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Abstract: Transfer learning is a machine learning technique designed to improve generalization performance by us-
ing pre-trained parameters obtained from other learning tasks. For image recognition tasks, many previous studies
have reported that, when transfer learning is applied to deep neural networks, performance improves, despite having
limited training data. This paper proposes a two-stage feature transfer learning method focusing on the recognition of
textural medical images. During the proposed method, a model is successively trained with massive amounts of natural
images, some textural images, and the target images. We applied this method to the classification task of textural X-ray
computed tomography images of diffuse lung diseases. In our experiment, the two-stage feature transfer achieves the
best performance compared to a from-scratch learning and a conventional single-stage feature transfer. We also inves-
tigated the robustness of the target dataset, based on size. Two-stage feature transfer shows better robustness than the
other two learning methods. Moreover, we analyzed the feature representations obtained from DLDs imagery inputs
for each feature transfer models using a visualization method. We showed that the two-stage feature transfer obtains
both edge and textural features of DLDs, which does not occur in conventional single-stage feature transfer models.

Keywords: deep convolutional neural networks, transfer learning, image recognition, textural recognition, medical
imaging

1. Introduction

In the field of computer vision and image recognition, deep
convolutional neural networks (DCNNs) have been the primary
model, owing to AlexNet [14] having had great success during
the ImageNet competitions in 2012. DCNNs are thus becoming
the de facto solution for image recognition tasks. The DCNN is
a multi-layered neural network that has the same architecture as
Neocognitron [6], [8], inspired by biological human visual sys-
tems. The brain’s vision center has a hierarchical mechanism that
understands visual stimulus [11]. The DCNN uses a similar hi-
erarchical structure to extract features by using stacks of “convo-
lution” and “spatial pooling” operations. The distinctive feature
of a DCNN is its automation of obtaining feature representations,
which suits the given tasks. Whereas DCNNs provide signifi-
cant performance with image recognition tasks, they require mas-
sive amounts of training data compared to conventional machine
learning models. The deep network structure exhibits higher ex-
pressive power than shallow models, which have the same com-
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plexity [2]. Alternatively, most deep models have a large number
of free parameters. Han et al. reported that deep neural networks
require one-tenth of the number of free parameters training data
needed to obtain a good generalization capability [10]. However,
when the acquisition of a training dataset is difficult (e.g., medi-
cal imagery), the amount of data will sometimes be insufficient.
Generally, for learning approaches, the amount of training data
has a strong effect on model performance. Deficient training data
sometimes causes generalization problems such as overfittings.

A conventional approach for overcoming data deficiency is
transfer learning [16]. This is a learning technique that reutilizes
knowledge gained from other learning tasks, called the “source

domain,” to improve model performance in the desired task,
called the “target domain.” In the case of transfer learning for an
image classification task, the model will first be trained to clas-
sify the source domain. Then, it will be trained for the target
domain. In the case of DCNNs, we expect feature extraction to
be improved by reutilizing its feature extraction capability. Note
that this paper distinguishes two common styles of transfer learn-
ing. One is “fine-tuning,” which retrains only the classification
part while maintaining the feature extraction part. In other words,
the fine-tuning style assumes that the feature extraction part has
sufficient ability to represent input signals. The other is “feature
transfer,” which retrains the entire DCNN, containing the feature
extraction layers, to adopt the feature extraction part for a target
task. This paper focuses on the latter case of transfer learning.
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In most transfer learning approaches for image recognition tasks,
massive natural image datasets, such as ImageNet [5], are used as
the source domain [22]. The reason a natural image dataset is usu-
ally adopted is that of the availability of pre-trained models and
their known performance. However, the effectiveness of utiliz-
ing a natural image dataset when the target domain greatly differs
from the natural images is slightly questionable, because features
of the source domain do not appear in the target domain. Az-
izpour et al. suggested that the possibility of knowledge transfer
is affected by similarities between the source and target domains.
They reported that it is preferable that transfer learning takes in
similar data [1]. However, only a few studies have focused on
model performance variation by changing source and target do-
mains, and their scope of tasks was limited to object recognition.

This paper proposes a two-stage feature transfer method that
focuses on textural image recognition. By this method, a DCNN
is successively trained with natural and textural images as an ini-
tial state. Subsequently, the entire DCNN, which includes not
only the classification part but also the feature extraction part, is
trained again with the textural target domain. We show that this
type of successive and multi-domain feature transfer improves the
generalization performance of the model and provides robustness
with a decrease in the size of the training dataset. Moreover,
we discuss the why feature transfer on DCNNs works so well.
We visualize how feature representations of DCNNs derive from
different feature transfer processes, and reveal that feature trans-
fer improves feature representations of DCNNs corresponding to
both source domains.

In our experiment, we applied two-stage feature transfer to a
classification task of textural X-ray high-resolution computed to-
mography (HRCT) images of diffuse lung diseases (DLDs) and
show performance improvements.

