
A Scheme to Improve Stream Data Analysis Frequency for
Real-time IoT Applications

Chaxiong Yukonhiatou1 Tomoki Yoshihisa2 Tomoya Kawakami3 Yoshimasa Ishi2

Yuuichi Teranishi4,2 Shinji Shimojo2

Abstract: Due to the recent prevalence of IoT (Internet of Things) devices, stream data such as video data or sensor
data are collected and analyzed for real-time applications. The frequency of analysis (analysis frequency) is one of
the main factors to improve performances of some applications. For instance, the probability to identify a person in
real-time can increase by frequently analyzing images got from surveillance cameras. However, communication ca-
pacities between IoT devices and processing servers limit the numbers of data to be collected in real-time and suppress
analysis frequencies. To break this limitation, we propose an efficient data collection scheme with progressive quality
improvement approach. In our proposed scheme, each data source produces some data of those qualities are lower than
original data such as low resolution image data. Only the cases where higher quality data are needed for analyses, pro-
cessing servers progressively collect them. Thus, our proposed scheme reduces average data amount of collection and
data collectors can collect a larger numbers of data in real-time. We measure the analysis frequency of our proposed
scheme in our developed simulator and confirm that our proposed scheme can improve the frequency.

1. Introduction
Recently, various IoT devices such as cameras and weather

sensors connect to the Internet. These things are now attract-
ing a lot of attention. These things generate stream data such
as video data or temperature data and act as stream data sources.
In most IoT applications, processing servers collect stream data
from these IoT devices continuously and analyze them in real-
time. The frequency of analysis (analysis frequency) is one of
the main factors to improve performance of some applications.
For example, suppose the case where a processing server receives
video data continuously from surveillance cameras and analyzes
image data of each frame to identify recorded people. Number
of the people identified increases by frequently analyzing image
data, since they are moving and the probability to record them
in the video increases. Moreover, the probability to record the
person can increase by collecting video data from more surveil-
lance cameras. Hence, the number of stream data sources to be
collected in real-time is also a factor to improve application per-
formances.

A more frequent data analysis by processing servers causes a
larger data amount of collection. However, communication ca-
pacities between IoT devices and processing servers are limited.
Therefore, a more frequent data analysis causes a longer com-
munication time in cases when stream data sources are stored
on buffers due to the network congestions. Thus, the process-
ing delay of data (from the time of data generation to the time

1 Graduate School of Information Science and Technology, Osaka Univer-
sity

2 Cybermedia Center, Osaka University
3 Nara Institute of Science and Technology
4 National Institute of Information and Communications Technology

to finish analyzing the data) increases. In cases of insufficient ca-
pacities of communication buffers, a larger data amount of collec-
tion causes data loss since the collected data cannot be stored to
the buffers. To reduce the processing delay, many schemes have
been proposed ([5], [7], [8]). These schemes degrade qualities
of data, such as resolutions for image data, to reduce data to be
collected and achieve a shorter delay. Quality degradations result
in performance degradations of IoT applications. Applications
can improve their performance by reducing data to be collected
with a higher analysis frequency or a large number of stream data
sources.

In this paper, we propose an efficient data collection scheme
with progressive quality improvement approach. In our proposed
scheme, each stream data source produces some data of those
qualities are lower than original data such as low resolution im-
age data. Only the cases where higher quality data are needed
for analyses, processing servers progressively collect them (addi-
tional explanation in subsection 1). Thus, our proposed scheme
reduces average data amount of collection and data collectors can
collect a larger numbers of data in real-time.

The rest of this paper is organized as follows. In Section 2,
we introduce some work that are related to our proposed scheme.
In Section 3, we explain our assumed system environments. Our
proposed scheme is explained in Section 4, and evaluated in Sec-
tion 5. Finally, we will conclude the paper in Section 6.

2. Related Work
Various methods to faster analyze stream data have been pro-

posed. A two layer system architecture for stream data analysis
is proposed in [1]. In the first layer, the system executes pre-
analyses to received data and determines whether proceed to main

© 2018 Information Processing Society of Japan

― 1205 ―

「マルチメディア，分散，協調とモバイル
(DICOMO2018)シンポジウム」 平成30年7月

analysis executions in the second layer. The proposed system ar-
chitecture can reduce processing loads since the system does not
execute redundant main processes. Though the method divides
processes, data are not divided into some parts.

