

A Server Select Method for distributed robotic system based on ROS

YIFAN LIU†1 MIDORI SUGAYA†1

Abstract: Currently, multiple robots are expecting to provide useful services corporately at the event of disaster and medical
treatment, nursing care, home security etc.. Autonomic robots such as searching and following people should have the
functionalities of collecting data from its physical environment and analyzing to share the information with each other. And the
robots should be connected to the internet and share the calculate resources through a large number of distributed servers for the
purpose to offer better services. However, when it comes to the internet for the robots, the latency of the internet can not be ignored.
In this paper, we described and implemented a system with server selection depends on network latency based on ROS with several
distributed servers. An evaluation had been done by comparing with and without the server selection. Finally, the issues may occur
while scaling the system and solution had been discussed in this paper.

Keywords: multiple robots, ROS, network latency, server select

1. Introduction

 Multiple robots’ services are required for rescue, nursing,
security and etc. These robots working together is more efficient
than the robots that work separately. These cooperated works
with information exchange could avoid repeated works while
searching people. Moreover, it saves time to search survivals and
is able to save more people. In other field such as nursing robot,
security robot, there are also such demands existed for multiple
robots to collect data so that we can know abnormal situation such
as when nursing robots detect falling down of person and
invasion detected by security robot in time.
 And recently, since the technologies such as artificial
intelligence, big data is becoming more and more popular,
bringing them to the robots’ world could make a huge difference.
Also, the application of simultaneous localization and mapping
(SLAM [1]) is needed for the robots’ navigation. However, all of
these technologies require a large amount of calculation. Due to
the resources of the robots such as central processor unit, memory
and etc. is limited, these kinds of complex calculation may not be
possible to be finished on the robot itself. Under this situation, we
consider that connect the robot with a more powerful server or
even a large number of servers becomes necessary.
 To achieve the goal to provide services with multiple robots
that can share information among each other and share the
calculation resource through a number of distributed servers to
do their work more efficiently, we consider that a software
framework for building this system is required to satisfy the
requirements. The one of the most widely used software
framework for robotic systems is ROS (Robot Operating System)
[2,3], and it provides a structured communications layer above
the host operating systems. It also provides libraries and tools to
help software developers create robot applications. The ROS
node makes no assumptions about where in the network it runs,
allowing computation to be relocated at run-time to match the
available resources, which makes it suitable for distribute robotic
system.
 However, while developing this system and bringing it to the

 †1 Shibaura Institute of Technology

internet, some issue occurs because the latency of the internet can
not be ignored. Due to the latency of the internet, some tasks for
the robots such as image process could cause failures because of
the robots could not get the result from servers as soon as required.
Although it is expected that only the ROS will be satisfied for the
requirements of variety of services, the result turns out negative
because of the network latency. For the reason that there are
several servers in the system, we consider a method to select the
appropriate server to finish the task depend on network latency.
 In this paper, in section 2, we propose a system, and describe
the specific system implementation. Section 3 shows the
evaluation process and result. In section 4, we discussed about
the issues of this system and the possible solution. Eventually, we
made a conclusion about this paper.

2. Proposal

2.1 Issues and proposal
 As described in the introduction, there are the problems of
network latency, and because of the latency, some tasks which
requires the result immediately could cause failures of tasks.
Since the robots are moving around and the server is placed in
different location, the network latency between robots and servers
is changing. Once the robot is moving far from the calculate
server which means the latency is becoming high, failure of tasks
would occur. To solve this problem, we designed and developed
a system to dynamically selects server that has the minimal
latency between robot and server.
 As figure 1 shows, first, all the network latency between robots
and servers is measured every second and send to the manage
server. Then the latency will be sorted to find out the least
network latency between robots and servers and this server will
be selected. While the robot is moving, the calculation will be
switched to another server that has the least network latency. In
this figure, the robot 1 selected the server 1, the robot 2 selected
the server 2 and etc.

