# 半教師あり学習を用いた植物生育モデリングの検討

水野涼介1 柴田瞬1 峰野博史2

**概要**: 国内の農業分野において,熟練農家の高度な栽培技術の喪失の課題を解決するために,経験と勘に頼っていた 栽培技術を形式知化する研究が進められている.高度な栽培技術の中でも,植物の状態に応じて,適切なストレスを 付与するストレス栽培では高糖度な果実を生産できることが知られており,このストレス栽培の形式知化を目的とし た様々な植物水分ストレス推定手法が提案されてきた.水分ストレスの推定結果に基づき灌水制御を自動化すること で熟練農家の負担を軽減するだけでなく,新規就農者でも高品質な果実の安定生産が期待されている.一方で,一般 に熟練農家の高度な果実栽培では,植物の生育状態に基づいて収穫時の果実品質を調節していると言われているが, 果実糖度などの植物生育状態の指標は膨大なラベル付きデータの収集が困難であり,膨大なラベル付きデータを必要 とする既存手法では収穫時の品質調節を目的とした植物生育モデリングは困難であった.そこで,本研究では少量の ラベル付き植物生育状態データからでも,半教師あり学習を用いて高精度に植物の生育状態をモデル化できる手法を 検討する.トマトの積算蒸発散量を目的変数とした基礎評価の結果,提案手法はMLPに比べ MAE で約 37.9%, Stacked LSTM に比べ約 25.6%の誤差を削減できるだけでなく,膨大なラベル付きデータが存在しないことを想定し,ラベル付 きデータを最大 75%削減した場合でも,推定精度を維持できることを確認した.

# Study on plant growth modeling using semi-supervised learning

RYOSUKE MIZUNO<sup>1</sup> SHUN SHIBATA<sup>1</sup> HIROSHI MINENO<sup>2</sup>

# 1. はじめに

近年,国内の農業従事者人口や若年層割合が低下してお り,熟練農家の高度な栽培技術の喪失が課題となっている [1].国内の熟練農家の高度な栽培技術は世界的に高水準な 栽培技術であり,高度な栽培技術は,熟練農家が長い年月 をかけて培った経験と勘に基づいて行われている.そのた め,栽培技術継承のためには経験と勘を充分に培う必要が あり,経験と勘が充分に培われていない新規就農者への継 承には時間を要する.この課題を解決するために,ICT

(Information and communication technology)を用いて,高度 な栽培技術を形式知化する研究が進められている.栽培技 術を形式知化することで,新規就農者であっても,高度な 栽培技術の知見を得ることが可能である.さらには,自動 化することで農業従事者人口の多くを占めている,高齢者 の負担の軽減,新規就農者であっても高品質な果実の安定 生産や安定した収入を得ることが可能である.高品質な果 実や収入を安定して得ることが実現することで,若年層に よる農業のマイナスイメージとして多くあげられる,農業 は重労働である点,所得が不安定である点[2]が解消され, 新規就農者の増加が期待できる.

高度な栽培技術の中でも,植物の状態に応じて適切なス トレスを付与するストレス栽培では,高糖度トマトに代表 される高糖度な果実を生産できることが知られており、果 実の高品質化,果実の市場価値の向上につながることから, 形式知化が期待されている.このストレス栽培の形式知化 を目的とした様々な植物水分ストレス推定手法が提案され てきた.これまでに、植物の茎径や重量から水分ストレス を推定する手法[3]や温度,湿度などの環境データや草姿画 像データ、機械学習を用いて水分ストレスを推定し、推定 結果に基づき灌水制御を自動化する手法が提案されている [4,5]. 一方で,一般に熟練農家の行っている高度な果実栽 培は、植物生育状態に基づいて収穫時の糖度を調節してい ると言われている. また, ICT の発展した現在, 温度や湿 度などの環境データや茎径, 重量などの生育データの自動 計測技術は確立されつつあるが、経時的な糖度の自動計測 技術は現状では確立されていない. そのため, 植物生育状 態の指標である果実糖度は膨大なラベル付きデータの収集 が困難であり、膨大なラベル付きデータを必要とする既存 手法では収穫時の品質調節を目的とした植物生育モデリン グが困難であった.

