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Abstract: This paper designs a novel predictive model that learns stochastic functions given a limited set of data sam-
ples. Interpolation algorithms are commonly seen in supervised learning applications for function approximation by
constructing models generalizable to unseen data. However, parametric models such as regression and linear SVMs are
limited to functions in the form of predefined algebraic expressions and are thus unsuitable for arbitrary functions with-
out finite number of parameters. While properly trained neural networks are capable of computing universal functions,
the amount of required training data can be prohibitively large in some practical scenarios such as online recommen-
dation. The proposed model addresses both problems based on a semi-parametric graphical model that approximates
function outputs with limited data samples through Bayesian optimization. An online algorithm is also presented to
show how model inference is used to locate global optima of an unknown function, as the primary objective of making
optimal decisions. Comparative experiments are conducted among a set of sampling policies to demonstrate how click-
through rates can be improved by optimized recommendation strategy with the proposed model. Empirical evaluation
suggests that an adapted version of Thompson sampling is the best suitable policy for the proposed algorithm.
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1. Introduction

This paper addresses the problem of making optimal decisions
subject to unknown environment, defined as an unknown function
without pre-assumed closed-form expression. A typical applica-
tion where it becomes an imperative optimization task is a rec-
ommendation system at cold start. With no prior knowledge as
for popularity of its candidate items like online ads, a recommen-
dation engine is expected to quickly grasp an accurate model dis-
criminating between favored and unpopular candidates [10], [22].
Click-through rate (CTR), the ratio of valid user responses and
number of viewers (or impression) upon an item, is a common
metric of item popularity and it can be interpreted as probabil-
ity that an item achieves user acquisition. Given that CTRs of
in-list items are considered as stochastic function outputs, a pre-
dictive model can adaptively be applied to learn the unknown en-
vironment, whose location of global optimum is of our best inter-
est. Parametric learning models such as regression do not prop-
erly fit this problem because no rigid parameterized assumption
is allowed in our problem setting. Neural networks have prac-
tically been known to be powerful universal function approxi-
mators but as data hungry solutions they require large amount
of training data towards predictive functionality. For marketing
strategy prediction, acquiring large amount of training data can
be prohibitively expensive due to unbounded advertising fees or
opportunity cost. It is financially demanded that a recommen-
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dation system discover optimal strategy within fewest possible
data samples so as to minimize overall marketing cost. This
paper models this initialization problem as reward optimization
with exploration-exploitation trade-off under the paradigm of the
multi-armed bandit (MAB) problems [2], [13], [16] in which an
agent always seeks for the candidate of the highest CTR. For ev-
ery decision step, collected reward is sampled and used as feed-
back to improve future decisions. This online setup is a snapshot
of optimal policy search at a single step in typical reinforcement
learning scenarios, compared to which MAB considers no state
change caused by actions. In addition, budget constraint is im-
posed on the learning process. In this paper, budget is defined as
the total count of recommendation deliveries. Reward is defined
as the count of valid user responses (clicks) assuming pay-per-
click advertising model.

Primary contribution of this paper is a two-fold solution. The
first part is a graphical model that learns from limited CTR sam-
ples and performs inference on stochastic environment through
maximum a posteriori (MAP) estimate. The graphical approach
refers to candidate items by discrete indices and depicts CTRs of
every item into random variables in such a way that item indices
are expected to be multivariable to allow for multi-dimensional
environment. Rigorous proof is given that the proposed graph
complies with fundamental property of a Gaussian Markov ran-
dom field (GMRF) [12], so that inference can be performed based
on multivariate Gaussian covariance between variables. One ma-
jor advantage of such design is that the model size is constrained

This paper is an extended version of our previous work [23] presented in
the 22nd Pacific-Asia Conference on Advances in Knowledge Discovery
and Data Mining, PAKDD 2018.
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by the number of graph nodes as determined by item counts in
practice and does not grow with training data, in contrast to tra-
ditional Bayesian regression [20] which memorizes all data sam-
ples, thus significantly reducing computational complexity par-
ticularly when the item count is much smaller than the number of
data samples.

The second part of our solution is sampling-based decision
making policies. As graphical model inference provides the
posterior of item rewards, determining the best candidate item
is broken down into a multi-armed bandit problem. The pro-
posed decision making policy is a variation of Thompson sam-
pling [1], [3] that iterates cumulative density across items and se-
lects one that maximizes the expectation that CTR of the sam-
pled item exceeds all the rest. The adapted Thompson sampling
method is tested in comparison with traditional meta-approaches
on exploration-exploitation trade-off including acquisition func-
tions and the naive epsilon greedy method. Tests reveal that
Thompson sampling as decision making policy gives the best out-
come in terms of cumulative regret.

The rest of the paper is structured as follows. First the graphi-
cal model is defined along with the inference process with proof
on its GMRF property and correctness of probability computa-
tion. Second learning process is introduced as on-line algorithm
in which decision making and model adjustments take place in
parallel. The algorithm is experimented on both synthetic envi-
ronment and real CTR test benches. Discussion of experiment
results comes right before conclusion.

2. Model Declaration

2.1 Problem Nature

Consider the problem of global optimization as follows. Given
a set of data samples {(i,r;) | r; = f(i) + €(i)} where f is a reward
function representing environment, we attempt to learn from the
reward samples a model f mimicking f so that for any i € R?,
f(i) ~ f(i). Sampling noise € is i.i.d Gaussian noise for all i € R?
in this paper. Consequently 7; stands for a random variable sub-
ject to some distribution specific to i. The sample set in this paper
is defined as S.