A two-level indexing structure for data collection is proposed
in [3]. In this method, the data are first stored to the memory hav-
ing tree structures in the first level and then each data segment
passes to the second level (storage) with their reference key tree.
It can faster for data collection due to each data segment can store
separately. Their method is different from our proposed approach
in the point that they reduce data loads in the processing computer
but we reduce processing delays for data analysis.

In [4], queuing models for processing stream data are analyzed
for improving the processing delays and a queuing method is pro-
posed. In the method, received stream data are stored to the
buffer of processing computers. Processing computers use dif-
ferent buffers for each application. By considering queuing situ-
ations of other buffers, the method reduces the processing delays.
In our proposed method, we can adopt this method in process-
ing computers. Our proposed method is different from this in
the point that we reduce processing delays by managing how to
process data.

In [6], A dynamic bitrate adaptation scheme is proposed. In
this proposed method, the approriate bitrate is selected by the
system. By selecting the bitrate, the buffer is occupied to hold
the bitrate and send to the processing computer. In the processing
computer, the data is divided into series of segments then send
to the requested users. This method is similar to our proposed
approach in case of dividing the data into smaller. So. in this
method we can adopt to use in the data sources. Some points
are different from our proposed approach is that their method can
auto adjust the bitrate according to the requested users. For exam-
ple, if user use a smartphone requests for the bitrate in the server,
that user will receive the different bitrate that requested by using
a computer. In our proposed approach, the data quality will be
requested when it is required only.

An efficient CPU resource allocation scheme for stream data
analysis is proposed in [9]. By allocating CPU resources to each
data stream and processing received stream data in a single sched-
uled execution, the scheme can enable faster stream data analysis.
The approach of the scheme is effective CPU resource allocations
and is different from our approach. In our approach, stream data
analysis frequencies are improved by effective communications.

The method proposed in [10], can reduce the bandwidth con-
sumption and the amount of transmitted data keeping the quality
of stream data and communication delays by compressing stream
data. Some points are similar with our proposed method is re-
ducing the communication delays and small data transmissions.
One of the drawbacks of the method is that the data sources need
to compress the data before their transmissions and this causes
further delays.

In addition, some stream data analysis systems have been de-
veloped in ([2], [11]). However, the quality of stream data is
fixed under these schemes. Our proposed approach in this paper
improves the quality progressively.

Processing Computer

Data Sources

Computer
Network

Requested Data

Request

Stream Data Sources

Data
User

Fig. 1: Our assumed system architecture

3. Assumed System
In this section, we explain our assumed system.

3.1 System Architecture
Figure 1 shows our assumed system architecture. An user des-

ignates processes for continuously generated data (stream data) to
a processing computer. The processing computer executes desig-
nated processes every data reception. Such a type of processes is
called stream processing. The processing computer gathers nec-
essary data for processes and executes processes continuously.
The processing computer has a buffer for storing received data
and execute processes for the data.

Some IoT devices such as surveillance cameras continuously
get data about their observations such as video data and act as
stream data sources. They and the processing computer connect
to a computer network. In the cases that the network bandwidth
is stable, the Internet can be assumed to be the computer network.
The data sources and the processing computer can communicate
with each other via the computer network. In this assumption, the
data sources divide their generated stream data into smaller (we
called those divided data are lower data qualities) and then send
to the processing computer continuously. When the processing
computer requests data (this case we called higgher data quality)
to stream data sources, the requested data sources generate the
requested data to their own buffer temporarily and then return to
the processing computer sequentially. The processing computer
receives the requested data to its own buffer and performs pro-
cessing. By processing the requested data, we called progressive
quality improvement.

3.2 Application Scenario
In this subsection, we introduce an application scenario.
Suppose an area in that some surveillance cameras are de-

ployed and a processing computer gathers their recorded video
data. They connect to a designated computer network and com-
municate with each other similar to our assumed system architec-
ture.