そこで本研究では、半教師あり学習を用いた植物生育モ デリング手法を検討する.これまでに、半教師あり学習を 用いた植物生育モデリング手法として、Semi-supervised deep state-space model (SDSSM) [6]が提案されている. SDSSM は少量の教師データの下でも、植物状態や気象環境 と経時糖度間の複雑な関係性をモデル化し、熟練農家によ る収穫時果実品質の調節を適切に再現する.また、SDSSM は Neural network (NN)を用いて状態空間モデル (SSM: State

<sup>1</sup> 静岡大学大学院総合科学技術研究科

Graduate School of Integrated Science and Technology, Shizuoka University

<sup>2</sup> 静岡大学学術院領域/JST さきがけ College of Informatics, Academic Institute, Shizuoka University/JST, PRESTO

space model)を表現したモデルであり、少量のラベル付き データと膨大な量のラベルなしデータを用いてデータの複 雑な生成過程や状態遷移をモデル化が可能である.ここで、 SDSSM はラベル付きデータが少量であっても、適切に植物 生育状態をモデル化できるとしたら、SDSSM は経時糖度を 指標とした植物生育モデリングに有効であることが明らか になる.しかし、これまでに行われた SDSSM の性能評価 は少量の経時糖度データと一定量の訓練データを用いた評 価のみであった.そこで、本稿ではトマト栽培時の新たな 実経時データを用いた積算蒸発散量推定を行い、既存手法 との推定精度比較、訓練データ数に応じた SDSSM の推定 性能評価を行うことで半教師あり学習を用いた植物生育モ デリングの検討を行う.

以降,2章では関連技術及び研究に関して述べ,3章では 半教師あり学習を用いた植物生育モデリング手法を述べる. 4章では本手法の基礎評価結果を述べ,最後に5章で本稿 をまとめる.

#### 2. 関連技術及び研究

植物生育モデリングの関連研究として,SSM を用いて, 小麦の成長プロセスをモデル化する研究[7]がある.植物の 生育データをはじめとして,時系列性を持つデータは多く のノイズを含み,高次元なデータであることが知られてい る[8].一方,SSM はノイズに対して頑健,推定値の曖昧性 が評価可能なモデルであり,状態モデルと観測モデルと呼 ばれる2つのモデルで表される時系列統計モデルである. SSM では直接的に観測出来る観測値を観測変数,直接的に 観測出来ない潜在的な状態を潜在変数と仮定することで, 観測値と状態の2種類のモデル化を可能としている.ここ で,観測変数を $x_1, x_2, ..., x_T$ ,潜在変数を $z_1, z_2, ..., z_T$ とすると, SSM のグラフィカルモデルは図1(a)のように表現され, 生成過程は以下の式(1),式(2)で示される.

| $z_t \sim p_{\theta}(z_t   z_{t-1})$ | (1) |
|--------------------------------------|-----|
| $x_t \sim p_{i0}(x_t z_t)$           | (2) |

式(1),式(2) はそれぞれ状態モデル,観測モデルであ る.時点t(t=0,1,...,T)において,潜在変数 $z_t$ は1時点前の 潜在変数 $z_{t-1}$ の条件付き確率分布から生成され,観測変数  $x_t$ は潜在変数 $z_t$ から生成される.また, $\theta$ , $\varphi$ はそれぞれ状 態モデル,観測モデルのパラメータであり,状態モデルに おける潜在変数の初期値 $z_0$ は $x_0 = p(x_0)$ で初期化が行われ る.状態空間モデルにおいて最も単純な線形ガウス状態空 間モデル[9]は以下の式(3),式(4) で表される.

$$z_t = F_t z_{t-1} + v_t$$
(3)  
$$x_t = H_t z_t + w_t$$
(4)

式 (3), 式 (4) における $F_t$ ,  $H_t$ はそれぞれモデルの表現 形式を決める係数行列であり,  $v_t$ ,  $w_t$ はノイズである.こ こで, 植物状態を潜在状態, 植物栽培環境の温度や湿度,



図 1SSM, VAE のグラフィカルモデル

植物の茎径を観測値とすることで、本来観測できない状態 である、植物状態のモデル化が期待できる.

また、状態空間モデルによる時系列解析とその生態学へ の応用に関する研究[10]において,深谷は,状態空間モデル の観測過程と背後にある状態過程・パラメータの構造を分 離したモデル化によって、生態的過程に関する自然な推測 を実現でき、状態空間モデルは生態学においてその重要性 を増していくことを示した.しかし、一般的な状態空間モ デルはデータ構造に線形性を仮定しており、複雑な植物の モデルをはじめとして実問題への応用には表現力が不十分 であると言える. そこで、非線形性を持つデータ構造に対 して時系列データをモデル化する手法として拡張カルマン フィルタ[11]や、非線形なデータ構造における複雑な生成 過程を持つデータに対しモデル化する手法として変分自己 符号化器 (VAE: Variational auto encoder) [12]が提案されて いる. VAE は非線形性を持つデータの深層生成モデルの1 つであり,状態空間モデルと同様に観測変数xと潜在変数 zを考えた時,生成過程は式(5),式(6)で表され,グラ フィカルモデルは図1(b)で表される.

