments and
the Physical Internet, Applications of Evolutionary Com-
putation (2017), pp. 140–155.

[8] S. Imahori, Y. Chien, Y. Tanaka, and M. Yagiura: Enu-
merating bottom-left stable positions for rectangle place-
ments with overlap, Journal of the Operations Research
Society of Japan, 57(1) (2014), pp. 45–61.

[9] K. Karabulut, M.M. İnceoğlu: A hybrid genetic algo-
rithm for packing in 3D with deepest bottom left with fill
method, International Conference on Advances in Infor-
mation Systems, ADVIS 2004, Lecture Notes in Computer
Science, vol 3261. (2014), Springer, Berlin, Heidelberg.

[10] H. Kawashima, Y. Tanaka, S. Imahori, and M. Yagiura:
An efficient implementation of a constructive algorithm
for the three-dimensional packing problem, In Proceed-
ings of the 9th Forum of Information Technology 2010, 1,
pp. 31–38.

[11] L. Kocsis and C. Szepesvári: Bandit based Monte-Carlo
Planning, ECML 2006, Lecture Notes in Computer Sci-
ence, 4212, pp. 282—293.

[12] L. Wang, S. Guo, S. Chen, W. Zhu, and A. Lim: Two
Natural Heuristics for 3D Packing with Practical Load-
ing Constraints, In proceedings of PRICAI 2010, Lecture

Notes in Computer Science, 6230, pp. 256–267.

[13] X. Zhao, J.A. Bennell, T. Bektaş, and K. Dowsland: A
comparative review of 3D container loading algorithms,
International Transactions in Operational Research, 23(1-
2)(2016), pp. 287–320.

6

IPSJ SIG Technical Report Vol.2019-AL-171 No.3
2019/1/29

ⓒ 2019 Information Processing Society of Japan