As an example application scenario, we assume a person re-
identification system by a face recognition. For this, the applica-
tion designates the process that notifies to the user when the pro-
cessing computer identifies person’ face and determine whether

© 2018 Information Processing Society of Japan

― 1206 ―

the person is registered or not in the video data got from surveil-
lance cameras. To detect faces, the user submits the face images
of registered persons to the processing computer beforehand. The
processing computer continuously analyzes image data got from
surveillance cameras and identifies faces in received image data.
When the processing computer finds faces in an image data, it
checks whether the found faces are those of registered person or
not. If the processing computer detects the faces that are not reg-
istered, it sends a notification to the user by e-mail or other mes-
saging services.

3.3 Research Objective
In the scenario introduced in Subsection 3.2, the application

performance is the probability to identify the person by face
recognition. This can increase by frequently analyzing image
data, since they are moving and the probability to record them
in the video increases. Moreover, the probability to record person
increase by collecting video data from more surveillance cam-
eras.

However, communication capacities between stream data
sources and the processing server are limited. Therefore, a more
frequent data analysis and also a larger number of data sources
cause a longer communication time. Longer communication time
lengthens the delay from the time of data generation to the time
to finish analyzing the data.

Therefore, our research objective is reducing the delay keeping
the application performance.

3.4 Mathematical Definition
In this subsection, we explain a mathematical model for our

assumed system. Suppose that the system has N stream data
sources. These stream data sources cyclically send their observed
data every Cn (n = 1, · · · , N) unit times. Let Dn,a(t) denote
the whole stream data at tth cycle. Whole stream data mean orig-
inal stream data without dividing them into some qualities. The
system can divide Dn,a(t) into Q data Dn,q(t) which is q th
quality data of Dn,a(t). The data amount of Dn,q(t) is denoted
by Sn,q(t). GTn,q(t) denotes the genration time of Dn,q(t) and
Pn,q(t) denotes the time required to process it. STn,q(t) is the
time to start processingDn,q(t) and FTn,q(t) is the time to finish
processing it. Here, FTn,q(t) = STn,q(t)+Pn,q(t). Processing
delaysDelayn,q(t) are fromGTn,q(t) to FTn,q(t) and given by
the following equation:

Delayn,q(t) = FTn,q(t)−GTn,q(t) (1)

In cases that the processing computer completes analyses, total
processing delays for finishing analyses Delayn(t) is given by
the following equation:

Delayn(t) = FTn,Q(t)−GTn,1(t) (2)

The average processing delay for the data source n is:

1

T

T∑
t=1

Delayn(t) (3)

Where T is the final cycle. The objective is maximizing the num-
ber of data sources to process, which corresponds to minimizing

Equation 3.
We give the probability for processes to proceed to the next

level PProbn,p(t) (p = 1, · · · , Q− 1). For example, the proba-
bility to requestD1,2(1) when the processing server finishes pro-
cessing D1,1(1) is PProb1,1(1).

4. Proposed Method
In this section, we explain our proposed method.

4.1 Basic Idea
Generally, data have some qualities. Data analyses can be ap-

plied for each quality and data with the highest quality often give
the best performance for analyses. For example, one of qualities
for image data is resolution. Image data with 640x480 pixel sizes
have a higher quality than image data with 320x240 pixel sizes.
Image analyses to find faces can be applied for various pixel sizes
while a higher resolution image data generally gives a higher ac-
curacy. By finally analyzing data with the highest quality, ap-
plications can achieve the same performance. By using the pro-
gressive JPEG encoding, the image can be decoded at low quality
when the smaller bytes are available. The image can be decoded
at high quality when more bytes are available in addition to the
bytes for the low quality image. When processing computers an-
alyze data sequentially in the order of quality from the lowest
to the highest, they can stop data analyses when the subsequent
analyses for higher quality data are meaningless. For example,
same as the example in the introduction section, suppose the case
that a processing computer analyzes video data to detect faces.
The processing computer first receives the lowest quality image
data of a frame and analyzes the difference from the previous
frame. In case that the difference are small, the processing com-
puter skips the analyses of higher quality image data since new
humans do not appear in the frame because of small difference.
In such cases, the processing computer do not need to receive
higher quality data when subsequent analyses are meaningless.
Therefore, by analyzing data in the order of data quality and stop
analyses when subsequent analyses are meaningless, processing
computer can skip the receptions of higher quality data.