S ={Gr) | ri = fQ) + e(i),i € DY) ey

Here D? is some finite discrete space and DY ¢ RY. Learning
a global approximation of f(i) overkills the key problem in this
paper since it only aims at the optimum index i based on S so that
argmax; fay = argmax; f(i). Therefore the optimization goal of
our interest becomes i* = argmax;p. 7;. It is important to beware
that sampling (i, ;) from environment incurs extra cost and |S| is
thereby to be minimized.

2.2 Graphical Representation

This section describes detailed probability interpretation and
inference process of the proposed graphical model, a hybrid
graph with similar property from a Markov random field and its
subcomponents structured as Bayesian networks.
2.2.1 Markov property

Graph construction starts with Markov property among nodes
y; as presented in the example Markov random field by Fig. 1,
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where every y; stands for a hidden node or target node that infers
probability distribution of r; defined in Eq. (1). For problems in
this paper, we appreciate local Markov property held in a Markov
random field. Probability of hidden node y, is independent from
any non-adjacent node given all its neighbors J,,.

Yo L yuezJ,,.|{1/u'EJU}

In other words, belief of a hidden node does not propagate be-
yond adjacent nodes when all its neighbors are certain. The field
probability distribution is then computed in clique factorization
where a clique is defined as a fully connected subgraph. In this
paper cliques are counted based on connected pairwise nodes.
The clique joint probability is defined using a Gaussian function
PWisyisilyy) = expl—Z yir1 — yi)?1.

Here vy, constrains the bonding strength between neighbors.
Joint density over the field can be a product from all the cliques
with y standing for the target node list.

n—1

= = il = Yi) 2
Py, ];[exp( 2 et - i) @
= ,1]—51[5 exp (_%(yi - yj)z) 3)

In general cases, graph nodes y; are not necessarily linearly con-
nected as in the particular example of Fig. 1. A more comprehen-
sive expression of Markov joint density is expressed as Eq. (3) in
clique factors from a pairwise Markov network with E being the
edge set.
2.2.2 Bayesian property

Setup of the Markov network in Fig. 1 oversimplifies reward
patterns by assuming that every hidden node has only one re-
ward sample whose value is certain. In practice, rewards r; are
sampled as a list during learning process and certainty of y; is un-
der impact from multiple samples. So in addition to joint density
over hidden nodes, we introduce Bayesian property by modifying
subcomponents under y; to take care of belief propagation from
reward samples to hidden nodes. Figure 2 denotes the Bayesian
network that expresses such property. Under Bayesian assump-
tion, every target node y; is conditioned on some prior o with
bonding strength yy. The reward list of y; is represented as nodes
r; separately indexed from 1 to m;. Reward nodes r; are mutually



Electronic Preprint for Journal of Information Processing Vol.27

Equivalent to

Generalize (2D)

d=73

Generalize (3D)

Fig. 3 Final Graphical Model - Gaussian Markov Random Field.

conditionally independent given their hidden node y;. Similar to
the Markov network, bonding coefficient y is assigned between
an observed node r; and its target node y;. Plate notation of the
Bayesian network is also provided such that for one target node
there are m samples under the parent.

Factorization property of a Bayesian network says the joint dis-

tribution of a target node y; and its children ry) are defined below.

m;

iy v0.@) = pityo, @) | | pe v i) “
=l

pr?

In Eq. (4), r? is the reward list of y; and r;i) is the jth sam-
ple. Reward list sizes m; are expected to vary among target
nodes. Computing the product of likelihood over observations
using Eq. (4) gets increasingly expensive as sizes of reward lists
grow. Since we are more interested in the distribution of the list
r than individual reward samples ry), we approximate every rj.i)
into the mean ; of r'¥ so as to eliminate child indices of y;.

p(r?, yily, vo, @) = p(yilyo, @) [ p(uily. y)1™ S)

! :
= exp [—57()(% - a)z] exp |~ 2y - ) ©)

where y; = [Z r;i)] /mi 7

=1

Similar to Eq. (3), joint density between connected nodes are
modeled with Gaussian functions subject to bonding strength 7y,
v in Eq.(6). We further work on Eq.(6) by expanding all the
terms in the exponential part.

P, yily, yo, @) ®)

1
= exp {—E[m,-y(yi — 1) +yolyi — a)2]}

1
= exp {—5 ey + v0)y? = Qymips; + 2yo@)y; + voa® + mmt?]}

1 Qymiu; + 2 % + myyu?
= exp {__(mi7 +yo)|yf - AN, ® i ]}
2 myy + o Yo + myy
1 2ymiu; + 2yp
= exp {——(miy +y0) |yp - LRI END, C]}
2 miyy + Yo

Expression (8) indicates that the constant C can easily be
scaled so that the exponential term can be rewritten into a per-
fect square of difference with respect to y;.

