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Abstract: In vehicle dead reckoning or vehicle positioning systems, an inertial measurement unit (IMU) sensor has
an important role to provide acceleration and orientation of the vehicle. The acceleration from the IMU accelerometer
is used to calculate the velocity of the vehicle, and then it estimates the vehicle’s distance traveled to time. However,
the accelerometer suffers from external noises such as vehicle vibrations (generated from the engine, alternator, com-
pressor, etc) and road noises. This paper delivers deep analysis and focuses on how to handle the error from vehicle
vibrations. A filter method is proposed by using a combination of adaptive least mean squares (LMS) and low-pass
finite impulse response (FIR) filters. The adaptive LMS filter is used to cancel the vehicle vibration error frequencies
and adapts those frequency changes in several engine rotation conditions. It is then finalized with the low-pass FIR
filter which is used to filter high-frequency vibration noises. Several experiments were made and the results show that
the proposed filtering method is able to give better signal to noise ratio (SNR dB) and noise attenuation ratio (ATT dB)
in comparison with regular low-pass FIR filter and independent adaptive LMS filter in a particular condition.

Keywords: adaptive LMS filter, low-pass FIR filter, vehicular accelerometer, IMU sensor, on board diagnostic (OBD-
II), digital signal processing

1. Introduction

The development of positioning technology, especially in a ve-
hicle positioning system is growing rapidly nowadays. This tech-
nology arises due to the low-cost devices and the development of
supporting technology such as sensor and processor technologies.
Further, the development of internet technology and information
distributions are making such knowledge be distributed easier and
learned by people from many backgrounds. One of the technolo-
gies that are commonly adopt in positioning technology is iner-
tial measurement unit (IMU) sensor. In some paperwork, IMU
sensor is used as an inertial navigation system (INS) to support
multi-sensor vehicular positioning strategy [1], [2], [3], [4]. Nor-
mally, IMU sensor is based on the microelectromechanical sys-
tem (MEMS), provides the integration system of accelerometer,
gyroscope, and magnetometer in one small single integrated cir-
cuit (IC). In our previous paperwork [1], the fusion algorithm of
3-internal IMU sensors was used to provide the orientation of an
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object particularly airport’s apron vehicles. Accelerometer data
were used to calculate the object acceleration and then provide
velocity and traveled distance value by integrating it toward time.
However, vehicle (include apron vehicles) produces internal vi-
bration noise which effects the acceleration measurement data of
the IMU sensor. Knowing the response on this vibration is very
important especially in multi-frequency acceleration [5]. Over-
coming this challenge, data noises analysis and filters are needed
to omit the vibration error effect in the IMU sensor, especially in
accelerometer sensor.

The purpose of this research is to filter the internal vibration
error that occurs in the vehicle either from the engine rotation or
other sources, such as alternator and air-conditioner compressor.
The effect of this vibration error is quite critical. Based on our ex-
perience, this vibration error will affect the vehicular position es-
timation [1]. Accordingly, handling such error cannot be underes-
timated. This vibration error impacts the calculation/integration
result from IMU-acceleration value to provide vehicle dead reck-
oning/positioning system (velocity and distance traveled), espe-
cially in a long period of time.

In this paper, a filtering method is proposed which combines
adaptive least mean squares (LMS) filter and low-pass finite im-
pulse response (FIR) filter to handle this error. Adaptive LMS
filter is normally used to model the relationship between two sig-
nals in real time [6]. Certain research papers use this adaptive
LMS filter to improve the response of accelerometer for auto-
motive application [5], [8]. Other common applications of this
digital adaptive filter are to cancel the signal error in electrocar-
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diogram (ECG) signal [9], [10] and to compensate cross-talk in
acoustic signal [11]. In this paper, The LMS filter is chosen to
adopt the vibration frequency error detected by the Z-axis ac-
celerometer and then cancel the vibration error sensed in X and
Y axes. The Z-axis is chosen since this axis is not influenced
by the vehicle movements in other two axes (forward-backward,
right-left). Further, low-pass FIR filter is then used to omit the
high-frequency vibration error.

Organization of this paper is started with the initial and data
noises analysis. It then continues with digital adaptive LMS and
FIR filters design with several parameter set-ups. Once proper
filter set-up is obtained, the designed filtering method is tested in
several experiments, such as in idling and moving vehicle condi-
tions. Next, comparative analysis between results from the pro-
posed filtering method and the other filter methods (regular low-
pass FIR filter and independent adaptive LMS filter) are carried
out using the signal to noise ratio (SNR dB) and noise attenuation
ratio (ATT dB) comparisons.