In cases that the probability to proceed to higher quality data
analyses is small, the total amount of received data is reduced,
compared with the case that all quality data are received. Gen-
erally, the amount of a lower quality data is smaller. Therefore,
the data amount to be received is reduced when the probability is
small compared with the processing computer receives the high-
est quality data without consideration of data qualities. Thus,
communication delays are reduced keeping the application per-
formance. We call this approach progressive quality improvement
approach.

4.2 Data Stream Processing
In this subsection, we explain the processes of data collection

in the conventional approach and our proposed approach. In this
example, the data sources are two cameras.

We first explain data streams processing under the conven-
tional approach. Camera 1 sends its recorded video data to the
processing computer. It sends each image data for a frame ev-

© 2018 Information Processing Society of Japan

― 1207 ―

Cameras

Our Approach

1 2

Processing
Computer

Time

D1,a(t)

D2,a
(t+1)

D1,a(t)

D1,a
(t+1)

D2,a
(t+1)

Conventional Approach

D2,a(t)

D1,a(t+1)

D2,a(t+1)

D1,a(t+2)

D2,a(t+2)

Cameras
1 2

Time

D1,1(t)

D2,1(t)

D1,1(t)

D1,1
(t+1)

D2,1
(t+1)

D2,1(t)

D1,1(t+1)

D2,1(t+1)

D1,1(t+2)

D2,1(t+2)

Processing
Computer

D1,2(t+1)

D1,2
(t+1)

D1,1
(t+2)

D2,1
(t+2)

P
ro

c
e
ssin

g de
lay

fo
r D

1 (t+1)

P
ro

c
e
ssin

g de
lay

fo
r D

1 is D
e
lay

n (t)

needs D1,2(t+1)

Fig. 2: Stream data collection of an conventional approach and of
our proposed approach

ery getting it. In the Figure 2, the t th frame data is shown
by D1,a(t) (t = 1, · · · , T). For example, when the frame rate
is 10Hz, Camera 1 sends a frame data every 0.1 sec. Hence,
GT (D1,a(t + 1)) = GT (D1,a(t) + 0.1). In addition, Cam-
era 2 sends its recorded video data to the processing computer.
In this example, the frame rate for Camera 2 is the same as that
for Camera 1, but the time to start sending the video data dif-
fers. After Camera 1 sends D1,a(t), Camera 2 sends D2,a(t).
While both Camera 1 and Camera 2 send data, the input commu-
nication bandwidth for the processing computer is divided into
them. Therefore, the communication speed of Camera 1 de-
creases as shown in the Figure 2. After Camera 1 finishes sending
D1,a(t), the input communication bandwidth is dedicated for the
communication with Camera 2 and the communication speed of
Camera 2 increases as shown in the Figure 2. When the pro-
cessing computer finishes receiving D1,a(t), it starts processing
D1,a(t). While processingD1,a(t), the processing computer fin-
ishes receivingD2,a(t). Since the processing computer processes
D1,a(t) at this time, it remains the received D2,a(t) to its com-
munication buffer and starts processing it after finishing process-
ing D1,a(t). Similarly, while processing D2,a(t), the processing
computer finishes receiving D1,a(t + 1). The processing com-
puter starts processing it after finishing processing D2,a(t). The
processing delay for D1,a(t+1) in this case is shown in the Fig-
ure 2. This is the time from the start of sending D1,a(t + 1) to
the finish of processing D1,a(t+ 1).