_ 1
pr?, yily, o, @) = exp {—5%(% - )+ C’} )
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= exp{C’exp {—%%(yi —ﬂ,-)2} (10)
where ¥; = m;y + yo and fi; = Yt + vo (11)
miy +%o

Expression (11) proves that the complete Bayesian network can
be remodeled with only one edge parameter ¥; and interpolated
sample mean fi;, whose values are y; rescaled by y, yo and . Also
notice that ¥; differs from constant y since it depends on reward
list sizes as given in Eq.(11). The finally simplified Bayesian
network is also displayed in Fig. 2.
2.2.3 Final representation

The final graphical model as Fig. 3 is a consolidated graph with
every hidden node component in Fig. 1 replaced by the simplified
Bayesian representation in Fig. 2. The plate notation shows an ex-
ample of n hidden nodes that are bonded with vy, so that the final
graphical model is composed of n Bayesian structures in recur-
rent pattern. This graph is used to infer distinct distributions of
every hidden node y; based on interpolated means fi; calculated
from samples on y;, meanwhile modeling covariance among y;
as Gaussian kernels. This is equivalent to saying that random
vector y = (Y1, Y2, ...
tion. Therefore node set {y;} constitutes a Gaussian Markov Ran-

, Yy 1s in multivariable Gaussian distribu-

dom Field (GMRF). Total joint probability p(y, rla,y,, yo,y) of
the final graph is computed as product of Bayesian probability in
Eq. (9) on target nodes and Markov joint density counting every
edge using Eq. (3).

P@. My 70,9 = plyy) [ | [P0 uibyvo, ] (12)

To make Eq. (12) explicit, we now plug in both probability fac-
tors from Eq. (10) and Eq. (3) ignoring the constant factor.

Py, rla, vy, yo,y) <

{ﬂ exp [—%yﬁ-(yi —m)z]} {]_[ exp |- 2 - y_,«)z]} (13)

i i,jeE

In Eq. (13) i, j refers to an edge connecting y;, y; given the edge
set E and indices i, j € D? as indicated in Eq.(1). A typical
GMREF node y; has an increasing count of neighbors as dimen-
sion d goes up as is shown in Fig.3. For instance there are 4
neighbors for non-edge nodes in a 2-dimensional graph and 6 in
3-dimensional case. To continue working on Eq. (13), we take
the log likelihood of joint probability p(y, rla,y,,¥o,y) as final
interpretation of the graph likelihood.
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3. Graphical Inference

This section discusses, on top of the proposed graphical model,
how inference is conducted. Now that Eq. (14) gives a compact
representation of model likelihood, inference is now equivalent
to maximizing this likelihood with optimal y; values #;, or a tar-
get vector J, subject to currently available reward lists r. Hy-
perparameters «, y,, Yo, Y are initialized with dimension specific
values to be stated in experiments. Next we show that a closed-
form solution g exists for maximizing the model likelihood. Let
E(y) = =21n p(y, rle, ¥, yo,y) dropping any constant term.

E@) = ) 7w -1’} + > (i -y, (15)

i i.jeE

The optimal § minimizes E(y), which can be efficiently com-
puted using matrix multiplication. Given a graph of n hidden
nodes, let B be an n X n diagonal matrix whose diagonal terms
are given by ¥; in the list ¥ so that B = yI,,. Let K be an n X n
adjacency matrix in which k;; and kj; is y, if node y; and y; are
adjacent otherwise 0. In case of high dimensions (d > 2), graph
node indices are flattened before matrix construction so that tar-
get nodes are indexable with a 1-dimensional array of size n. In
this way, k;; = kj; so K is a symmetric matrix whose diagonal
terms are set to 0. Furthermore, we define k as a length-n vector
consisting of row/column sums of K. So k, = ¥ ; Kyj = %; Kix.
Alternatively, k, can be treated as the neighbor count of the xth
node. Define matrix A = B — K +y,diag(k) where diag(k) is the
diagonal matrix with k, as its xth diagonal element.

A =B - K +vy,diag(k)

vyki + 71 Yy oy,
Yy ’)/ykz +9y, - =y
-y
Yy
Yyk" + Yn
(16)

Having matrix A and B explicitly defined, we now exploit a
provable fact (proof given in Appendix A.1) that E(y) is equiva-
lent to product of the following nested matrices.

A -B
E@y) = (yTﬂT)[_ B B ](ﬁ] a7
=y Ay "By -y Bji+ i Bfi (18)

Recall that y is the target node list and ji is the interpolated
sample means of target nodes. (yTﬂT) stands for horizontal con-
catenation of vectors y' and ' and similarly y and i can be
vertically concatenated as well. Hence Formula (17) produces a
product of three matrices of sizes 1 X 2n, 2n X 2n and 2n X 1.

The optimal § is y that minimizes E(y) and equivalently maxi-
mizes the model probability. There exists a provable closed-form
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solution (proof given in Appendix A.2) of § defined with matrix
notation below.

§ = argmax (log p(r. yly,, ¥, 70, @) (19)
y
= A”'Bjg and 0 = diag(A™") (20)

0'3 is the posterior variance of § taken from diagonal terms of
A~'. Giveny = A™'Bji, E(y) = E, = ji" (B — BA™'B)ji. Let
A = B — BA'B. The model probability distribution is expected
to be

| R
P(r.yly, vy, Yo, @) < exp (— EHTAﬂ) 1)

Formula (21) proves that the final graph in Fig.3 conforms to
GMREF property with multivariate Gaussian distribution such that
Py) ~N (ﬁ A’l). A serves as the precision matrix.