2. Research Overview

This section introduces briefly how to set up sensor materials
and how to develop the initial analysis. Through the result from
initial analysis, a filtering method is developed to compensate the
vehicle vibration error. A brief explanation concerning to how
the filtering method works is also given as a part of Section 2.3.

2.1 Materials
To collect data and support the initial analysis, a sensor sys-

tem is developed based on 9-axis IMU sensor, OBD-II reader,
and a microcontroller. The IMU sensor applied in this system
is BNO055 series which includes accelerometer in 3 axes (X, Y,
and Z axes) [12]. This sensor is positioned on the top-left vehi-
cle dashboard with Y-axis toward vehicle’s front and back move-
ment, X-axis toward right and left vehicle’s shift, and Z-axis to-
ward vehicle up and down change. As mentioned previously, this
sensor is used to cover vehicle movements to gain the velocity and
vehicle distance traveled [1]. In fact, it also experiences vibration
effects, for example engine rotation, alternator, air-conditioner,
and compressor.

Further, the OBD-II reader in this system is based on ELM
327 chip processor which is also known as OBD to RS-232 in-
terpreter. Working under the AT-command protocol, this device
provides considerable parameters from the vehicle, such as ve-
locity, engine rotation speed, and vehicle torque [13]. ELM 327
complies several OBD-II standards which are already adopted by
most common vehicle worldwide. In this research, the OBD-II is
used as a reader device to read and mark several engine rotation
(RPM) value as a reference in vehicle vibration error analysis.
All data distributed from IMU sensor and OBD-II reader are col-
lected and managed by Arduino Due series, a 32 bit CortexM3
ARM microcontroller [14]. Several communication protocols are
used to communicate with those devices as can be seen in Fig. 1.
The data from accelerometer are collected with a sampling fre-
quency of 200 Hz meanwhile engine rotation and velocity data
from OBD-II are collected every 1 second. The data are then
recorded together with time stamps for further analysis.

Fig. 1 Sensor system setup.

2.2 Initial Analysis
The objective of first analysis is to recognize the error fre-

quency movement generated from the vehicle vibration. In
general, the engine rotation in idle condition is varied from
600 RPM = 10 Hz (for medium to the heavy-duty truck) to
1,000 RPM = 16.67 Hz (for small passenger vehicle). On this
initial analysis (preliminary experiment), first we collect accel-
eration data from a vehicle, Honda Kei car “That’s” with 660 cc
3-cylinder engine, rotating approximately 866 RPM in the idle
condition.

This vehicle is positioned in an idle condition with dif-
ferent engine rotation (revolution per minute, RPM) values.
Those rotation values are varied from approximately 0 RPM,
866 RPM, 1,586 RPM, 2,100 RPM, 2,545 RPM, 3,015 RPM, and
3,560 RPM. From the collected acceleration data, a fast Fourier
transform (FFT) technique [15] is then applied to analyze the fre-
quency error. The results from FFT are shown in Table 1, Ta-
ble 2, and Table 3. Table 1 represents the error frequency in X-
axis, Table 2 in Y-axis, meanwhile Table 3 in Z-axis accelerome-
ter. The first column represents the engine rotation in RPM value,
the second column represents the minimum and maximum accel-
eration magnitudes recorded by the sensor, and the last column
represents frequencies that the vibration error commonly appears
for each engine rotation value. Analyzing these tables, most of
the vibration error frequencies appear in the range of 10 to 80 Hz.
However, in some conditions, these frequency errors are also de-
tected at low frequencies (0 to 10 Hz) especially in the range of
2,000 to 3,000 engine RPM. Most of those error frequencies vary
on every engine rotation value.