Next, we explain data streams processing under our proposed
approach. Similar to the example for the conventional method,
Cameras 1 and 2 send their recorded image data to the process-
ing computer cyclically. Different from the conventional method,
the image data is divided into 2 levels. For example, the data
for the first level is the lowest quality image data and the data
for the second level improves the quality of the data. We as-
sume that the data for the second level only includes the differ-
ence data from the first level and that the amount of the data for
each level is the same. To make the example simple, we assume
that the data amount of each level are just half of the data amount
of D1,a(t) (t = 1, · · · , T). Therefore, the time needed to send
Dn,q(t) (n = 1, 2, q = 1, 2) is the half of the time needed to send
Dn,a(t). Therefore, the communication of D1,1(t) do not over-
lap that of D2,1(t) though the communication of D1,a(t) over-

Start of the
 t th cycle

Get and store
Dn,a(t)

Generate Dn,1(t)
from Dn,a(t)

Send Dn,1(t)
to the processing

computer

Receive the
request of Dn,q(t)

Generate Dn,q(t)
from Dn,a(t)

Send Dn,q(t)
to the processing

computer

Fig. 3: Data sources generation

laps that of D2,a(t). The processing computer does not request
the second level data in the first cycle. An example of the reason
not to request the second level data is that the difference of the im-
age data from the previous image data is not so large. In the t+1

th cycle, the processing computer starts processing D1,1(t + 1)

after finishing receiving it. After processingD1,1(t+1), the pro-
cessing computer requests the second level data. An example of
the reason to request the second level data is that the difference
of the image data from the previous image data is large. When
Camera 1 receives the request for D1,2(t + 1), it starts sending
D1,2(t + 1). To make the example simple, the processing com-
puter does not request the second level data of D2,1(t + 1) in
this case. After receiving D1,2(t + 1), the processing computer
processes it and finish the data analysis of D1(t + 1). The pro-
cessing delay for D1(t + 1) in this case is shown in the Figure
2. This is the time from the start of sending D1,1(t + 1) to the
finish of processing D1,2(t + 1). The D1,2(t + 1) includes only
the data different from D1,1(t + 1). By combining D1,1(t + 1)

and D1,2(t+ 1), we can get the higher data quality.
In this case, the processing delay under our approach is shorter

than that under the conventional approach since the processing
time for D2(t) is reduced.

4.3 Our Proposed Method
In this subsection, we explain the algorithms for our proposed

approach.
4.3.1 Algorithm for Data Sources

Figure 3 shows the flow chart of data sources. When the t th cy-
cle starts, each data source n gets Dn,a(t) from their sensors and
stores it to their storages temporary. First, they generate Dn,1(t)

from Dn,a(t) and send Dn,1(t) to the processing computer.
When the data source n receives the request ofDn,q(t), it gen-

eratesDn,q(t) from storedDn,a(t) and sendsDn,q(t) to the pro-
cessing computer.
4.3.2 Algorithm for Processing Computer

Figure 4 shows the flow chart of the processing computer.
When the processing computer receives Dn,q(t), it processes
Dn,q(t). When q = Q and Dn,q(t) is the final quality data,

© 2018 Information Processing Society of Japan

― 1208 ―

Receive Dn,q(t)

Request Dn,q+1(t)
Finish the
process of
t th cycle

Process Dn,q(t)

Judge the
necessity
of Dn,q+1(t)

Yes

No

Yes

q=Q

Fig. 4: Data processing in the processing computer

the process of t th cycle finishes. Otherwise, the processing com-
puter judges the necessity of Dn,q+1(t). In case that Dn,q+1(t)

is needed for the process execution, the processing computer re-
quets Dn,q(t) to the data source n.
4.3.3 How to Divide Data

In our proposed method, each stream data is divided into some
qualities. We suppose two approaches to divide data.

The first one is the cases that a higher quality data can be con-
structed by combining some data. For example, image data with
640x480 pixel sizes can be constructed by 4 image data with
320x240 pixel sizes. In this case, the data amount of the q th
quality data of the stream data n at the t th cycle is given by:

q∑
i=1

Sn,i(t) + αn,i(t) (4)

Here, αn,i(t) is an overhead caused by combining data.
The second one is the cases that a higher quality data is con-

structed separately. For example, it is difficult to fully decode
image data with 640x480 pixel sizes by combining compressed
4 image data with 320x240 pixel sizes. In this case, the data
amount of the q th quality data of the stream data n at the t th
cycle is given by Sn,q(t).