$$z \sim p(z)$$
(5)  
$$x \sim p_{\theta}(x|z)$$
(6)

式(6)における $\theta$ はパラメータであり,潜在変数zはp(z), 観測変数xは $p_{\theta}(x|z)$ から生成される.この時,対数周辺尤 度は式(7)で表され,式(7)を最大化するように学習さ れる.

$$logp_{\theta}(x) = log \int p_{\theta}(x|z)p(z)dz$$
(7)

しかし,  $p_{\theta}(x)$ は解析的に計算困難であるため,  $p_{\theta}(x|z)$ の近 似事後分布として,  $q_{\varphi}(z|x)$ を用いて式 (8) で示す変分下限 (ELBO: Evidence lower bound) を最大化することで学習を 行う.

 $logp_{\theta}(x)$ 

(8)

 $\geq E_{q_{\varphi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\varphi}(z|x))||p(z))$  (6) ここで,式(8)において $D_{KL}$ はKullback-Leibler divergence であり,事前分布p(z)と近似事後分布 $q_{\varphi}(z|x)$ の差異を示す 尺度である.ここで,式(8)における第1項は近似事後分 布 $q_{\varphi}(z|x)$ からサンプリングを行った期待値であり,微分可 能でないため,最適化時に勾配を求めることが出来ない. そのため, $z \sim q_{\varphi}(z|x)$ を確率的なノイズ  $\epsilon$  を用いて, $\bar{z} = \mu(x) + \epsilon \sigma(x)$ と再パラメータ化することで,期待値はモン テカルロサンプリングによって $E_{q_{\varphi}(Z|X)}[logp_{\theta}(x|z)] \cong$ 

 $\frac{1}{r}\sum logp_{\theta}(x|\bar{z})$ と近似でき、勾配を求めることが可能となる.

ここで,従来の VAE では困難であった時系列データを扱う ため, STORN (Stochastic recurrent networks) [13]や DKF (Deep Kalman filters) [14]が提案されてきた.しかし,従来の手法 では,植物データをはじめとして,実世界における複雑な データ生成過程のモデル化には膨大な量のデータが必要で あった.そのため,データ収集コストの高い農業分野にお いては,大量のデータ収集が困難であり,少量のラベルデ ータで高い表現力を持ったモデル化手法が必要となる.

#### 3. 提案手法

# 3.1 概要

本研究では、膨大な量のデータ収集が困難な経時糖度を 用いた植物生育モデリングを実現するため、半教師あり学 習モデル化手法である SDSSM[6]を用いた植物生育モデリ ング手法の検討を行う. SDSSM は NN を用いて SSM を表 現したモデルであり、少量のラベル付きデータと膨大な量 のラベルなしデータを用いてデータの複雑な生成過程や状 態遷移をモデル化が可能である. SDSSM のグラフィカルモ デルを図2に示す.図2においてz,は潜在変数であり,  $x_t$ はラベルデータとしての観測変数, $y_t$ は $x_t$ と潜在変数 $z_t$ を 共有する観測変数, $u_t$ , $s_t$ , $r_t$ はそれぞれ $z_t$ , $x_t$ , $y_t$ に作用 する観測変数である.ラベルデータytと観測変数xtは潜在 変数ztを共有していることから、ラベルデータxtが欠損し ていても、潜在変数を共有する別の観測変数y<sub>t</sub>で潜在変数 z<sub>t</sub>を更新することを可能とする.また,SDSSMは観測変数  $x_t, y_t$ と潜在変数 $z_t$ に対して、それぞれ異なる外部要因が設 定されていることから、モデル化時に各変数の生成過程に 適したデータを設定することで,適切に植物生育モデリン グを行うことが可能であると考える.

そのため、SDSSM を用いたモデル化時に、潜在変数z<sub>t</sub>に 植物状態、ラベルデータx<sub>t</sub>に糖度、ラベルデータと潜在変 数を共有する観測変数y<sub>t</sub>に糖度と類似した植物状態を表す データ、その他の外部変数u<sub>t</sub>, s<sub>t</sub>, r<sub>t</sub>に環境データや生育デ ータを適切に設定することで、糖度データが少量であって も、植物生育モデルを構築することが可能であると考える.