Further, Fig. 2 shows one of the vehicle vibration spectrum fre-
quencies at 2,100 RPM. The data from this engine rotation value
is chosen because this data has a wider variation in vibration error
spectrum frequency. It has a range from low to high frequency.
As seen in this figure, it shows that every axis in accelerom-
eter (X, Y, and Z axes) are sensing roughly the same vibra-
tion frequency errors. Those dominant frequencies are 1.377 Hz,
9.538 Hz, 27.22 Hz, 35.35 Hz, 47.01 Hz, 53 Hz, 64.68 Hz, and
72.82 Hz. Theoretically, the 35.34 Hz frequency is expected to be
the engine vibration frequency. The expectation comes by divid-
ing the 2,100 RPM value with 60 (minute to second). This calcu-
lation result shows that the engine frequency effect at 2,100 RPM
will approximately around 35 Hz. In addition, since the vehicle
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Table 1 Error frequencies detected on acceleration in X axis for several engine rotation values.

RPM
Magnitude (m/s2) Error Frequency (Hz)

Min Max 0–10 Hz 10–20 Hz 20–30 Hz 30–40 Hz 40–50 Hz 50–60 Hz 60–70 Hz 70–80 Hz

0 −0.041 0.039
866 −0.3747 0.3353 14.68 22.02 44.04 55.96

1,586 −0.89 0.889 14.03 26.56 39.91 60.12
2,100 −0.8915 0.8585 1.377 27.22 35.35 47.01 53.01 72.82
2,545 −1.089 1.001 17.15 38.65 42.97 57.08
3,015 −0.6246 0.5755 1.679 26.42 47.88 52.12 73.58
3,560 −0.356 0.378 14.5 33.84 40.33 59.67 66.16

Table 2 Error frequencies detected on acceleration in Y axis for several engine rotation values.

RPM
Magnitude (m/s2) Error Frequency (Hz)

Min Max 0–10 Hz 10–20 Hz 20–30 Hz 30–40 Hz 40–50 Hz 50–60 Hz 60–70 Hz 70–80 Hz

0 −0.0437 0.0363
866 −0.2135 0.1865 14.68 22.02 78

1,586 −0.268 0.301 0.765 14.03 26.58 39.91 60.12 73.44
2,100 −0.2791 0.2609 9.538 27.19 35.35 47.03 53 64.68 72.82
2,545 −0.4799 0.5301 17.1 38.64 42.83 57.07
3,015 −0.236 0.1841 26.42 47.88 50.22 73.58
3,560 −0.2571 0.2129 33.84 40.33 59.67 66.16

Table 3 Error frequencies detected on acceleration in Z axis for several engine rotation values.

RPM
Magnitude (m/s2) Error Frequency ( Hz)

Min Max 0–10 Hz 10–20 Hz 20–30 Hz 30–40 Hz 40–50 Hz 50–60 Hz 60–70 Hz 70–80 Hz

0 −0.1 0.11
866 −0.6135 0.5565 14.68 22.02 44.04 55.96

1,586 −0.930 0.791 14.03 39.91 60.1
2,100 −1.031 1.170 1.377 27.18 35.35 47.02 52.98 72.82
2,545 −1.645 1.384 17.12 42.93 57.04
3,015 −0.6861 0.6936 26.42 47.88 52.12 73.69
3,560 −1.01 1.02 33.84 40.32 59.66 66.14

Fig. 2 Frequency spectrum of 3 axes accelerometer sensor at approximately
2,100 RPM.

used in the initial experiment has 3-cylinders engine type, 1.5
times of engine frequency will also appear as a side effect. This
effect appears at approximately 52.5 Hz frequency. Other fre-
quencies besides 35 Hz and 52.5 Hz remain undefined since they
might represent the vibration from other sources, such as alterna-
tor and air-conditioner compressor. Those vibration frequencies
are presented and can be also shown in Tables 1, 2, and 3.

Based on the initial frequency analysis on every engine rota-
tion value, it can be concluded that the vehicle vibration error
frequencies are changing, follows the changes of RPM values.

Also, every accelerometer axis generally experiences similar vi-
bration error frequencies. Further, those engine vibration error
might appear in the low frequency region (0–10 Hz) which can
not be handled by a low-pass filter. In spite of our experiment was
using a typical Honda Kei car “That’s”, we believe that general
vehicles has similar engine vibration error characteristic. Hence,
analysis on other type of vehicle, particularly medium to heavy-
duty vehicle, will become part of our future work.

From this preliminary result, we developed our filtering tech-
nique which will be discussed in the next section.