Lastly, computing A defined in Eq. (16) requires sums of rows
in K. This leads to context overhead every time the model gets
updated. We found that approximating A with A’ greatly im-

proves computational efficiency in practice.

A’ = B - K +2dy,I,

2d7y +7 Yy Yy
Yy 2y, +7 o =,
-y,
-y,
2dy, + Y
(22)

A’ replaces neighbor counts &, on the diagonal with constant
2d. This in effect avoids counting neighbors by assuming that ev-
ery d-dimensional GMRF node has 2d neighbors, an assumption
true for all except edge nodes. Therefore we call approximation
with A" an edge normalization method because edge nodes are
treated as if they were non-edge nodes.

To summarize, the following closed-form solution is adopted
as model inference for experiments in this paper.

§ = argmax (log p(r.yly,. v, v0. @) = A" Bfi (23)
y
o = diag(A’™") (24)

7 is model prediction with uncertainty measured by the vari-
ance list 0';.

4. Brief Review on the Multi-armed Bandit

The multi-armed bandit (MAB) is a widely studied [6], [8],
[19] decision making problem associated with environment re-
ward. Given a list of discrete random variables called “arms” {Y;}
whose values represent sample rewards. In general, {Y;} are not of
i.i.d, which leads to the problem nature how to select the arm of
maximum expected reward. Given T rounds of attempts, an ideal
policy collects maximized reward from the best arm. The loss
due to failure in collecting optimal reward is measured in regret.
MAB is formally defined as follows.
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Given a random variable list {Y;} and y; as mean of Y;, a policy
(S
s

decides the index 7(#) of the chosen arm at the rth step and r;

the sample reward observed on the ith arm at step z. Under policy
n(t), the total regret after 7 rounds of observation is defined as
Rr =Tu" - Z,T:1 rf:()t) and " = maxy .

True values of mean y; in MAB are never accessible so u* can
only be approximated through inference. This paper models Y;
as r; defined in Eq. (1). We assume {Y;} ~ N(i1, A~") which the
proposed graph conforms to. With graph node y; corresponding
to belief in r;, the goal of optimization mentioned in Section 2.1
can be redefined under the bandit setting as minimizing the regret
sum Y7, i+ — ry over T iterations.

5. Model Learning

5.1 Decision Making Policy

Stepwise learning occurs online as reward sampling goes on,
so that graph inference updates itself based on Eq. (23) whenever
new information on reward list r is available. In order for on-
line learning to be effective in data prediction, rules are necessary
to regulate which action to take at every step. Concretely, given
model inference §®, 0'(;) by Formula (23), (24) at time ¢, policy
is needed to produce 7", a decision index at which the next sam-
pling takes place. It now resorts to solving an n-armed bandit
problem at every step ¢ in the sense that there are n target nodes
in the graph of Fig.3 to choose from. A decision index 7 ei-
ther exploits current model inference by trusting the largest node

in # or put more emphasis on exploring further rewards from
(1)

. y ) . .
To study the trade-off between exploration and exploitation,

nodes with higher uncertainty based on variance list o

this paper covers three suites of decision making policy as dis-
cussed below.
5.1.1 Acquisition Function

Constructing an acquisition function (ACQ) is a common ap-
proach in Bayesian optimization to determine the next optimal in-
dex to sample at. Commonly used acquisition functions include
probability of improvement (PI), expected improvement (EI) and
upper confidence bound (GP-UCB)[14], [15]. Let a(g, o) be
the generic stereotype of an acquisition function that performs
element-wise operation on input vectors and returns a vector of
the same size so that policy produces m « argmax; a(§, o). Be-
low is parameter setting of three acquisition functions used in this

paper.

j — Fbest —
api(§,0p) = cD(yb—lg)

Ty
where 7.4 1s current best (largest) sample reward across all the

nodes so far and ¢ = 0.01 as constant bias. @ is the standard
Gaussian cumulative density.

ap((§, 0y) = z2030(2) + TyP(2)

where z = (§ — rpess — &)/ 0 and ¢ is the standard Gaussian prob-
ability density.

agp-ucg(¥, o) = § + yB(xX)oy

where x is total number of current observations and S(x) =
2log(dx*n?*/66) [14]. d is dimension of node indices and § = 0.9.
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GP-UCB is considered a common option for Gaussian process
regression and this paper tentatively takes it for comparative ex-
periments on GMRF models.
5.1.2 Epsilon Greedy

Epsilon greedy (EPS) is a classical and naive exploration-
exploitation trade-off heuristic that allocates a probability 1 — €
for exploitation behavior and € for else. In this paper € = 0.2.

7« argmax § with probability 1 — € else random i € D?

5.1.3 Thompson Sampling

Thompson Sampling (TS) tends to trust model inference but
from every node y; takes a random sample based on its posterior
N(@i, o).

7 argmax {y;ly; ~ N(§i, o)}

This paper also designs a more sophisticated variation of Thomp-
son sampling dedicated to the proposed graphical model. Details
are discussed along with experiment setup in the next section.