#### 3.2 SDSSM の目的関数と定式化

本節では, SDSSM の目的関数と定式化について述べる. 図 2 における SDSSM の生成過程を式 (9),式 (10),式 (11) に示す.

$$p_{\theta}(z_t|z_{t-1}, u_t) = N(z; \mu_z(z_{t-1}, u_t), \sigma_z(z_{t-1}, u_t))$$
(9)  

$$p_{\theta}(x_t|z_t, s_t) = N(x; \mu_x(z_t, s_t), \sigma_x(z_t, s_t))$$
(10)  

$$p_{\theta}(y_t|z_t, r_t) = N(y; \mu_y(z_t, r_t), \sigma_y(z_t, r_t))$$
(11)

式 (9), 式 (10), 式 (11) はそれぞれマルコフ性を仮定し



図 2 SDSSM のグラフィカルモデル

た状態モデル,観測モデル,観測モデルであり,[6]におい て $z_t$ は潜在変数, $r_t \ge s_t$ , $u_t$ , $y_t$ は温度や湿度など連続デー タを得ることが可能な観測変数, $x_t$ は糖度など連続データ を得ることが可能でない,または,連続データを得るため のコストが高い観測変数を仮定している.また,観測変数  $x_t \ge y_t$ で潜在変数 $z_t$ を共有することで, $x_t$ が欠損していた場 合であっても, $y_t$ を用いて潜在変数の更新を可能とする. ここで, $\mu_z \ge \sigma_z$ , $\mu_x$ , $\sigma_x$ , $\mu_y$ , $\sigma_y$ は式 (12),式 (13),式 (14) で表され, Deep neural networks (DNN)を用いて最 適化することで任意の非線形関数で表現を可能とする.

 $\mu_{z} = NN_{z}(z_{t-1}, u_{t}) \log \sigma_{z} = NN_{z}(z_{t-1}, u_{t}), \quad (12)$ 

 $\mu_x = NN_x(z_t, s_t) \log \sigma_x = NN_x(z_t, s_t), \tag{13}$ 

 $\mu_y = NN_y(z_t, r_t) \log \sigma_y = NN_y(z_t, r_t),$  (14) 式 (12),式 (13),式 (14) において, $x_t$ は欠損のある観測 変数を仮定しており,入力されるデータセットは観測変数  $x_t$ を含んでいるラベル付きデータセット $D_l \ge x_t$ を含まない ラベルなしデータセット $D_u$ の2種類が存在する.そのため, ラベル付きデータセット $D_l \ge$ ラベルなしデータセット $D_u$ それぞれに対し,近似事後分布を用い,パラメータ $\theta \ge \varphi \varepsilon$ 最適化する ELBO である, $L^l(x, y; \theta, \varphi) \ge L^u(x, y; \theta, \varphi)$ を導 出する必要があり,以下の式 (15),式 (16) で表される.  $\log p_{\theta}(x_{1:T}, y_{1:T})$ 

$$\geq \int q_{\varphi}(z_{1:T}|x_{1:T}, y_{1:T}) \frac{p_{\theta}(x_{1:T}, y_{1:T}, z_{1:T})}{q_{\varphi}(z_{1:T}|x_{1:T}, y_{1:T})} dz_{1:T}$$

$$= \sum_{t=1}^{T} E_{q_{\varphi}(z_{t})}[\log p_{\theta}(y_{t}|z_{t}) + \log p_{\theta}(x_{t}|y_{t}, z_{t})]$$

$$-\beta D_{KL}(q_{\varphi}(z_{1})||p_{\theta}(z_{1}))$$
(15)

$$-\sum_{t=2}^{l} E_{q_{\varphi}(z_{t-1})} [\beta D_{KL}(q_{\varphi}(z_{t})||p_{\theta}(z_{t}|z_{t-1}))]$$
$$= -L^{l}(\mathbf{x}, \mathbf{y}; \boldsymbol{\theta}, \boldsymbol{\varphi})$$

 $\log p_{\theta}(y_{1:T})$ 

$$\geq \iint q_{\varphi}(z_{1:T}, x_{1:T} | y_{1:T}) \frac{p_{\theta}(x_{1:T}, y_{1:T}, z_{1:T})}{q_{\varphi}(z_{1:T}, x_{1:T} | y_{1:T})} dz_{1:T} dx_{1:T}$$

$$= \sum_{t=1}^{T} E_{q_{\varphi}(x_{t} | y_{t})} \left[ -L^{l}(\mathbf{x}, \mathbf{y}; \theta, \varphi) + H[q_{\varphi}(x_{t} | y_{t})] \right]$$

$$= -L^{u}(\mathbf{x}, \mathbf{y}; \theta, \varphi)$$
(16)

