

Evaluation of Ext4 Write Latency for Real Time Systems

RYO OKABE†1 MASAKATSU TOYAMA†1

Abstract: In some embedded systems, the latency of the file system’s write() operation is required to be on the order of sub-
milliseconds. However, the latency exceeds a millisecond when a storage access occurs inside write(). Although a pre-allocation
step is known to eliminate these accesses, we need to confirm its effect. Furthermore, we need to determine whether there are other
write() operations whose latency also exceed a millisecond. We evaluated the latency of the Ext4 write() operation using
pre-allocation. The results show that pre-allocation is effective in eliminating storage accesses. We also found that the latency
exceeded a millisecond due to journaling when another file was operated. Further studies are needed to address this latency.

Keywords: Performance of File System and Journaling, Embedded Systems, Linux, fallocate, NAND Flash, eMMC

1. Introduction

Some embedded systems issue periodic I/O requests. When a
fault related to I/O occurs in these systems, a log of periodic I/O
data before and after the fault occurrence is useful for analyzing
its cause. Recording periodic data in response to a fault can be
implemented as follows: a certain amount of periodic data is
continually buffered in memory. If a fault occurs, the buffered
data are first saved in the storage, and then each periodic data
item that occurs after the fault is periodically saved one by one.

When a file system is used, data are saved by the write()
system call. To ensure that periodic data are recorded without any
loss, the latency of write() must be lower than the cycle time.
However, the latency of write() can accumulate in different
layers such as file systems, journaling layers and firmware in
storage devices. In particular, if a storage access occurs inside
write(), its latency increases enormously.

In this paper, we evaluate the latency of the Ext4 write()
operation. A test program which simulates file system workloads
of the periodic recording is used in our evaluation. This program
adopts a pre-allocation approach so that no storage access occurs
inside write(). Using this program, we determine whether this
approach eliminates any storage access inside write(). We also
determine whether there are any write() operations whose
latency exceeds a millisecond due to other causes.

2. Related Work
Schemes to reduce the latency of fsync() were proposed for

consumer devices [1][2]. The latency of write() was found to
increase considerably when a kernel thread was performing
asynchronous I/Os. Therefore, a scheme for reducing this latency
was proposed [3]. However, none of them focused on the latency
of write() when the pre-allocation approach is adopted.

3. Design Issues and Considerations
Generally, write() returns as soon as its data are written into

the page cache. However, in some cases, storage accesses occur
inside write(), and they cause an enormous increase in its
latency. The latency will get even worse when using NAND flash
storage, which often shows an unpredictable high access latency.

 †1 Information Technology R&D Center, Mitsubishi Electric Corporation,
Kamakura, Japan

Therefore, we need to design the periodic recording such that
no storage access occurs inside write(). In particular, block
allocation inside write() is known to access the storage. This
storage access can be eliminated by pre-allocating blocks [4].
 The other design issues and considerations derived from the
use case of the periodic recording is as follows:
 The period of recording time is variable for each fault event,

and the final file size cannot be determined in advance.
Therefore, we allocate a predefined number of blocks on the
basis of the maximum recording time. Unused blocks are
truncated in the post-processing of each recording.

 A new fault event may occur as soon as the previous
recording is completed. Even in such a case, a recording for
the new event must be started immediately.

 Monotonic increase in main memory usage is not acceptable
even when multiple fault events occur successively.
Therefore, dirty pages in the page cache must be flushed in
parallel with write() operations.

 Different fault events are recorded in separate files.

4. Design

Figure 1 shows the main sequence of the periodic recording.
The high-priority thread first allocates a predefined number of
blocks by fallocate() system call, and then it periodically
performs write(). Each time after a certain number of
write() is called, a lower-priority thread flushes file data by
sync_file_range(). As post-processing, unused blocks are
truncated by the ftruncate() system call. In addition, since
sync_file_range() leaves metadata unflushed, all dirty
metadata are flushed by fsync() in the post-processing.

Figure 1: The main sequence of the periodic recording

5. Evaluation
 Using a test program based on the design mentioned in Section
4, we evaluated the latency of write(). We also evaluated the
latency of fallocate() because the first calling of write()
is delayed until fallocate() is completed. The purpose of the

write()

sync_file_range()

thread 1

thread 2

fallocate()

ftruncate(), fsync()

(prio: high)

(prio: low)

Asia Pacific Conference on Robot IoT System Development and Platform 2018 (APRIS2018)

ⓒ 2018 Information Processing Society of Japan 36

evaluation is to confirm whether the latency of these operations
can exceed a millisecond due to a storage access or other causes.

The following four tests must be performed. First, the latency
of fallocate() must be evaluated since it accesses the
storage in order to read block group descriptors. Second, the
latency of fallocate() must be evaluated under a situation
where a new recording is started before the post-processing of the
previous recording is completed. Therefore, its latency must be
evaluated while ftruncate() and fsync() are called on
another file in the background. Third, we must confirm whether
the latency of write() increases due to calling of
sync_file_range() on the same file. Finally, the latency of
write() must be evaluated while ftruncate() and
fsync() are called on another file in the background.