6. Experiments and Evaluation

6.1 Hyperparameter Tuning

The four hyperparameters a, y,, o, ¥ are manually tuned
through preliminary tests based on synthesized functions separate
from those used in our experiments to ensure effective learning
capability of the graphical model. As a is no more than some
prior conventionally installed in Bayesian networks, we found
during tuning process that setting @ = 0 does not significantly
impact model inference but we preferred some tiny value of a.
Based on Formula (11) it is clear that yy and y serve as smooth-
ing parameters for interpolated means fi; so we want y, to be
much smaller than y to avoid over-scaling y;. Since magnitude
of y is responsible of connection strength ¥; we experimented on
v with several different orders including 0.01, 0.1, 1.0 and found
that ¥ = 0.01 achieves satisfactory inference in reconstructing
unknown functions in one-dimensional cases. Furthermore f; es-
sentially specifies the precision of the Gaussian function in Eq. (9)
so it controls how much confidence hidden nodes gain from ob-
servations. Increasing y makes the Gaussian function skinnier
with respect to y; so that the graph is less confident on observa-
tions because likelihood drops faster as y; deviates from the fi;.
This is typically desired when the environment dimension goes
up because we intend the model to request slightly more obser-
vations to deal with sparsity of the index space caused by higher
dimensions. Therefore we decide y = 0.02d, yo = 0.01y to be
dimension dependent hyperparameters where d is the dimension
count.

We also found that vy, is the most sensitive hyperparameter to
the proposed graph. Intuitively it affects correlation among target
nodes and pretty much resembles the scale parameter in radial-
basis kernel function in Gaussian process. We opted for y, = 0.01
in this paper as we found that large y, cripples inter-node belief
propagation, which is to be avoided when adjacent nodes are ex-
pected to be correlated arms; oppositely too small y, grants too
much correlation to the Markov random field and this makes the
graphical model inclined to make incorrect inference on the truly
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Algorithm 1 Synthetic Function Learning
1: Initialize hyperparameters 7, y,, yo, @

2: Random §, oy « N(0,0?)

3: Average regret R, < 0 > evaluation only
4: for ¢ in iteration 1...T do

5: 7" « from policy > ACQ/EPS|TS
6: Sample reward at index 7 as ryo (f) < f(x")

7: Update graph likelihood , o7y < p(r,yly, ;. 0, @)

8: Current regret R, < max; f(i) — ryo (1) > evaluation only
9: Update R; « R; % + R,% > evaluation only
10: end for

optimal arm whose neighbors are of low rewards. In extreme
cases, huge vy, completely prevents a target node from influenc-
ing neighborhood and tiny y, allows confidence to flow freely due
to too much correlation.

6.2 Experiment 1 - Learning Synthetic Functions

Wrapping up the learning model and decision making policy,
we present a complete online algorithm as Algorithm 1 in which
unknown environment is learnt through incremental reward sam-
pling. For each iteration, the policy decides upon graphical in-
ference the location to sample at, so that the sampled reward as
a training datum helps update model inference which in turn im-
proves decision making in upcoming iterations. The similar pro-
cess goes on for a few dozens of iterations before the model is
accurate enough in approximating the environment by predicting
the optimal index to achieve regret convergence.

The four hyperparameters mentioned in Section 2 require ini-
tialization before any learning takes place. Throughout this pa-
per, @ = 0.001, y, = 0.01, y = 0.02d, yo = 0.017, d representing
index dimension, i.e., dimension of environment as previously
stated. Algorithm 1 is repeated on three different dimensions of
environment so that d = 1,2, 3. For each case, node index i € D“.
Graph node priors are initialized as standard Gaussian. During
every iteration, the policy is responsible for the current index of
sampling the next reward and this policy comes from one of the
three meta-approaches mentioned in Section 5. For evaluation
purpose only, Algorithm 1 also keeps track of regret in every it-
eration and computes the cumulative average from iteration 1 to
t as R, (Lines 3, 8, 9). Ideally average regret close to 0 is ex-
pected after enough rounds of iterations passed. Experiment 1 is
practically designed to compare performance difference among
policies in terms of minimum average regret and how fast that
value is achieved. The synthesized function f used as environ-
ment varies by d and settings are respectively given below.
1D Environment

FG) = ¢lis 1, 07) + ¢G5 o, 073) + Blis i3, 03) + €
w=-3,up=~1,u3 =3,07 =0.15,05 = 1.5,05 = 0.7

Environment f(i) is the sum of three Gaussian density func-
tions with separate means and variances. Sampling noise € ~
N(0,0.025) and is applied to all types of environment in this pa-
per to introduce randomness to f(i). The above setting of f(i)
leads to three maxima and the tested algorithm is challenged to
discover the global maxima y;. Similar composition goes with
environment in 2D and 3D cases, where multivariate Gaussian
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density is administered.
2D Environment
J@) = @G 1, Z1) + ¢l o, Zo) + P(is 3, 23) + €
1 =(=3,3), 112 =(0,0), 3 = (3,-3)

0.025 0 2.25 0 0.25 0
X = ,2p = 23 =
0 0.025 0 2.25 0 025

3D Environment
S = 3.0 X [@@; 1, Z1) + @i o, Xo) + Pli; 3, X3)] + €
m =3,3,3), 42 =(-2,-2,-2),u3 =0,0,0)

300 05 O 0 2 0 0
=10 3 0f[,Z%=({0 05 O0/[,X=(0 2 O
0 0 3 0 0 05 0 0 2

For environment of each dimension, index space D is selected
as discrete linear grid on the interval X = [-5.0,5.0] so that |D%|
is close to 1,000. For d = 1 the grid increment is 0.01. For
d = 2,3 node indices are from X X X and X X X X X with larger
grid increments. In Experiment 1, 7 = 1,150 iterations are tested
ford = 1,2 and 1,075 iterations for d = 3.