式 (16) 内 $H[q_{\varphi}(x_t|y_t)]$ は近似事後分布 $q_{\varphi}(x_t|y_t)$ のエントロ ピーであり、 $q_{\varphi}(x_t|y_t)$ の期待値である.ここで、ラベル付 きデータセットの ELBO とラベルなしデータセットの ELBO を用いることで、モデルの学習に用いられる目的関 数は式 (17) で表され、パラメータ $\theta$ と $\varphi$ の最適化が行われ る.

$$J = \sum_{D_l} L^l(\mathbf{x}, \mathbf{y}; \theta, \varphi) + \sum_{D_u} L^u(\mathbf{x}, \mathbf{y}; \theta, \varphi) + \alpha E_{D_u} [-\log q_{\varphi}(x_t | y_t)]$$
(17)

### 4. 基礎評価

#### 4.1 概要

本節では半教師あり学習手法である SDSSM を用いた植物生育モデリング手法の有効性を示すために実施した評価について述べる.半教師あり学習手法である SDSSM を用いた植物生育モデリング手法の有効性を示すため、SDSSM と代表的な深層学習手法である多層パーセプトロン(MLP),時系列データの長期的な依存性を考慮可能な手法である Stacked Long short-term memory (sLSTM) [15]を用いて植物の積算蒸発散量推定精度を比較した.また,SDSSM はラベルデータx<sub>t</sub>が欠損している場合,ラベルなしデータセットを用いて潜在変数z<sub>t</sub>の更新を行う半教師あり学習モデル化手法である.そこで,SDSSM の半教師あり学習性能を検証するため、学習時のラベルデータを間引いたデータセットを作成し、間引き率に応じた推定性能比較を実施した.

植物糖度生育状態の指標である果実糖度は膨大な量の データ収集が困難であるため、代わりに、積算蒸発散量を 推定対象として用いることで、ラベルデータを間引いた際 の推定精度が検証可能であり, SDSSM の半教師あり学習性 能が検証できると考え,本実験では推定対象に積算蒸発散 量を用いた.また,MLPは入力層と出力層の他に隠れ層と 呼ばれる中間層と呼ばれる層を持つことで、任意の連続関 数を近似可能な手法である. sLSTM は LSTM を多層化した ものであり、従来の LSTM に比べより長期的な依存性を考 慮可能な手法である. そのため、従来手法に比べ、時系列 データの長期的な依存性を考慮しつつ、高精度な推定が可 能であることを示すため、基礎評価として MLP、sLSTM を 用いた比較評価を実施した.本実験における MLP と sLSTM, SDSSM の実装には Chainer[16]を用い, CPU Intel Core i7-6700K, GPUNVIDIA Geforce GTX1080 を搭載した PC で実 施した.

精度比較では回帰問題における誤差指標として一般的 である平均絶対誤差(MAE),二乗平均平方誤差(RMSE) を用いた.各指標の算出式を以下に示す.

$$MAE = \frac{1}{N} \sum_{i}^{N} |y_i - \hat{y}_i|$$
(18)

$$RMSE = \sqrt{\frac{1}{N}(y_i - \hat{y}_i)^2}$$
(19)

Nはデータ数, $y_i \geq \hat{y}_i$ はそれぞれ時点iの真値と推定値, $\bar{y}_i$ は真値の平均値である. MAE と RMSE はそれぞれ誤差指標であり,値が小さいほど高精度に推定できたといえる.

#### 4.2 データセット

本節では評価に使用したデータセットについて述べる. データセットには,静岡大学農学部実験圃場における高糖 度トマト低段密植栽培内で収集した実データを用いた.デ ータセットの内容を表1に,栽培データ収集環境図を図3 に示す.実験用植木鉢に植えられたトマト株に対し,無線 散乱光センサノード[17]と茎径計測用レーザ変位センサ

(HL-T1, Panasonic 製)を設置し,実験用植木鉢を電子天 秤(EK-300i, A&D 製)の上に設置した.図3に示した栽 培データ収集環境を図 4に示す栽培実験圃場の8箇所に設 置し、データ収集を実施した. 無線散乱光センサノードで は温度と相対湿度、光量を経時計測した、茎径センサデー タでは茎径を経時計測,電子天秤では株重量を経時計測し た. また, 飽差は無線散乱光センサノードで計測した温度 と相対湿度から算出した値であり,一定の空気中に含むこ とのできる水蒸気量を表し,蒸発散のしやすさに関係する. ここで、糖度は膨大な量のデータ収集が困難であるため、 代わりに、膨大な量のデータ収集が可能な積算蒸発散量を 推定対象として用いることで、ラベルデータを間引いた際 の推定精度が検証可能であり, SDSSM の半教師あり学習性 能が検証できると考え、本実験では電子天秤で測定した株 重量から算出した値である、積算蒸発散量を目的変数とし た.