The application of the stream processing system selects appro-
priate method to divide data.

5. Evaluation
In this section, we show evaluation results of our proposed

method by using our developed simulator.

5.1 Evaluation Setup
In this evaluation, we assume the application explained in Sub-

section 3.2 and use the parameters shown in Table 1. Input Band-
width is the input communication bandwidth for the processing
computer. When the processing computer communicates with
some data sources, the input bandwidth is fairly shared among
data sources. Output Bandwidth is the output communication
bandwidth of each data source. Total data amount is the data
amount of Dn,a(t) (n = 1, · · · , N , t = 1, · · · , T). To make

Table 1: Parameter values

Input Bandwidth 10 [Mbps]
Output Bandwidth 10 [Mbps]
Total Data Amount 12.5 [Kbytes]

Processing Time Ratio 10−6

0

50

100

150

200

1 6 11 16 21 26 31 36 41 46 51 56 61 66
P

ro
ce

ss
in

g
D

el
ay

s
[m

se
c.

]
Process ID

8 Streams

9 Streams

10 Streams

Fig. 5: Processing delays of each process

the evaluation results easily understandable, we set the same data
amount for all data items. We use the first method explained
in the section 4.3.3 to divide data into some qualities and set
αn,q(t) = 0. Processing Time Ratio is the ratio to define the
processing time. The value is Pn,a/Sn,a. We set these parame-
ters considering practical situations.

We use the same values for PProbn,p(t) (p = 1, · · · , Q− 1).
For this, we set the final probability FProb for processes to pro-
ceed to the final level. PProbn,p(t) = FProb1/N .

We simulate the stream processing system for 60 seconds and
get the processing delays.

5.2 Processing Delays
The objective of our proposed method is reducing average pro-

cessing delays. Before taking average values of processing de-
lays, we first check processing delays for each process.

Figure 5 shows the evaluation result. The horizontal axis is
process IDs. Process IDs are given to the processes that contin-
ues to the final level. Process IDs are given separately to each
data source. Thus, all processing delays shown in the figure are
values of Delayn(t). The vertical axis is processing delays for
each process. We show the processing delays for the cases that
the number of the streams is 8, 9, and 10. In this evaluation, the
intervals of data streams are the same and are 100 [msec.] We set
the final probability to 0.7 and the number of the levels is 2 as just
an example.

The processing delays for the case of 8 streams increases in
small process Ids (approx. until 10th ID). After that the process-
ing delays saturate and are almost constant. The system can con-
tinue to process stream data sent from data sources. The process-
ing delays for the case of 9 streams tend to a little longer than
that of 8 streams, but saturate similar to the case of 8 streams.
However, in the case of 10 streams, the processing delays tend

© 2018 Information Processing Society of Japan

― 1209 ―

0

20

40

60

80

100

120

140

1 3 5 7 9 11 13

A
ve

ra
ge

 P
ro

ce
ss

in
g

D
el

ay
s

[m
se

c.
]

Streams

No Level

Final Probability=0.1

Final Probability=0.3

Final Probability=0.5

Final Probability=0.7

Final Probability=1.0

Fig. 6: Average processing delays under different final probabil-
ity

to increase along with the process IDs. This is the probability
that the processing computer finish processing before receiving
the next stream data to process is small and the stream data stored
in the buffer of the processing computer increases. Since the pro-
cessing delays continue to increase, the system will fail in this
case. Therefore, the user of the system should set the number of
the streams less than 10 under keeping other parameters.

5.3 Influence of Number of Streams
The data amount that the processing computer receives in-

creases as the number of streams increases. Thus, the average
processing time is influenced by the number of streams. We in-
vestigate the influence.

Figure 6 shows the result of the average processing delays
changing the number of streams. The herizontal axis is the num-
ber of streams and the vertical axis is the average processing
delays. We simulate the processing delays under different final
probabilities, the final probability is 0.1, 0.3, 0.5, 0.7, 1.0. No
Level (represents the case of conventional approach). The inter-
vals for all data streams are the same and is 0.1 [msec.] The
number of qualities under our proposed method is 2.