Figures 4, 5 and 6 demonstrate cumulative regrets from exper-
iments in all three cases of distinct d. For each case, 30 repeated
trials are conducted and averaged for plotting. It is revealed that
Thompson sampling wins final Ry for all three cases. Some poli-
cies fail to locate the global maximum by getting stuck at local
minima (as caused by larger variances), such as acquisition func-
tion PI for all three cases and EI for d = 3.

6.3 Experiment 2 - Learning Recommendation Scheduling
Experiment 1 shows how a synthesized function can be learnt
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Algorithm 2 Learning Recommendation Scheduling

1: Initialize hyperparameters vy, y,, yo, @

2: Random g, o « N(0,0?%)

3: Impression weights wEO) — 1/n

4: Average regret R, « 0 > evaluation only
5: for ¢ in iteration 1...T do

6: {wf.” } « from modified policy > ACQ/EPS|TS
7. Collect #clicks {CI”|CY = y(f(i), Nw”)} from test bench y » online
8: {r®} « calculate CTRs C\" /Nu!"

9: for i in index 1...n do > offline
10: Sample reward at node index i as rl(.’)

11: Update g, oy « p(r,yly. vy, Y0, @)

12: end for

13: Current regret R, « Nmax,f(i) - C?’) > evaluation only

14:  Update R, « R,=! + R, L
15: end for

> evaluation only

from scratch through reward sampling. However, a weight list
is required for decision making instead of a single index in real
application where a full collection of candidate items are pend-
ing for priority assignment. So instead of an optimal index we
are more interested in knowing the CTR posteriors of all the can-
didate items. This scenario can concretely be described as find-
ing optimal solution of assigning w;N impressions for every item
i to collect maximized user clicks. Experiment 2 presents Al-
gorithm 2 as a modified version of Algorithm 1. According to
setup of Experiment 2, N = 100,000 in analogy to 100,000 ads
as available budget. The major difference in Algorithm 2 from
Algorithm 1 is that it requires weight list w; (Line 6) from pol-
icy. We expect Algorithm 2 to deliver w;N ads on item y; given n
candidate items represented by n graph nodes.

The way of constructing weight list w; differs depending on
which type of policy (ACQ/EPS/TS) is used, as defined in each
case below.

Weights from Acquisition Function

w; is essentially a one-hot vector set at optimal index given by

the acquisition function.

{wilw, = 1.0, wizr = 0}, w = argmax a@, oy)

Weights from Epsilon Greedy

{wilwr =1 - € wizr = €/(n = 1)}, m = argmax a(g, o)

Weights from Modified Thompson Sampling
As graph posterior §, o in fact delivers more information than
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plain prediction on means values y, from which Thompson sam-
pling can be improved through maximized expectation estima-
tion. Suppose a reward sample from node y; = §;. The prob-
ability of node 7 being the largest in the graph p(§; >= y;+) =
[12 p@: >= y,). Let ®; be Gaussian cumulative density of node
y; so that ®(§;) = p(§; >= y;). Then p(§; >= yj+;) is computed
as below.

P >=yje = [ | @40 (25)

Jj#i

Formula (25) is an approximation of de facto reward distribu-
tions which are not independent among nodes. With such approx-
imation, we are able to compute expectation of p(f; >= y;;) as

follows.
Elp(y; >=yjz)] = f P@i >= yjzi) dij; (26)
=f]1wmwi @7)
T

Therefore weights w; are a proportion list by expectation in
Eq. (26).

{wilw; = E[p(yi >= y;2)1}

The CTR test bench y used in Experiment 2 simulates real life
Web advertising environment by generating random user clicks
in the following way. For candidate item y;, given its assigned
impression Nw; and click probability f(i) (Line 7), a recommen-
dation attempt either receives valid user response or not, as a
Bernoulli trial. Consequently the number of clicks C; on item
y; is in binomial distribution of B(Nwy;, f(i)), where f is the 1-
0 max-min scaled version of function f over its discrete domain.
Environment f used for the test bench is the same to those defined
in Section 6.2. Hyperparameters are initialized with the same val-
ues in Algorithm 1. Interval increment X used in Experiment 2 is
adjusted so that |D?| ~ 100 instead of 1,000 as in former experi-
ments. This raises environment sparsity to make it harder for the
model to pick accurate CTR estimation.

In addition to weight assignment Algorithm 2 also differs from
Algorithm 1 in sampling procedure (Lines 9-12), which updates
reward pattern from every node completely offline. This in prac-
tice indicates that the process of updating the model incurs no
extra cost once N ads get distributed because collecting sample
rewards is the only operation that requests data from real world
environment (Line 7). Similar to Experiment 1, environment in
different dimensions are respectively tested and evaluation is av-
eraged across 30 trials. Figures 7, 8 and 9 display average miss-
ing clicks as regrets under different policies. Since Algorithm 2
performs sampling across all graph nodes, it leads to much faster
regret convergence in 7 = 100 iterations. Evaluation shows that
acquisition functions are prone to huge loss from devoting all im-
pressions to wrong indices in higher dimensions, where early-
stage prediction error is much more likely to occur. Thompson
sampling based on posterior expectation stands out as optimal
policy in CTR prediction.