#### 4.3 **観測変数の検**討

本節では SDSSM を用いた植物モデル化時の各観測変数 の検討について述べる. SDSSM では潜在変数z<sub>t</sub>以外の観測 変数 (x<sub>t</sub>, y<sub>t</sub>, r<sub>t</sub>, s<sub>t</sub>, u<sub>t</sub>) へどの説明変数を割り当てるかの設定 を行う必要がある.本実験における観測変数の内訳を表 2 に示す.本実験では目的変数には積算蒸発散量を用いるた め,観測変数x<sub>t</sub>は積算蒸発散量である.ここで,本稿にお ける積算蒸発散量とは前回灌水時からの積算蒸発散量を示 す.また,一般に植物の蒸散は太陽光放射から受ける熱を 分散させる手段のひとつであり,気孔が開くことで行われ ると言われている.同様に,蒸散は葉の内部の水蒸気濃度 と外部の空気の水蒸気濃度との差によって,濃度の高い方 から低い方へ水分子が拡散されることで行われる.そのた め,観測変数x<sub>t</sub>に作用する観測変数s<sub>t</sub>は光量と飽差,灌水後

| 表 1 データセット内容 |                              |  |  |  |
|--------------|------------------------------|--|--|--|
| 項目           | 内容                           |  |  |  |
| 目的変数         | 積算蒸発散量[g]                    |  |  |  |
|              | 温度[℃], 相対湿度[%],              |  |  |  |
| 説明変数         | 光量[V], 飽差[kPa], 茎径[V],       |  |  |  |
|              | 灌水後の経過時間[分]                  |  |  |  |
| データ周期        | 2 分                          |  |  |  |
| データ収集期間      | $2017/05/18 \sim 2017/07/24$ |  |  |  |
| データ収集時間      | $7:00 \sim 19:00$            |  |  |  |



図 3 栽培データ収集環境図



図 4 栽培実験圃場

の経過時間とした. 植物の水分ストレスは茎径と密接な関 係があることが知られており, 植物の茎は水分ストレスの 付与に伴い縮小する[18,19]. したがって, 茎径は間接的に 植物状態を示しており, 積算蒸発散量と潜在変数 $z_t$ を共有 可能であると考え, 観測変数 $y_t$ は茎径とした. また, 茎径 の変化は蒸散が行われ, 植物の根から水分を茎や葉に押し 上げる性質に強く依存すると考えられる. そのため, 観測 変数 $r_t$ は積算蒸発散量に作用する観測変数 $s_t$ と同様の光量 と飽差, 灌水後の経過時間とした. 植物状態である潜在変 数 $z_t$ に作用する観測変数 $u_t$ へは環境データである温度と相 対湿度, 光量を用いた.

#### 4.4 SDSSM による積算蒸発散量推定性能比較

既存手法である MLP と sLSTM での積算蒸発散量推定精

|                | 表 2 観測変数内訳                     |
|----------------|--------------------------------|
| 観測変数           | データ種類                          |
| x <sub>t</sub> | 積算蒸発散量[g]                      |
| $y_t$          | 茎径[V]                          |
| r <sub>t</sub> | 光量[V], 飽差[kPa],<br>灌水後の経過時間[分] |
| s <sub>t</sub> | 光量[V], 飽差[kPa],<br>灌水後の経過時間[分] |
| u <sub>t</sub> | 温度[℃], 相対湿度[%],<br>光量[V]       |

| 表 3   | 訓練・検証・評価デー    | タの内訳   |
|-------|---------------|--------|
| データ種類 | 実験用植木鉢番号      | データ数   |
| 訓練    | 1, 3, 4, 6, 7 | 48,600 |
| 検証    | 5, 8          | 19,440 |
| 評価    | 2             | 9,720  |