A larger final probability values causes a longer delay since
the processing computer finishes processing before receiving the
next stream data to process is large and the stream data stored
in the buffer of the processing computer increases. The average
processing delays under the conventional method increases pro-
portionally as the number of streams increases for the cases where
the number of streams is less than 8, because the data amount that
the processing computer receives increases proportionally. For
the cases where the number of streams is larger than 8, the av-
erage processing delays increase sharply. This is the processing
delays increase as the time proceeds as shown in the case of 10
streams in Figure 5 and the system fails to process stream data
continuously. We can see similar phenomena for the cases of our
proposed method. However, the maximum number of streams
that the system works is larger compared with the conventional
method. For example, in the case where the final probability
is 0.5, the average processing delay sharply increases when the
number of streams is 10. Therefore, the processing computer

0

20

40

60

80

100

120

140

0.05 0.07 0.09 0.11 0.13 0.15

A
ve

ra
ge

 P
ro

ce
ss

in
g

D
el

ay
s

[m
se

c.
]

Intervals

No Level
Final Probability=0.1
Final Probability=0.3
Final Probability=0.5
Final Probability=0.7
Final Probability=1.0

Fig. 7: Average processing delays of different intervals

can collect data from more data sources by using our proposed
method compared with the conventional method.

The average processing delays in the cases of the maximum
number of streams just before the system fails under our pro-
posed method are longer than that under the conventional method
because the processing computer receives a higher quality data
after requesting it to data sources in our proposed method. For
example, in the case where the final probability is 0.5, the av-
erage processing delay is 106 [msec.] of 9 streams under our
proposed method though it is 58 [msec.] of 8 streams under the
conventional method. This is a demerit of our proposed method.

5.4 Influence of Intervals
The processing computer frequently receives data as the inter-

val shortens and the average processing time increases. There-
fore, we investigate the influence of the intervals.

The result of the evaluation is shown in Figure 7. The herizon-
tal axis is the interval values and the average of processing delays
is in the vertical axis. In this evaluation, the number of streams is
8. For our proposed method, the number of levels is 2.

Similar to the previous evaluation result, the system fails when
the interval is excessively short and the average processing time
sharply increases. In the conventional method, the average pro-
cessing delays are almost constant when the interval is larger than
0.1 [msec.]. This is the processing delays sharply increase in the
cases where the processing computer receives the next data dur-
ing processing in the conventional method. In of our proposed
method, the shortest interval that the system works is shorter com-
pared with the conventional method. For example, in the cases
where the final probability is 0.5, the average processing delay
sharply increases when the interval is 0.08. Therefore, the pro-
cessing computer can collect data with a shorter interval by using
our proposed method compared with the conventional method.

5.5 Influence of Number of Levels
The number of levels influences the average processing time.

We investigate the influence.
In the Figure 8, shows the average processing delays under dif-

ferent number of the levels. The horizontal axis is the number
of levels and the vertical axis is average processing delays. The

© 2018 Information Processing Society of Japan

― 1210 ―

0

20

40

60

80

100

120

140

1 3 5 7 9

A
ve

ra
ge

 P
ro

ce
ss

in
g

D
el

ay
s[

m
se

c.
]

Number of Levels

Final Probability=0.1
Final Probability=0.3
Final Probability=0.5
Final Probability=0.7
Final Probability=1.0

Fig. 8: Average processing delays of different stream levels

intervals value is 0.1 [msec.] and the number of streams is 8.
The average processing delay for the case that the number of

levels is 1 represents the average processing delay under the con-
ventional method. The results otherwise are that under our pro-
posed method. When the number of levels is small, the average
processing delays increase as the number of levels increases ex-
cept for the case that the final probability is 0.1. When the num-
ber of level is large, the average processing delays decease as
the number of levels increases. This is the processing computer
should wait for the reception of the requested data and the pro-
cessing delay increases when the number of levels is small. How-
ever, when the number of levels is large, the processing computer
can avoid redundant reception of data and the processing delay
decreases. The effectiveness of the reduction of the processing
delay is large when the number of levels is large. Accordingly, the
average processing delays increase under small number of levels
and decrease under large number of levels.