Asia Pacific Conference on Robot IoT System Development and Platform 2018 (APRIS2018)

ⓒ 2018 Information Processing Society of Japan 32

Figure 1 server select system
 The server select method is based on the recent 5 seconds’
latency that measured in the real time. The latency that measured
indicates the network status between servers and robots. As the
basic system, we compared the latency among every servers and
find out the least latency, finally select this server for the specific
robot’s task. While comparing the latency, for example, the
average latency in the recent 5 seconds between one robot and
several servers will be sorted by a sort algorithm named Timesort.
Timsort is a hybrid stable sorting algorithm, derived from merge
sort and insertion sort, designed to perform well on many kinds
of real-world data [4]. The reason why we choose this algorithm
is that this algorithm will also be efficient even if the sorted object
becomes large, so is will not be an issues while scaling this
system.

2.2 Monitor and analyze the latency
 In order to obtain the latency between each robot and server,
there are two communication ways that is possible to choose in
robot operating system, one is called the publish/subscribe model
and another is called request/reply interaction.
 The publish/subscribe model provides a flexible
communication paradigm, which the sender of messages called
publishier do not program the messages to be sent directly to
specific receivers called subscriber, but instead published
message into classes without knowledge of which publishers. On
the contrary, its many-to-many one-way transport is not
appropriate for RPC request/reply interactions, which are often
required in a distributed system. Request/reply is realized via a
ROS service, which is defined by a pair of messages: one for the
request and one for the reply. And in ROS, the pub/sub model is
an asynchronous communication way and the ROS service is a
synchronous communication way. All of them are based on
TCP/IP communication.
 Under this situation, if the network latency is required, it has
to be round trip latency since it is so difficult to synchronize two
machine’s clock. As the pub/sub model is a one-way transport,
we have to choose to use ROS service as the communication way
to obtain the latency.
 As Figure 2 shows, we choose to put the ROS service server
(/latency_RxS1, latency_RxS2 …) on every server except the
manage server to reply the request from robots. And the latency
is the average latency in recent 5 seconds.

Figure 2 the way to get latency via service

2.3 Manage server
 After getting latency, every robot will publish its latency
between server to topics. For example, as Figure 3 shows, the
robot 1 will publish its latency between every server every second
to topics (/latency_R1S1 which means the latency between Robot
1 and Server 1 & /latency_R1S2).

Figure 3 publish latency to topics & manage server subscribe

 The manage server will subscribe every topic that the robots
publish and calculate the nearest five seconds’ average latency
and publish the shortest latency’s server number to a topic named
/server_select_flag. And all the calculation server (Server 1, 2,
…) will subscribe to this topic as the figure shows. While a task
is given to robots, according to the /server_select_flag, the task
will be done by the server chosen for the purpose to get a better
response performance.

2.4 Example
 For example, like Figure 4 shows, while an image process task
is given to robot 1, it will publish a topic named /task_image.
According to the latency, the selected server will do the image
process. As the robot is moving around, maybe the next second,
the robot is nearer to another server (the latency between another
server becomes less), the calculation task will be switch to

Asia Pacific Conference on Robot IoT System Development and Platform 2018 (APRIS2018)

ⓒ 2018 Information Processing Society of Japan 33

another server. And the processed image will be send back to
robot through another topic named /processed_image as the task
is finished.

Figure 4 example of task processing

3. Evaluation

3.1 Evaluation environment
 We utilized 6 Raspberry Pi 3 Model B V1.2 that the hardware
information is included in Table 5 and a 2.4 GHz wlan router.

SoC Broadcom BCM2837 900 MHz
Processor ARM Cortex-A53, 4 cores processor
GPU Broadcom VideoCore IV
Memory 1 GB LPDDR2

Table 5 Raspberry Pi 3 model B

 For the evaluation, we utilized 1 as the manage server, 2 as the
robots and another 3 as the calculation server. And all the
machines are connected to a wireless router which support
IEEE802.11a/b/g/n/ac wireless network protocol with a max
speed at 866Mbps.
 For the software part, we had installed Raspbian Jessie
(Operating System) and ROS indigo 14.04 on all the hardware.