6.4 Further Discussion on Experiments
In Experiment 2, computing the integral in Eq. (26) can poten-
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tially lead to numerically unstable issues due to a small distribu-
tion range [0, 1] of posteriors of y;. This boundary is explained
by CTR reward observations r; (Line 8 in Algorithm 2) because
CTR is strictly within [0, 1]. Instead of directly sampling ob-
served CTR as r; we found that Thompson sampling delivers a
much more stable impression weight list if we apply some map-
ping [0, 1] — R to observations with a logit function so that

r, = logit(§) = ln[ g ]
1 -9
The evaluations in Figs.7, 8 and 9 are all conducted using the
mapped r; to update the graphical model.

While both Algorithm 1 and 2 are designed to be fully capable
of online learning, real-time sampling may not always be achiev-
able for some performance critical applications such as latency
estimation in adaptive routing. Therefore no hard deadline is
mandatory in data collection. Specifically, Line 8 in Algorithm 2
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can be performed in a sporadic pattern without affecting model
inference even if CTR computation is not available during some
interval. The test bench used in Experiment 2 only assumes pe-
riodic CTR updates because laxity in data stream is irrelevant to
the MAB problem itself.

It is worth noting that the environment functions of choice
are intentionally crafted to have steep global and local optima to
make it harder for predictive models to figure out the best index.
We rely on the test bench for absolute possession of the ground
truth f so that cumulated regret can be computed bias free. Es-
timating ground truth in real-world application remains an open
problem. Two common approaches of simulating “golden stan-
dard” CTRs include simply averaging [9] CTRs of an ad i as the
function value f(i) and excluding rarely clicked items [18] from
practical datasets. However, regret calculated from such met-
rics is prone to underestimation when an action leads to a reward
higher than its estimated optimal value in case of extremely noisy
environment. For the purpose of this paper we focus on verifica-
tion of model predictivity and consider data wrangling in appli-
cation dependent scenarios as future work.

7. Relate Works

The overall purpose of designing the proposed solution in this
paper is to relieve the cubic complexity O(m*) nonparametric
Gaussian process (GP) suffers from [11], [19] given a training set
of size m and such complexity exponentially depends on the di-
mension of the domain the environment function is defined over.
Existing works with similar intention include improving GP per-
formance in high-dimensional spaces with low rank matrix ap-
proximation [5] and parallelizable experiment design [4] of ban-
dit optimization under GP setting. Our work differs from exist-
ing works by modeling bandit problems with normally distributed
rewards from a graphical perspective instead of extending tech-
niques in GP regression. Similar to GP, the proposed model
predicts unseen distributions based on seen samples that are col-
lected with certain noise. But our model notably differs from GP
by adhering to discrete space instead of continuous function do-
main. This is because fully interpolating a continuous function
generally overkills the bandit problem in case of a finite number
of arms. Consequently, we restrict the computational cost of in-
ferring posterior distributions to O(n*) with a graph of n nodes in-
dependent from the size of training samples. The proposed model
is thus free from penalty of increasing complexity as the observa-
tion set grows.

As previously stated no rigid parametric assumption is made
when our predictive model learns the “black box” function. How-
ever we do suggest that at least some degree of smoothness be
granted so that the precision matrix can be best potentiated. As
with most stochastic bandit problems this paper assumes sta-
tionery environment only subject to certain noise and considers
that the ground truth is never mutated by actions that have been
taken, which otherwise constitutes a full interactive reinforce-
ment learning problem. Since the proposed model is merely an
abstraction that is applicable to any finite discrete space of ran-
dom variables, it does not theoretically precludes contextual ban-
dit setting. Still, in this work we do not expect any generalization



Electronic Preprint for Journal of Information Processing Vol.27

to contextual bandits due to exploding action space, typically de-
fined by the cross product of the function index space and con-
text space. Efficiently retrieving optimal rewards in contextual
bandit problems has been persistently studied. The major diffi-
culty lies within the complexity of interpreting contextual infor-
mation. Commonly used approaches include directly clustering
context vectors [7], using hierarchical context feature representa-
tion [21] for efficient exploration and combining solutions to the
MAB problem with similarity based ranking algorithm to select
subsets [17] within item-context space.

8. Concluding Remarks

This paper proposes an abstract model with GMRF property
for learning from sparse data samples and predicting distribution
of reward functions at discrete indices. Predictions are used to
optimize the multi-armed bandit problem at best achievable cost
under Thompson sampling as decision making policy. Experi-
ments illustrate that the designated algorithm helps reduce on-
line cost and achieves satisfactory loss convergence under bud-
get constraint in both synthetic Gaussian environment and real-
life scenarios of binomial click patterns. Therefore our solution
is applicable to profit improvement for recommendation engines
as well as other online marketing scenarios that demand seeking
for optimum from unknown environment. Future works include
more in-depth study on more efficient computation of graphical
inference and scalability issues towards more practical use cases
including contextual bandits.
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Appendix
A.1 Proof of the Model Likelihood Factor

Section 3 claims that the negative log likelihood (15) is equiv-
alent to matrix multiplication in Eq. (17). A, B is copied here as
a side note. Proof is given below.

