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Abstract: In some embedded systems, the latency of the file system’s write() operation is required to be on the order of sub-
milliseconds. However, the latency exceeds a millisecond when a storage access occurs inside write(). Although a pre-allocation 
step is known to eliminate these accesses, we need to confirm its effect. Furthermore, we need to determine whether there are other 
write() operations whose latency also exceed a millisecond. We evaluated the latency of the Ext4 write() operation using 
pre-allocation. The results show that pre-allocation is effective in eliminating storage accesses. We also found that the latency 
exceeded a millisecond due to journaling when another file was operated. Further studies are needed to address this latency. 
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1. Introduction 

Some embedded systems issue periodic I/O requests. When a 
fault related to I/O occurs in these systems, a log of periodic I/O 
data before and after the fault occurrence is useful for analyzing 
its cause. Recording periodic data in response to a fault can be 
implemented as follows: a certain amount of periodic data is 
continually buffered in memory. If a fault occurs, the buffered 
data are first saved in the storage, and then each periodic data 
item that occurs after the fault is periodically saved one by one. 

When a file system is used, data are saved by the write() 
system call. To ensure that periodic data are recorded without any 
loss, the latency of write() must be lower than the cycle time. 
However, the latency of write() can accumulate in different 
layers such as file systems, journaling layers and firmware in 
storage devices. In particular, if a storage access occurs inside 
write(), its latency increases enormously. 

In this paper, we evaluate the latency of the Ext4 write() 
operation. A test program which simulates file system workloads 
of the periodic recording is used in our evaluation. This program 
adopts a pre-allocation approach so that no storage access occurs 
inside write(). Using this program, we determine whether this 
approach eliminates any storage access inside write(). We also 
determine whether there are any write() operations whose 
latency exceeds a millisecond due to other causes. 

2. Related Work 
Schemes to reduce the latency of fsync() were proposed for 

consumer devices [1][2]. The latency of write() was found to 
increase considerably when a kernel thread was performing 
asynchronous I/Os. Therefore, a scheme for reducing this latency 
was proposed [3]. However, none of them focused on the latency 
of write() when the pre-allocation approach is adopted. 

3. Design Issues and Considerations 
Generally, write() returns as soon as its data are written into 

the page cache. However, in some cases, storage accesses occur 
inside write(), and they cause an enormous increase in its 
latency. The latency will get even worse when using NAND flash 
storage, which often shows an unpredictable high access latency. 
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Therefore, we need to design the periodic recording such that 
no storage access occurs inside write(). In particular, block 
allocation inside write() is known to access the storage. This 
storage access can be eliminated by pre-allocating blocks [4]. 
  The other design issues and considerations derived from the 
use case of the periodic recording is as follows: 
 The period of recording time is variable for each fault event, 

and the final file size cannot be determined in advance. 
Therefore, we allocate a predefined number of blocks on the 
basis of the maximum recording time. Unused blocks are 
truncated in the post-processing of each recording. 

 A new fault event may occur as soon as the previous 
recording is completed. Even in such a case, a recording for 
the new event must be started immediately. 

 Monotonic increase in main memory usage is not acceptable 
even when multiple fault events occur successively. 
Therefore, dirty pages in the page cache must be flushed in 
parallel with write() operations. 

 Different fault events are recorded in separate files. 

4. Design 

Figure 1 shows the main sequence of the periodic recording. 
The high-priority thread first allocates a predefined number of 
blocks by fallocate() system call, and then it periodically 
performs write(). Each time after a certain number of 
write() is called, a lower-priority thread flushes file data by 
sync_file_range(). As post-processing, unused blocks are 
truncated by the ftruncate() system call. In addition, since 
sync_file_range() leaves metadata unflushed, all dirty 
metadata are flushed by fsync() in the post-processing. 

 
Figure 1: The main sequence of the periodic recording 

5. Evaluation 
  Using a test program based on the design mentioned in Section 
4, we evaluated the latency of write(). We also evaluated the 
latency of fallocate() because the first calling of write() 
is delayed until fallocate() is completed. The purpose of the 
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evaluation is to confirm whether the latency of these operations 
can exceed a millisecond due to a storage access or other causes. 