2.3 Proposed Method
The proposed filtering method in this research is developed

based on the initial vibration error analysis. From the initial anal-
ysis results, a combination filter using adaptive LMS filter and
low-pass FIR filter is proposed to lessen the vehicle vibration
error effects on accelerometer sensor. The adaptive LMS filter
is used to filter vibration especially in low-frequency spectrum
which cannot be completed by low-pass FIR filter. The process of
adaptive LMS filter is to estimate and produce an anti-error signal
from a secondary source which can be used to cancel the error sig-
nal in the main signal source. As mentioned in Section 2.2, Z-axis
acceleration signal practically experience similar vibration error
with the other axes. However, this axis is not affected by the vehi-
cle movements in the 2-dimensional plane (X and Y axes). Build
upon these findings, the Z-axis accelerometer signal is used as a
canceling-signal reference in the proposed filter. Figure 3 shows
the adaptive LMS filtering process for vehicle vibration error in
X or Y axis separately with Z-axis accelerometer signal as sec-
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Fig. 3 Adaptive vehicle vibration noise cancellation on X or Y axis with Z
axis as reference.

ondary source input to the adaptive filter.
The output of adaptive LMS filter (e(n)) is modeled as the

result between contaminated acceleration signals (d(n), in X or
Y axis) with the estimated error signal generated from Z-axis
(z′(n)). As mentioned, this filtering process is done separately
for X or Y axis, resulting two filter output (e(n)) in each axis.
Symbol (n) itself present the n-th number of the data. This model
can be written as equation below.

e(n) = d(n) − z′(n) (1)

where

e(n) : Output of the LMS adaptive filter

d(n) : Filter input (X or Y axis)

z′(n) : Filter output

z′(n) is generated by processing the Z-axis accelerometer
through the adaptive filter with several coefficient factors W(n)
as shown in equations below. Following the filter input, W(n) is
also generated differently for each axis.

z′(n) =
L−1∑
i=0

(wi(n)z(n − i)) (2)

= W(n)Z(n)T (3)

where the tap weights is:

W(n) = [w0(n), w1(n), . . . , wL−1(n)]

and the input is:

Z(n) = [z(n), z(n − 1), . . . , z(n − L + 1)]

Tap-weight vector adaptation equation:

W(n + 1) = W(n) + µe(n)Z(n)T (4)

L in Eq. (2) represents the order of transversal adaptive filter, T

in Eq. (3) represent the vector transpose function for the input sig-
nal vector Z(n), and µ in Eq. (4) is the learning step value in LMS
filter. Adaptive LMS filter algorithm used above follows basic
LMS filter steps on its calculation process [5], [6], [7]. Once the
adaptive LMS filter practiced to the X and Y acceleration values,
a low-pass Humming-Window FIR filter then applied to remove
remaining high-frequency errors. The low-pass FIR filter is set
with 2 Hz cutoff frequency and 20th filter order.

Fig. 4 Spectrum in low frequency of IMU accelerometer axes before filter-
ing (green mark), after LMS filtering (red mark), and combined LMS
and FIR filtering (blue mark) at approximately 2,100 RPM.

3. Experiment

This section discusses the experiment that was made within
this research. This section covers the experimental system setup,
implementation, and result analysis. As mentioned in Section 2.2,
experimental setup in this section is also based on IMU sen-
sor to collect the acceleration data, OBD-II reader to read the
RPM from the vehicle, and microcontroller to process and col-
lect those data for analysis. The system sensor is positioned in
top-left vehicle dashboard, the same vehicle that we used in the
initial/preliminary experiment. The experiment itself is divided
into 3 experiments which are deeply explained below.

3.1 Static RPM Error Analysis
Refer to the initial analysis described in Section 2.2, data are

recorded on several engine rotation values in a vehicle. Proposed
filtering method is then applied to the dataset to see the perfor-
mance on each RPM range. Since the vehicle is in a steady con-
dition, the data recorded on this step are treated as pure noises.
The implementation of proposed filter on those data is expected
to suppress those errors into minimum value (≈ 0).

The data measured in 2,100 RPM is chosen to represent the re-
sult of the filtering methods. To compare with the data of other
engine rotation values (can be seen at Tables 1 and 2), vehicle
vibration error frequencies detected in 2,100 RPM are more var-
ied than others, ranged from low to high frequencies. As seen in
Fig. 4, the result of implementing the proposed filtering method
shows that the low-pass FIR filter can filter most high-frequency
vibration error. Moreover, the adaptive LMS filter is able to can-
cel the low frequency vibration error which appears both in X
and Y axes acceleration values such as frequency 1.377 Hz and
9.538 Hz. Figure 5 shows the X and Y axes acceleration values
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Fig. 5 Acceleration on X and Y axes before filtering (green mark), after
LMS filtering (red mark), and combined LMS and FIR filtering (blue
mark) at approximately 2,100 RPM.