We conducted our evaluation using an embedded board
equipped with a dual-core processor running at 1.0 GHz, 1 GB
SDRAM, eMMC 4.5 host controller and 8 GB eMMC 5.0 flash
storage. Linux 4.4.0 was run on the board. We chose the Ext4 file
system since it is used as the file system for NAND flash storage
in many embedded systems. The file system was mounted with
the ordered journaling mode. The noatime and lazytime mount
options were turned on in order to reduce the amount of metadata
updates. Furthermore, we assume that fsync() is appropriately
called by application programs to flush dirty pages. Therefore, we
configured the Procfs parameters of virtual memory subsystem to
prevent the kernel thread from flushing dirty pages.
 We measured the latency of fallocate() and write() as
follows. All dirty pages were flushed at the beginning of each test.
 fallocate(): We measured the latency of
fallocate() 8000 times to calculate its average and worst
latency. Each calling of fallocate() allocated 100 MB of
storage space. We measured the latency with and without the
background workload, where ftruncate() and fsync()
were repeatedly called on another file.

 write(): We measured the latency of sequential writes on a
pre-allocated file. Each sequential write() was called
every 5 milliseconds, and 16 KB of data were written each
time. In addition, sync_file_range() was called by a
lower-priority thread each time after the written size reached
2 MB. After calling write() 8000 times, we calculated its
average and worst latency. We measured the latency with and
without the background workload, where ftruncate()
and fsync() were repeatedly called on another file.
The measurement results of fallocate() are shown in

Table 1 and Figure 2. Under no background workload, the latency
was 141 microseconds on average and 4299 microseconds at
maximum. The worst latency seemed to be caused when the file
system read a block group descriptor stored in the storage in order
to construct its cache. On the other hand, fallocate() took
up to 208 milliseconds under the background workload. Although
further analyses are yet to be done, the cause of this latency is
presumed as follows: metadata accessed by fsync() and that
accessed by fallocate() were stored on the same page.
Thereby, fallocate() was blocked while accessing the
metadata until fsync() has completed flushing that page.

The measurement results of write() are shown in Table 1

and Figure 3. Under no background workload, no latency spike
was observed even when sync_file_range() was executed
in parallel on the same file. However, under the background
workload, write() took up to 1043 microseconds. This latency
was caused when the write() operation was blocked while
obtaining a journal handle. The journal handle was presumed to
be held by fsync(). We had expected that by pre-allocating
blocks and withholding timestamp updates with the lazytime and
noatime mount options, any metadata update inside write()
would be prevented. However, since write() tried to obtain a
journal handle, some metadata were presumed to be updated
inside this operation. Further analyses are necessary to determine
whether this latency can be reduced.

Table 1: The latency of the system calls

Background fallocate() write()
Avg Max Avg Max

NONE 141μs 4299μs 178μs 359μs
Ftruncate + Fsync 813μs 208440μs 181μs 1043μs

Figure 2: The latencies of the fallocate() system call

Figure 3: The latencies of the write() system call

6. Conclusion and Future Work
 In this paper, we evaluated the latency of the Ext4 write()
system call based on a specific use case. Our results show that by
adopting the pre-allocation approach, latency increase due to
storage accesses inside write() does not occur. We also found
that the latency of write() exceeded a millisecond due to
journaling when ftruncate() and fsync() were executed
on another file. In addition, fallocate(), which is necessary
for subsequent write() calls, showed an enormous increase in
its latency when ftruncate() and fsync() were executed
on another file.

Our future work includes reduction of these latencies and
evaluation of other file systems.
Reference
[1] Hankeun Son, et al, “Coarse-grained mtime Update for Better

fsync() Performance,” SAC '17 Proceedings of the Symposium on
Applied Computing, Pages 1534-1541, Apr. 2017.

[2] Yunji Kang, et al, “Per-Block-Group Journaling for Improving
Fsync Response Time,” The 18th IEEE International Symposium
on Consumer Electronics (ISCE 2014), Jun. 2014.

[3] Daeho Jeong, et al, “Boosting Quasi-Asynchronous I/O for Better
Responsiveness in Mobile Devices,” FAST'15 Proceedings of the
13th USENIX Conference on File and Storage Technologies, Pages
191-202, Feb. 2015.

[4] Ext4: Slow performance on first write after mount.
https://www.spinics.net/lists/linux-ext4/msg38336.html (accessed
Aug. 18, 2018).

1
10

100
1000

10000

0 50 100 150 200 250

Fr
eq

ue
nc

y

Latency (msec)

NONE

ftruncate + fsync

1
10

100
1000

10000

0 500 1,000 1,500

Fr
eq

ue
nc

y

Latency (usec)

NONE

ftruncate + fsync

Asia Pacific Conference on Robot IoT System Development and Platform 2018 (APRIS2018)

ⓒ 2018 Information Processing Society of Japan 37

	1. Introduction
	2. Related Work
	3. Design Issues and Considerations
	4. Design
	5. Evaluation
	6. Conclusion and Future Work