図 5 既存手法と提案手法の推定誤差

度と SDSSM を用いた積算蒸発散量推定精度を比較する. それぞれの手法はデータセットを訓練データと検証データ, 評価データに分け、訓練、検証データでモデルの学習を行 い,評価データを用いて推定精度を比較した.表3に訓練 データと検証データ,評価データの内訳を示す.また,MLP と LSTM の説明変数には表 1 内の説明変数を用いた. 既存 手法と提案手法の推定誤差として、MAE と RMSE を図 5 に示す.提案手法の MAE は 2.44 と推定誤差が低く, MLP に比べ約 37.9%, sLSTM に比べ約 25.6%の誤差を削減でき た. RMSE においても提案手法は 4.03 と低く, MLP に比べ 約 24%, sLSTM に比べ約 5.3%の誤差を削減できた. ここ で,図7に評価データにおける2017年6月11日の真値と SDSSM, sLSTM の推定値の推移を示す. 図 7 から sLSTM は灌水からの時刻が0であるときに約1,灌水からの時刻 が0以外のときに約10を出力するという過学習をしてい ると考えられる.一方, SDSSM は過学習せず積算蒸発散量 を追従できていることがわかる. そのため, SDSSM は過学 習が起きにくい頑健なモデルであることが明らかとなり、



SDSSM を用いて作成した植物の生育モデルは RL における環境やシミュレータへの応用が期待できる.

#### 4.5 学習データ数に応じた SDSSM 性能比較

SDSSM はラベルデータxtが欠損している場合, ラベルな しデータセットを用いて潜在変数ztの更新を行う半教師あ り学習モデル化手法である. そこで, SDSSM の推定精度と 学習時のラベルデータ数の関係を分析するため、学習時の ラベルデータを間引くことでデータ数を削減した場合の推 定精度を分析した. 訓練データと検証データ, 評価データ の分け方は表3に示す.ラベルデータの間引き率は0%, 25%, 50%, 75%とし, 植木鉢ひとつ当たりのデータを連続 した4ブロックに分割し、ブロック群を作成し、間引き率 25%ではブロック群における先頭の1ブロック,間引き率 50%では先頭と3番目のブロック,間引き率75%では先頭 の3ブロックを単純に間引いた.また、最後のブロック群 における4番目のブロックは間引かずラベルデータとした. 植木鉢ひとつ当たりの間引き率とラベルデータ数を表 4 に示し、ラベルデータの間引き率に対する推定誤差を図 6 に示す. 図 6 からラベルデータを 75%間引いた MAE は 3.16, RMSE は 4.87 であり、ラベルデータの間引き率 0% における MAE は 2.44, RMSE は 4.03 である. SDSSM では 間引き率の増加、ラベルデータの減少に伴い、真値との誤 差が大きくなる傾向があるが、低い推定誤差を維持してい ることがわかる.したがって、SDSSM ではラベルデータが 欠損している箇所が存在しても,潜在変数を共有する別の 観測データを用いて植物生育モデリングが行えることが明 らかになった. SDSSM を植物生育モデリングに用いること で、糖度のような収集コストが甚大であり、大規模なデー タ数の確保が困難なデータに対し,積算蒸発散量と茎径の ようにデータから得られる潜在変数が類似しているデータ していると考えられるデータを用いることで、データの欠 損を補い、高精度な推定が期待できる.

表4植木鉢ひとつあたりの 問己き率とラベルデータ数

|      | 間別を手とう | ~~ / / 妖 |        |
|------|--------|----------|--------|
|      | 植木鉢ひと  |          |        |
| 間引き率 | つあたりの  | 訓練デー     | 検証デー   |
| [%]  | データ数   | タ数[件]    | タ数[件]  |
|      | [件]    |          |        |
| 0    | 9720   | 48,600   | 19,440 |
| 25   | 7200   | 36,000   | 14,400 |
| 50   | 5040   | 25,200   | 10,080 |
| 75   | 2520   | 12,600   | 5040   |



図 6 ラベルデータの間引き率に対する推定誤差

## 5. おわりに

本研究では、膨大な量のデータ収集が困難な糖度データ を用いた植物生育モデリングを実現するため、半教師あり 学習モデル化手法である SDSSM を用いた植物生育モデリ ング手法を検討した.トマト栽培時に収集した実データに よる基礎評価を行った結果、提案手法は深層学習の代表的 な手法である MLP に比べ MAE で約 37.9%、ネットワーク 内部に再帰構造を持ち、長・短期記憶が可能な LSTM を多 層化した sLSTM に比べ、MAE で約 25.6%の誤差を削減で

きることを確認した.また,訓練・検証データのラベルデ ータを間引き,間引き率に応じた SDSSM 推定精度の分析 を行った結果,ラベルデータが約 75%欠損していても, SDSSM は潜在変数を共有する別の観測変数を用いて潜在 変数を更新し,推定精度を維持することを確認した.その ため,農業分野をはじめとした大規模なデータ収集コスト が大きい分野において有効な手法であると考えられる.今 後,糖度データを用いた半教師あり学習性能の比較を行う ため,実データの拡充を進めるとともに,植物モデリング 時に画像データから得られる萎れ特徴量[20]を SDSSM へ の重畳手法の検討を行い,更なる植物生育モデリング精度 の向上を目指す.