Fig. 6 Engine rotation value in random RPM error analysis.

before filtering (green mark), after adaptive filtering (red mark),
and after low-pass FIR filtering (blue mark). Also referring to
this figure, it can be seen that in the first 2 seconds acceleration
values (red mark), adaptive LMS filter tries to adjust its coeffi-
cients. Within this period of time, adaptive LMS filter’s result is
gradually reduced to achieve the desired value.

3.2 Random RPM Error Analysis
The second experiment is conducted with various engine ro-

tation values. This experiment is done to analyze the filtering
performance, especially adaptive LMS filter whether it is able to
adapt to the RPM changes or not. An experiment condition is
set up in non-moving vehicle with engine rotation values ranged
from circa 860 RPM to 4,000 RPM (Fig. 6). Similar to previous
experiment, since it is using a vehicle in an idle condition, all
data collected from all accelerometer axes are treated as noises.
As results, the proposed filter approach is able to reduce the low-
frequency vibration error (Fig. 7, red mark) and remove almost
all high-frequency vibration errors detected in the vehicle IMU-
accelerometer both in X and Y axes (Fig. 7, blue mark). Figure 8
shows the accelerometer value in X and Y axes before filtering
(green mark), after adaptive LMS filter (red mark), and after low-
pass FIR filter (blue mark).

3.3 Moving Vehicle Error Analysis
To achieve a better analysis on the proposed filtering method

performance, an experiment with moving vehicle is conducted.
The experiment is set up in a straight track with road contour rel-
atively flat. Some obstacles on road surface are spotted, such as

Fig. 7 Spectrum of IMU accelerometer axes before filtering (green mark),
after LMS filtering (red mark), and combined LMS and FIR filtering
(blue mark) at random RPM.

Fig. 8 Acceleration on X and Y axes before filtering (green mark), after
LMS filtering (red mark), and combined LMS and FIR filtering (blue
mark) at random RPM.

road patches and sewer metal-cover. The vehicle was accelerat-
ing from an idle condition up to approximately 25 km/h. It then
gradually reduced the speed until the vehicle stopped. The vari-
ations of engine rotation and acceleration values collected from
the OBD-II reader are shown in Fig. 9. This vehicle accelera-
tion is calculated by dividing the velocity read by the OBD-II
reader with its sampling time. Analyzing the spectrum frequency
(Fig. 10), it can be seen that the implementation of the adap-
tive LMS filter is slightly able to cancel the magnitude of vibra-
tion error frequency. Further, the low-pass FIR filter then blocks
the high frequencies and keeps the low frequency desired mov-
ing/accelerating vehicle data.

Furthermore, Fig. 11 presents the acceleration value both in the
X and Y axes of accelerometer sensor. The proposed method fil-
ter result (blue mark) shows that the proposed filter is able to
reduce the vibration error in comparison with its original signal
(green mark) and a single adaptive LMS filter implementation
(red mark). The Y-axis graph in Fig. 11 presents the acceleration
movement of the vehicle since Y-axis IMU accelerometer sensor
is positioned to the vehicle toward front and reverse movements.
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Fig. 9 Engine rotation and vehicle forward acceleration value in moving
vehicle experiment read by OBD-II.

Fig. 10 Spectrum of IMU accelerometer axes before filtering (green mark),
after LMS filtering (red mark), and combined LMS and FIR filter-
ing (blue mark) in moving vehicle experiment.

Fig. 11 Acceleration on X and Y axes before filtering (green mark), after
LMS filtering (red mark), combined LMS and FIR filtering (blue
mark), and vehicle acceleration reference (black mark) in moving
vehicle experiment.

3.4 Performance Analysis
To analyze the result performance, a signal to noise ratio in

decibels (SNR dB) and a noise attenuation ratio in decibels (ATT
dB) approaches are used to compare the filtering result from sev-
eral filtering methods. The methods which were compared are
the low-pass Humming-window FIR filter, the adaptive LMS Fil-
ter, and the proposed filter approach that combines both Adaptive
LMS and low-pass FIR filters. The SNR is calculated by the for-
mula below [9], [16].