6. Conclusion
The analysis frequency is one of the main factors to improve

performances of some IoT applications. To improve the analy-
sis frequency, we propose an efficient data collection scheme. In
our proposed scheme, only the cases where higher quality data
are needed for analyses, processing computers progressively col-
lect them. Our simulation evaluation revealed that our proposed
scheme can reduce the communication delay while keeping the
application performances.

In the future, we plan to propose a scheme for the situation
there are some processing computers. In additon, we will con-
sider parallel processing of collected data.

Acknowledgement
This work was supported in part by JSPS KAKENHI Grant

Numbers JP15H02702, JP17K00146, and JP18K11316. Also
this work include the result of NICT Osaka University joint re-
search ”research and development of advanced network platform
technology for large scale distributed computing”.

References
[1] A. Akbar, G. Kousiouris, H. Pervaiz, J. Sancho, P. Ta-Shma, F. Carrez,

and K. Moessner, Real-time probabilistic data fusion for large-scale
iot applications, IEEE Access, vol. 6, pp. 10015-10027, 2018.

[2] C. H. Lu, C. H. Yu, B. H. Chen, I. S. Hwang, and S. S. Huang,
Semi-supervised data stream analytics with balanced recognition per-
formance and processing speed, in 2017 IEEE International Confer-
ence on Consumer Electronics - Taiwan (ICCE-TW), pp. 355-356,
June 2017.

[3] J. A. Colmenares, R. Dorrigiv, and D. G. Waddington, A single-
node datastore for high-velocity multidimensional sensor data, in 2017
IEEE International Conference on Big Data (Big Data), pp. 445-452,
Dec 2017.

[4] J. C. Beard and R. D. Chamberlain, Analysis of a simple approach to
modeling performance for streaming data applications, in 2013 IEEE
21st International Symposium on Modelling, Analysis and Simulation
of Computer and Telecommunication Systems, pp. 345-349, Aug 2013.

[5] J. Xu, Y. Andrepoulos, Y. Xiao, and M. van der Schaar, Nonstation-
ary resource allocation policies for delay-constrained video streaming:
Application to video over internet-of-things-enabled networks, IEEE
Journal on Selected Areas in Communications, vol. 32, pp. 782-794,
April 2014.

[6] P. Zhao, W. Yu, X. Yang, D. Meng, and L. Wang, Buffer data-driven
adaptation of mobile video streaming over heterogeneous wireless net-
works, IEEE Internet of Things Journal, pp. 1-1, 2017.

[7] S. Molina-Giraldo, H. D. Insuasti-Ceballos, C. E. Arroyave, J. F.
Montoya, J. S. Lopez-Villa, A. Alvarez-Meza, and G. Castellanos-
Dominguez, People detection in video streams using background sub-
traction and spatial-based scene modeling, in 2015 20th Symposium
on Signal Processing, Images and Computer Vision (STSIVA), pp. 1-6,
Sept 2015.

[8] S. R. V and M. Dakshayini, Priority based optimal resource reserva-
tion mechanism in constrained networks for iot applications, in 2016
International Conference on Wireless Communications, Signal Pro-
cessing and Networking (WiSPNET), pp. 1228-1233, March 2016.

[9] T. Buddhika and S. Pallickara, Neptune: Real time stream processing
for internet of things and sensing environments, in 2016 IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS), pp.
1143-1152, May 2016.

[10] U. A. Agrawal and P. V. Jani, Performance analysis of real time ob-
ject tracking system based on compressive sensing, in 2017 4th In-
ternational Conference on Signal Processing, Computing and Control
(ISPCC), pp. 187-193, Sept 2017.

[11] Y. Ge, X. Liang, Y. C. Zhou, Z. Pan, G. T. Zhao, and Y. L. Zheng,
Adaptive analytic service for real-time internet of things applications,
in 2016 IEEE International Conference on Web Services (ICWS), pp.
484-491, June 2016.

© 2018 Information Processing Society of Japan

― 1211 ―