3.2 Evaluation process
 In the evaluation part, we simulated that the task for the robot
is to sort a 1000 length list. We utilized a Int32MultiArray as the
ROS message type among servers and robots.

Figure 6 evaluation

 We executed two experiments, and I will describe about this
two experiment in the following. In the first one, we only use the
server 1 for calculation without server switch. First, we generate
a 1000 length random list on the robot side and then publish it
with a time stamp to a topic named /data with a Int32MultiArray
ROS message type. The server will subscribe to this topic, sort it
and publish it with the original time stamp to a topic named
/processd_data. On the robot side, it subscribes this topic and pull
out the time stamp. The time we measured is from sending the
message to receive the result as Figure 7 shows. The second
experiment is the same with the first, but with a server select
method depends on network latency. The calculation process was
done 10~70 times for each experiment.

Figure 7 Measure Time

3.3 Evaluation result
 As illustrated in Figure 8, the vertical axis shows the total time
assumption with a unit second and the horizontal axis shows
times of calculation. The total time have a significant decrease
while using our server select method, the result turns about 10％
less latency than without the system. The evaluation result shows
that the server select method depends on latency that we
developed works and such a method to solve the network latency
is feasible.

Asia Pacific Conference on Robot IoT System Development and Platform 2018 (APRIS2018)

ⓒ 2018 Information Processing Society of Japan 34

Figure 8 evaluation result

4. Discussion

 The current system proves that it is feasible to solve the issue
that we face in our system. However, there would be some issues
occur while scaling the system.
 Scalability is the capability of a system, network, or process to
handle a growing amount of work, or its potential to be enlarged
to accommodate that growth. In the current stage, there are only
3 servers in a narrow range included in the system. However, the
real system should be scalable, thousands of servers in a wide
range should be able to be added to the distributed robotic system.
 Currently, in order to get the latency among servers and robots,
there is a manage server exists. However, while scaling the
system, the workload of manage server could be heavy which will
lead to a failure of server select and finally lead to the failure of
robot’s task.
 For the scaling issues, we consider a solution to group the
servers first and for each group, a function like the manage server
should be required.
 Also, there is another issue, if the latency between robot and
manage server is high, this system could not work as we expected
because it can not select server seasonable. In order to solve this
issue, it is necessary to consider that every server could hold a
function like the manage server, which can sort the latency among
robots and servers and finally make a decision to finish the task
on which server. Also, there is another solution, if the calculation
resource of robot is sufficient for the manage server’s work, it is
better to let every robot have the ability to make decisions to
finish its task on which server because the latency between robots
and manage server is the least under this situation.

5. Conclusion

 In this paper, a distributed robotic system with server select
method based on ROS is proposed and realized. At first, we
described the issues that we face while bring the distributed
robotic system into a wide range network. Then, we described a
way to solve this issues by a server select method depends on
network latency. And we introduced a specific way to implement
this system and an evaluation for this system had been done.
Finally, we discussed about the issues that will occur in this
system while scaling the system and the possible solution.

Reference
[1] H. Durrant-Whyte, and T. Bailey, “Simultaneous localization and

mapping: part I”, IEEE Robotics & Automation Magazine,
Volume: 13, Issue: 2, June 2006.

[2] “About ROS”. http://www.ros.org/about-ros/, (accessed 2017-11-
16).

[3] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully
Foote, Jeremy Leibs, Eric Berger, Rob Wheeler, and Andrew Ng,
“ROS: an open-source Robot Operating System”, ICRA Workshop
on Open Source Software, 2009.

[4] “Timesort”. https://en.wikipedia.org/wiki/Timsort,(accessed 2018-
8-25).

Asia Pacific Conference on Robot IoT System Development and Platform 2018 (APRIS2018)

ⓒ 2018 Information Processing Society of Japan 35