S NRdB = 10 log10

( d(n)
d(n) − e(n)

)2
(5)

where
d(n) : Desired (reference) signal, and e(n) : Filtered signal

value

As stated in Section 3.1, in the experiments which were done
with a vehicle in an idle condition, all recorded acceleration data
will be treated as noises. d(n) is the desired signal value (refer-
ence value) which ideally ≈ 0. In fact, d(n) is not absolute zero
since the IMU-accelerometer has internal sensor error. This data
(d(n)) is collected when the sensor is steady and not experience
any external disturbances. However, in moving vehicle condi-
tion, d(n) will be the vehicle acceleration data which were read
and calculated from the OBD-II reader as can be seen in Fig. 9.

The noise attenuation ratio (ATT dB) is conducted to calculate
the noise reduction value from its original signal. Attenuation it-
self is a general term to describe reductions in the strength of a
signal [17]. This calculation can be done by calculating the ratio
from the signal after filtering (e(n), signal output) with the sig-
nal before filtering (d(n), signal output). The formula is given as
follows:

ATTdB = 10 log10

( e(n)
d(n)

)2
(6)

where
d(n) : Input signal value, and e(n) : Filtered signal value

Presenting the results, Table 4 shows the SNR dB value mean-
while Table 5 presents ATT dB value of X and Y axes data at
several vehicle experiment conditions. In these tables, the SNR
and ATT results from 3 filtering methods are compared. Those
are the low-pass filter (LPF), the adaptive LMS filter, and the Au-
thor’s filter combination methods. As can be seen in Table 4, the
RMS values are mainly negative. This indicates that the noise sig-
nals are overpowered the reference signal since the reference sig-
nal value are close to zero. The bigger the negative value means

Table 4 Signal to noise ratio of X and Y axes acceleration signal at several
vehicle condition experiments.

RPM
X axis SNR (dB) Y axis SNR (dB)

LPF LMS Proposed LPF LMS Proposed
866 −7.64 −21.29 −6.53 −4.09 −16.34 −3.04

1,586 −15.4 −23.53 −14.5 −8.81 −16.7 −8.67
2,100 −21.45 −23.15 −14.27 −7.63 −13.07 −4.1
2,545 −15.15 −23.2 −13.78 −10.69 −18.01 −9.47
3,015 −16.27 −18.15 −9.34 −8.3 −12.18 −4.1
3,560 −9.54 −14.4 −5.45 −6.1 −11.37 −4.52
Rand −13.68 −20.5 −9.1 −5.17 −14.76 −3.94
Move −24.6 −31.57 −24.54 8.54 4.34 8.57
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Table 5 Noise attenuation ratio of X and Y axes acceleration signal at
several vehicle condition experiments.

RPM
X axis SNR (dB) Y axis SNR (dB)

LPF LMS Proposed LPF LMS Proposed
866 −16.6 −6.42 −18.1 −14.4 −6.842 −16.34

1,586 −17.2 −9.73 −18.04 −13.03 −5.21 −13.41
2,100 −12.7 −13.83 −21.76 −14.15 −9.34 −19.29
2,545 −17.11 −10.48 −19.9 −16.81 −10.46 −19.32
3,015 −12.8 −13.12 −21.3 −12.79 −9.64 −19.1
3,560 −16.62 −12.58 −22.18 −15.92 −10.89 −18.79
Rand −13.41 −5.88 −17.91 −13.58 −2.76 −15.45
Move −7.88 −1.58 −7.96 −1.46 −0.74 −2.2

Fig. 12 Velocity comparison from vehicle acceleration and filtered IMU
accelerations.

that it has more noise than others.
In the moving vehicles SNR performance analysis, filtering re-

sult from vehicle acceleration in Y-axis accelerometer is com-
pared with the acceleration value from OBD-II reader (Sec-
tion 3.3). That is why the Y-axis moving vehicle SNR results
are positive. Yet, the SNR result in X-axis moving vehicle is still
using steady accelerometer value (≈ 0) as a comparison since
this experiment is conducted without any vehicle movement in
right and left directions. It can be seen that the proposed filtering
method also gives somewhat improved SNR dB value in the ac-
celerating vehicle. Despite of the fact that our proposed method
has slightly better performance than LPF filter result in moving
vehicle experiment, generally Table 4 shows that the proposed
method can outperform the other 2 methods with higher (better)
SNR value whether in X or Y axes acceleration data.