The following four tests must be performed. First, the latency 
of fallocate() must be evaluated since it accesses the 
storage in order to read block group descriptors. Second, the 
latency of fallocate() must be evaluated under a situation 
where a new recording is started before the post-processing of the 
previous recording is completed. Therefore, its latency must be 
evaluated while ftruncate() and fsync() are called on 
another file in the background. Third, we must confirm whether 
the latency of write() increases due to calling of 
sync_file_range() on the same file. Finally, the latency of 
write() must be evaluated while ftruncate() and 
fsync() are called on another file in the background. 

We conducted our evaluation using an embedded board 
equipped with a dual-core processor running at 1.0 GHz, 1 GB 
SDRAM, eMMC 4.5 host controller and 8 GB eMMC 5.0 flash 
storage. Linux 4.4.0 was run on the board. We chose the Ext4 file 
system since it is used as the file system for NAND flash storage 
in many embedded systems. The file system was mounted with 
the ordered journaling mode. The noatime and lazytime mount 
options were turned on in order to reduce the amount of metadata 
updates. Furthermore, we assume that fsync() is appropriately 
called by application programs to flush dirty pages. Therefore, we 
configured the Procfs parameters of virtual memory subsystem to 
prevent the kernel thread from flushing dirty pages. 
  We measured the latency of fallocate() and write() as 
follows. All dirty pages were flushed at the beginning of each test. 
 fallocate(): We measured the latency of 
fallocate() 8000 times to calculate its average and worst 
latency. Each calling of fallocate() allocated 100 MB of 
storage space. We measured the latency with and without the 
background workload, where ftruncate() and fsync() 
were repeatedly called on another file. 

 write(): We measured the latency of sequential writes on a 
pre-allocated file. Each sequential write() was called 
every 5 milliseconds, and 16 KB of data were written each 
time. In addition, sync_file_range() was called by a 
lower-priority thread each time after the written size reached 
2 MB. After calling write() 8000 times, we calculated its 
average and worst latency. We measured the latency with and 
without the background workload, where ftruncate() 
and fsync() were repeatedly called on another file. 
The measurement results of fallocate() are shown in 

Table 1 and Figure 2. Under no background workload, the latency 
was 141 microseconds on average and 4299 microseconds at 
maximum. The worst latency seemed to be caused when the file 
system read a block group descriptor stored in the storage in order 
to construct its cache. On the other hand, fallocate() took 
up to 208 milliseconds under the background workload. Although 
further analyses are yet to be done, the cause of this latency is 
presumed as follows: metadata accessed by fsync() and that 
accessed by fallocate() were stored on the same page. 
Thereby, fallocate() was blocked while accessing the 
metadata until fsync() has completed flushing that page. 

The measurement results of write() are shown in Table 1 

and Figure 3. Under no background workload, no latency spike 
was observed even when sync_file_range() was executed 
in parallel on the same file. However, under the background 
workload, write() took up to 1043 microseconds. This latency 
was caused when the write() operation was blocked while 
obtaining a journal handle. The journal handle was presumed to 
be held by fsync(). We had expected that by pre-allocating 
blocks and withholding timestamp updates with the lazytime and 
noatime mount options, any metadata update inside write() 
would be prevented. However, since write() tried to obtain a 
journal handle, some metadata were presumed to be updated 
inside this operation. Further analyses are necessary to determine 
whether this latency can be reduced. 

Table 1: The latency of the system calls 

Background fallocate() write() 
Avg Max Avg Max 

NONE 141μs 4299μs 178μs 359μs 
Ftruncate + Fsync  813μs 208440μs 181μs 1043μs 

 

 
Figure 2: The latencies of the fallocate() system call 
 

 
Figure 3: The latencies of the write() system call 

6. Conclusion and Future Work 
  In this paper, we evaluated the latency of the Ext4 write() 
system call based on a specific use case. Our results show that by 
adopting the pre-allocation approach, latency increase due to 
storage accesses inside write() does not occur. We also found 
that the latency of write() exceeded a millisecond due to 
journaling when ftruncate() and fsync() were executed 
on another file. In addition, fallocate(), which is necessary 
for subsequent write() calls, showed an enormous increase in 
its latency when ftruncate() and fsync() were executed 
on another file. 

Our future work includes reduction of these latencies and 
evaluation of other file systems. 
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