### 謝辞

本研究は JST さきがけ(JPMJPR15O5)の支援を受け実施されたものである.また,栽培データ収集環境をご提供いただいた静岡大学農学部の鈴木教授,鈴木様,澤村様に深い感謝の意を表する.

#### 参考文献

- 農林水産省:農村の現状に関する統計,農林水産省(オンライン),入手先<http://www.maff.go.jp/j/tokei/sihyo/data/12.html>(参照:2018-02-13).
- [2] 農研機構:青年による農業のイメージ評価,農研機構(オン ライン), < http://www.naro.affrc.go.jp/project/results/laboratory/ narc/1995/narc95-2-215.html>(参照 2018-05-01).
- [3] 大石直紀:トマトの養液栽培における水分ストレスに応じた 給液制御システムの開発(1) 茎径変化による水分ストレス の非破壊評価,生物環境調節, Vol.40, No.1, pp.81-89 (200 2).
- [4] Kaneda, Y., Shibata, S., and Mineno, H: Multi-modal sliding window-based support vector regression for predicting plant wa ter stress, KNOSYS, Vol.134, pp.135-148(2017).
- [5] 若森和昌,柴田瞬,峰野博史:深層学習を用いた植物の水分 ストレス推定手法の検討,DICOMO2017, pp.199-206 (201 7).
- [6] Shibata, S., Mizuno, R., and Mineno, H.: Semi-supervised dee p state-space model for plant growth modeling, (submitted to Knowledge-Based Systems)
- [7] Chen, D., Dawei, H., Yuming, F., et al.: Analysis and optimiz ation of the effect of light and nutrient solution on wheat gro wth and development using an inverse system model strategy, Computes and Electronics in Agriculture, Vol.109, pp.221-231 (2014).
- [8] Martin, L., Lars, K., and Amy, L.: A Review of Unsupervised Fearutre Learning and Deep Learning for Time-Series Modling, Pattern Recognition Letters, Vol.42, pp.11-24(2014).
- [9] Sam, R., Zoubin, G.: A Unifying Review of Linear Gaussian Models, Neural Computation, Vol,11, No.2(1999).
- [10]深谷肇一:状態空間モデルによる時系列解析とその生態学への応用,日本生態学会誌,Vol.66, pp.375-389(2016).
- [11]Andrew, J: Stochastic processes and filtering theory, Courier c orporation(2007).
- [12]Kingma, D., Welling, M.: Auto-Encodig Variational Bayes, arX iv preprint, arXiv: 1312.6114(2013).
- [13] Justin, B., Christian, O.: Learning Stochastic Recurrent Networ ks, arXiv preprint, arXiv: 1411.7610(2015).

- [14]Krishnan, R., Shalit, U., and Riedmiller, M.: Deep Kalman filt ers, arXiv preprint arXiv: 1511.05121(2015).
- [15]Sepp, H., Jurgen, S.: Long-short-term memory, Neural Comput ation, Vol.9, No.8(1997).
- [16] Tokui, S., Oono, K., Hido, S., et al.: Chainer: a next-generatio n open source framework for deep learning, Proc. workshop o n machine learning systems in the twenty-ninth annual confere nce on neural information processing systems, pp.1-6(2015).
- [17] Ibayashi, H., Kaneda, Y., Mineno, H., et al.: A Reliable Wirel ess Control System for Tomato Hydroponics, MDPI Sensors, Vol.16(2016).
- [18]Wang, X., Meng, Z., Lv, M., et al.: Determination of a suitabl e indecator of tomato water content based on stem diameter v ariation, Scienctia Horticluturae, Vol.215, No.267, pp.142-148(2 017).
- [19]Meng, Z., Duan, A. and Chen,D.: Suitable indicators using ste m diameter variaton-direved indices to monitor the water status of greenhouse tomato plants, Plos One12.2(2017).
- [20]柴田瞬,峰野博史: Optical Flow を用いた植物萎れ具合の推定, DICOMO2016, pp.66-72 (2016).