Further, in the noise attenuation ratio calculation (ATT) results
(Table 5), our proposed filtering method also surpass the LPF and
the LMS filtering method, especially in the non-moving vehicle
experiments. However, in the moving vehicle experiment, there
is only a slight ATT improvement from our method in compari-
son with LPF filtering method. Nevertheless, such improvements
are enough to increase the vehicle positioning performance.

As can be seen in Fig. 12, despite the velocity results calculated
from acceleration are suffered from integral drift effect [18], ve-
locity value which is calculated from IMU acceleration signal and
filtered by our proposed method (red line) has closer value with
the vehicle velocity recorded through the OBD-II reader (green
line). Besides, from distance traveled calculation results which
are presented in Table 6 (calculation is based only from accelera-
tion data), it shows that result from our filtering method distance
calculation (133.15 meter) also has closer value with vehicle dis-

Table 6 Distance traveled calculation result comparison from original and
filtered data.

Distance traveled
Methods

OBD-II IMU LPF LMS Proposed

Distance (Meter) 121.25 144.13 134.76 140.6 133.15

tance calculated from OBD-II velocity data (121.25 meter). Fig-
ure 12 and Table 6 demonstrate that although our proposed filter
method is combining two type of filters, this filtering method does
not lose its major vehicle movement data.

4. Related Work

The proposed filtering method in this paper is developed to
compensate the vehicle vibration errors which are sensed by the
IMU accelerometer sensor in vehicle positioning system. Some
research showed the applications of IMU/INS sensor which is
fused with other positioning sensors to provide robust vehicle po-
sition estimation [1], [2], [3], [4]. However, those paperwork are
focus on how the sensor fusion strategy works, leave the impor-
tance of compensating the vehicle vibrations with proper method.
The adaptive LMS filter is proved that it could cancel noises in
digital signal processing. Some research shows that this filter
method is able to cancel out most error in digital signal, particu-
larly appear in ECG signal [8], [9] and acoustic signal [10].

Hernandez et al. [5], [7] introduced how to improve the ac-
celerometer response using the LMS adaptive filter for automo-
tive application. Nevertheless, the noise canceler which was used
in this research is based on overlap-save sectioning (assuming
real-valued data). Moreover, this paperwork used piezoresistive
accelerometer which works only in one axis. As a comparison,
we introduce a filtering method by combining the adaptive LMS
filter and the low-pass FIR filter. We utilize 3 axes accelerometer,
use the Z-axis signal to detect the vehicle vibrations then apply it
as noise canceler in the X and Y axes acceleration values.

5. Conclusion

To conclude, our proposed filtering method which combines
adaptive LMS filter and low-pass FIR filter is able to show better
performance than common filtering method in accelerometer by
showing higher decibels value in signal to noise ratio (SNR dB)
and lower attenuation in error attenuation ratio (ATT dB) calcula-
tion. Further, the adaptive system is also able to adapt the changes
in vehicle vibration frequencies appear at several engine rotation
rates.

One important note is that in the moving scenario, the vehicle
is also affected by external vibrations such as gravel road, road
marks, bumpy road, and sewers cover. In our observation, these
external disturbances are mostly effecting the IMU accelerome-
ter in Z-axis (road disturbance generates up and down movement
effects) and add external error vibrations besides the internal ve-
hicle vibrations. As stated before, the Z-axis is used as a reference
in canceling the internal vehicle vibration error and such condi-
tion worsen the filtering results. In fact, since the method initially
is developed to support apron vehicle inside the airport area [1],
environmental conditions such as road quality and surface con-
tours are considered to be managed well by the airport provider.
The Z-axis accelerometer is assumed to experience less external
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noises from the environment.
Furthermore, based on the fact that vehicle, in general, has sim-

ilar engine rotation characteristic and the findings in our experi-
ments, we believe that our proposed filtering method can be im-
plemented and work, not only specific on Honda Kei car “That’s”,
but also with other various types of vehicles. Yet, this statement
needs to be proofed by doing additional experiments, especially
in medium to heavy-duty vehicles as our main research object is
apron airport vehicle. Some modification in filter’s parameters
could be needed to adjust the filter performance, for example the
filter order, the filter steps, and the low-pass cut-off frequency.
This activity will be part of our future research work with real
apron vehicle as an object in the airport environment.
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