
Proposal of Publish/Subscribe Communication Framework
for Circuit Components on FPGA

Kenta Arai1,a) Takeshi Ohkawa1,b) Kanemitsu Ootsu1 Takashi Yokota1

1. Introduction
Publish/Subscribe communication model [1] is widely recog-

nized as a model to represent data flow effectively. In the model,
subscribers receive only the necessary topics among the infor-
mation sent by publishers. This represents the natural structure
of information processing in the era of big data. This model is
used in various fields to construct a parallel distributed processing
system. For example, it is employed by ROS (Robot Operating
System) [2], which is one of the most popular robotics frame-
works. ROS improves scalability, expansibility and resusability
of robot software parts by designing and implementing commu-
nication among a lot of software processes.

On the contrary, FPGA (Field Programmable Gate Array) is
expected as an energy-efficient platform. However, it is difficult
to introduce FPGA into a system in many situations since the
productivity of circuit design is low. This is mainly due to poor
portability of circuit modules (IPs: Intellectual Property) in cur-
rent FPGA design environment.

We propose a method of designing a parallel distributed system
on FPGA, based on Publish/Subscribe communication model.
This paper discuss a method of realizing Publish/Subscribe com-
munication on FPGA.

2. Framework for Publish/Subscribe Commu-
nication Model

2.1 Publish/Subscribe Communication Model
In Publish/Subscribe communication model, multiple pro-

cesses communicate with each other. Processes communicate via
logical channel called “Topic“. A subscriber (a receiver process)
subscribes to a topic in advance, in which the subscriber is inter-
ested. When a publisher (a sender process) publish data to the
topic, subscribers receive the data from the topic.

2.2 Requirements for the Framework
In order to realize a framework for Publish/Subscribe commu-

nication in circuit components on FPGA, it is necessary to satisfy
the following minimum requirements.
(1) A process can receive data from a topic, to which the process

1 Graduate School of Engineering Utsunomiya University, Yoto 7–1–2,
Utsunomiya, Tochigi, 321–8585, Japan

a) kenta@virgo.is.utsunomiya-u.ac.jp
b) ohkawa@is.utsunomiya-u.ac.jp

process:

publisher manager

subscriber manager

switch

Pub/Sub framework

…
…

topic(buffer):

Fig. 1 Framework for Publish/Subscribe communication

subscribed in advance.
(2) A process can publish data to a topic.
(3) Multiple processes can publish or subscribe to a topic.

Figure 1 shows the framework for communicating among pro-
cesses. In our framework, a topic consists of a set of FIFO buffers
that correspond to the publisher and subscriber, respectively. If
the topic has M publishers and N subscribers, it employs M FIFO
buffers for input, N FIFO buffers for output, and a switch function
so that it offers M × N communication.

To communicate with this framework, publishers write data to
upper FIFOs and subscribers read from lower FIFOs in the fig-
ure. The switch delivers data from upper FIFOs to lower FIFOs.
This function satisfies the requirements of (1), (2). Also, by en-
abling M × N switching between FIFOs, M × N communication
is realized. This function satisfies the requirements of (3).

3. Example using the Framework
3.1 Design of Parallel Processing System

As a design example using the above framework, we show a
system that resizes an image. Image resizing is used in image
recognition processing with local feature descriptor. Figure 2
shows the Publish/Subscribe communication model of the sys-
tem. The system resizes an image to four resized images, which
are different in size. A master process publishes an original image
to a topic. Four worker processes receive the image and generate
resized images at different scales respectively.