Yoki + V1 Yy =Yy
_Yy YykZ + »}72 e e _yy
A =
~y,
~y,
'Yykn + Vn
4w o . O
0 7
B=| '
Q) 7

Given E@y) = 3 {7y — i)*} + Zijer {vy Wi — )}, we want
to prove E’(y) below is only an alternative expression to E(y).

E'@) =(y"i") (_f; _: ] 6]
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=y Ay —ji"By -y Bji+ i" Bfi

Proof. E(y) =

B=yl,= "By =y Bji = ¥, Viyiili

B=%l,=B=3", 7’

A is symmetric =

y Ay = Z, 1Y; (Vyk + 7))+ Z; /eE( YoYiyj) + Zl /eE( YvYYi)
=

y Ay = T yivgki + X v — 2y Y jeriy)) =

E@Wy = YLiywk + Lo — 2y Yijeewiy) —
23 Fiyilli + Ty Vil =

E'Y) = X, yiveki—2yy Do jee(Wiy ) + Xy Vily? —2yifti + i)
=

E'(y) = XL yiveki = 2vy S jeeiy ) + Xy Vilyi — 1) =

E'Y) =v,(XL, yrki =2 Y jer(yiy ) + Xy Filyi — f1)°

E’'(y) is true.

Recall that Section 3 mentions that k, is neighbor count of
the target node at index x. X, y; 2k; is literally for every node
its value squared times its neighbor count which is the num-
ber of edges it connects. From the edge perspective every edge
< y;,y;j > is counted twice respectively by y; and ;. So we have

27 lylk = Zz/eEy, +Zz/eEyj

S EW) = vy Qi jer ;=2 Xijer Wiy )+ X jer y§)+2,';1 Vilyi—
)

= E'WY) = Yijer VWi —y)* + Xy Filyi — 1)?

= E'Y) = X 7iyi — ) + Zijer voi — yj)*
Therefore E(y) = E’(y) is true. ]

A.2 Proof of the Closed-form Solution

For this proof, we assume A is positive definite, a conclusion
that is proved in Appendix A.3, so that A has a unique Cholesky
decomposition DTD and A = DT D. Also define z = Dy. The
objective is to prove that a closed-form solution exists to mini-
mize E(y) below.

E@)=2"z-fA"BD'z-z' D" B+ Bia
Proof. E,, =ji"(B-BA 'B)ji

As B is effectively a diagonal matrix with diagonal elements
from ¥ it is symmetric as well. With regard to the expression
above, E(y) can be written as factorization plus some remainder
irrelevant to z.

E@)=z2"(z—D"""Bji)—-i"BD 'z + ji' Bji

=7"(z-D""Bjt)- i"BD(z - D' Bj1)
—i"BD'D" "B+ i Bji
=@ -a"BD )z~ D" Bjp) + i" Bi
—ji"BD'D' "B
=@ D" -i"BD YDy - D' By
+i"(B-BA'B)i
=@y -@"BD'D"HD" Dy - D'D'" Bjr)
i"(B - BA™'B)ji
- - BA")YD Dy - A Bjp)
i"(B-BA™'B)ji
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In the above expression the transpose matrix of i’ BA™!
A-'TBTji. As A is symmetric A~! is symmetric as well. There-
fore A" "BTji = A" Bji.

Now it is easy for us to have [(y™ — i" BA")DT|" = D(y™ -
= D(y— A~'Bji), which indicates a dot product of the
same vector, or the L2-norm of vector D(y — A~ Bji).

E@) = [Dy-A"'Bp + 3" (B-BA™'B)a

Minimizing E(y) requires that (y — A~'Bji1) = 0. Now we are
ready forjj = A"'Bji and E,;, = i" (B — BA™'B)ji. o

A.3 Proof on Positive Definiteness

Appendix A.2 assumes positive definiteness on A, a necessary
condition for A to possess unique Cholesky decomposition in the
form of D™D
Definition. A symmetric n X n matrix A is positive definite if the
scalar v" Av is strictly positive for arbitrary non-zero vector v.

v"Av > 0 where v € R" and v; # 0

The objective of this section is to prove that A is positive def-
inite. Let v be a size-n non-zero real vector. Based on how A is
constructed in Eq. (16), v" Av can be expanded as follows.

Proof. A is positive definite.

T A = 3 o (yki + T+ ) (=vu) + Y (=00

i=1 i,jeE i,jeE

= Z v; yyk +Zv Vi ZZ yyviv; (E is the edge set)

i,jeE

As discussed in Section 2.2.2 ¥; = m;y + yo. m; is the sample
size of target node y;. As hyperparameters y and 7y are always set
to be positive and Jv; # 0, we prove that 37| vlz)?, > 0. Applying
the similar trick to Appendix A.1, we know ! | lyyk iterates all
target nodes in the graph and sums up v? 7Yy times neighbor count

of node y;. Again from an edge perspective, every edge i, j € E
Zz;eEU Yy + Zz]eEU Yy-

-2 Z Yyvivj = Z vl-zyy + Z v?yy -2 Z YyUiv;

is counted twice so that 3}/, v7y,k;

> vk

i=1 i,jeE i,jeE i,jeE i,jeE
= Zv vyki =2 Z Yyoivj = Z vy (i — vj)
i,jeE i,jeE
=0 Av > Zv vyki =2 Z YyUivj = Z vy (Ui = v]) >0
i,jeE i,jeE
Therefore v™ Av > 0 is true. A is positive definite. O
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