Asia Pacific Conference on Robot IoT System Development and Platform 2018 (APRIS2018)

42ⓒ 2018 Information Processing Society of Japan

3.2 System Architecture
Figure 3 shows the block diagram of the system that is designed

with the proposed framework. This framework has 5 FIFO buffers
for Publishers and 8 FIFO buffers for Subscribers. The number
written on the FIFO buffers in the figure are the ids of topics.
Topic 1 is an channel for an original image, whose publisher is
the master and subscribers are workers 1 to 4. Topic 2 to 5 are
channels for resized images, whose publisher is each worker and
subscriber is the master.

master

worker
1

worker
2

worker
3

worker
4

resized image 1

original image

process:

topic(buffer):

resized image 2

resized image 3

resized image 4

Fig. 2 Publish/Subscribe communication network of image resizing system

N

publisher

subscriber
switch

Pub/Sub framework

1

2

3

4

5

1

1

1

1

2

3

4

5

1 2 5-: original image : resized image

master

worker 1

worker 2

worker 3

worker 4

Fig. 3 Block diagram of image resizing system using proposed framework

4. Evaluation
4.1 Experimental Setup

This section describes the evaluation about the switch of the
designed framework. The evaluation was made on hardware re-
source utilization and estimated clock period. In this evalua-
tion, the proposed framework is implemented on Xilinx Kintex-7
FPGA (XC7K325T-2FFG900C), on Genesys 2 board [3] (Digi-
lent inc.). The switch block was implemented with C++ language
using Vivado HLS 2018.1 (Xilinx inc.).

4.2 HLS code example
Figure 4 shows a part of implementation. In this sample code,

two publishers and three subscribers are connected as written at

1 ap_uint<8> buf;
2 void pubsub_framework(
3 // topic for publisher
4 hls::stream< ap_uint<8> > &ptopic0,
5 hls::stream< ap_uint<8> > &ptopic1,
6 // topic for subscriber
7 hls::stream< ap_uint<8> > &stopic1,
8 hls::stream< ap_uint<8> > &stopic00,
9 hls::stream< ap_uint<8> > &stopic01,

10){
11 #pragma HLS INTERFACE ap_ctrl_none port=return
12 if(!ptopic0.empty()){ // topic 0
13 buf = ptopic0.read();
14 stopic00.write(buf);
15 stopic01.write(buf); }
16 if(!ptopic1.empty()) // topic 1
17 stopic1.write(ptopic1.read());
18 }

Fig. 4 Source code of publish/subscribe communication framework

the arguments. Using type hls stream<> in the function argu-
ment, Vivado HLS generates an interface for FIFO buffer. Pragma
indicates that this function always execute without any control
signal. The main body of the function checks if there is any data
published in the publisher buffer. If data exists, the data is read
from the publisher buffer and written to subscriber buffer.

4.3 Results
Table 1 shows hardware resource utilization. The data does not

include resources of FIFO buffers. Both FF and LUT are less than
0.1% of the FPGA device.

Table 1 Hardware resource utilization
Name FF LUT
Expression 0 4
Multiplexer - 130
Register 2 -
Total 2/407600 134/203800

The estimated clock period of the framework is 4.38ns. That is,
the framework works at 200MHz which is the default frequency
of the board.

5. Conclusion
This paper proposes a Publish/Subscribe communication

framework for circuit components on FPGA. Instead of connect-
ing circuit modules at electric signal level, we propose connecting
processes of Publish/Subscribe model. To directly map Publish/-
Subscribe model onto FPGA, we design a framework to realize
Publish/Subscribe communication model of circuit components
on FPGA. This framework is structured with FIFO buffers on the
FPGA. Topics are assigned to FIFO buffers.

The future works are implementing the image resizing system
and comparing the system with conventional implementation.

Acknowledgments This research was supported by the JSPS
Kakenhi grant(15K00068, 16K00068, 17K00072).

References
[1] P. T. Eugster, P. A. Felber, R. Guerraoui, and A. M. Kermarrec, ”The

Many Faces of Publish/Subscribe”, ACM Computing Surveys, vol.35,
no.2, pp.114–131, June 2003.

[2] ROS official page, https://www.ros.org, (accessed July 5, 2018)
[3] Digilent Inc, ”Genesys 2 Kintex-7 FPGA Development Board”, https:/

/store.digilentinc.com/genesys-2-kintex-7-fpga-development-board/,
(accessed July 5, 2018)

Asia Pacific Conference on Robot IoT System Development and Platform 2018 (APRIS2018)

43ⓒ 2018 Information Processing Society of Japan