2. Related Works and Contributions

References [9], [19] applied feature transfer to the classifica-
tion of DLDs and used a conventional single-staged feature trans-
fer, which uses a natural image dataset. They reported that fea-
ture transfer improves the classification performance over learn-
ing from scratch. However, the effectiveness of the source domain
was not discussed, despite noting that the targets were textural.
Reference [3] proposed an ensemble method that used multiple
models trained with different domains for lung disorder classi-
fication. The term, “transfer learning,” in this study references
fine-tuning. The essence of this method entails ensemble mod-
eling, rather than an actual transfer process. A notable study of
transfer learning in the field of medical image analysis [22], sys-
tematically surveyed and analyzed the effects of transfer learning
for various types of medical images, including textural images.
They compared transfer learning from natural images and sev-
eral modern parameter initialization methods in various medical
image classification tasks, which had limited amounts of training
data. They concluded that transfer learning from natural images
to medical images is possible and meaningful, despite the large
difference between the source and target domains. Nonetheless,
the reason transfer learning works in DCNNs is still not fully un-
derstood.

In this paper, we study two-stage feature transfer, focusing on
diffuse lung disease classification, making the following contri-
butions.
• We demonstrate the superiority of feature transfer over fine-

tuning by comparing the model performance under the same
source domains.

• We demonstrate how the source domain of feature transfer
affects the performance of DCNNs by comparing learning-
from-scratch, single-stage feature transfer, and our proposed
method.

• We show that transfer learning provides robust performance
with a decrease in the size of the training dataset.

• We analyze how feature representations in intermediate
DCNN layers change according to the transfer processes
of the feature visualization method. This change implies a
DCNN mechanism of feature transfer that has not been fully
researched.

3. Deep Convolutional Neural Networks (DC-
NNs)

DCNNs are well-known deep learning models, which are a
type of multi-layered neural network, widely used in computer
vision. The most common DCNNs consist of “convolutions” and
“spatial pooling” layers, which serve as feature extractors, and
fully-connected layers, which serve as classifiers. The set of con-
volution and pooling layers are defined as “stages,” in the same
manner described by Ref. [8]. The stages deform the input pattern
into an intermediate representation, serving as a feature-extractor.
Generally, DCNNs, which have several input channels, take 2D
images and repeatedly transform them into feature maps via a
stack of stages. Figure 1 shows a schematic diagram of a typical
DCNN.

To understand the feature extraction of DCNNs, let us con-
sider the activation of i-th stage. Here, we denote hi(l, x) as an
l-th channel activation, at the location, x, in the i-th stage. Con-
volution layers provide convolutional filtering to derive feature
maps (i.e., activations) from previous stages. The activation of
the convolution layer is written as

hconv
i (k, x) =

∑
l,u

gi(k, l,u) hi−1(l, x − u), (1)

where k is the channel of the derived feature map, and gi(k, l, u)
is the convolution kernel (i.e., a “filter tensor”). Equation (1)
shows that the convolution layer makes a feature map as an inner
product of a filter tensor, gi, and all input regions. Most neu-
ral networks modulate responses of each layer with an activation
function to provide a non-linearity. We chose the rectified lin-
ear unit (ReLU), commonly used in deep neural networks, as the
activation function. Following the convolution layer, all feature
maps, hi(k, x), are modulated with ReLU.

hrelu
i (k, x) = max

(
0, hconv

i (k, x)
)

(2)

The pooling layer gathers spatial neighbors to reduce the reper-
cussions of local pattern deformations and the dimensionality of
the feature map. The response to the pooling layer of the feature
map, hi(l, x), is computed as
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Fig. 1 Top: Schematic diagram of our DCNN, the same as Ref. [14], or AlexNet. Bottom: Details of the
feature map construction. The DCNN acquires feature representation by repeating convolution
and spatial pooling.

hpool
i (k, x) = max

r∈N(x))
(0, hi(k, r)) , (3)

where N(x) is the spatial neighbor at location, x, in the feature
map. This type of pooling operation, which uses the maximum
value of spatial neighbors as a representative value, is called
“max-pooling.”

These layers appear as early DCNN layers, which sum inputs
and provide well-posed inputs for a given task. Trainable param-
eters of these formulations are the filter tensors, gi.

The latter layers of DCNNs (i.e. “Fc n,” in Fig. 1) are fully-
connected layers. Figure 1, extracted feature representations of
the input image appear as the first fully-connected layer, “Fc 6.”
Layers, “Fc7” and “Fc8” comprise a multi-layered perceptron,
which plays the role of a classifier.

The most remarkable trait of the DCNNs is its effective feature
representation, corresponding to tasks that are obtained as an in-
termediate representation of the feature extraction parts, consist-
ing of convolution and spatial-pooling layers. These are obtained
via a back-propagation algorithm, which minimizes classification
errors.

4. Methods

4.1 Two-Stage Feature Transfer
Transfer learning is a technique that reutilizes feature expres-

sions that come from similar tasks [16]. This paper proposes a
two-stage feature transfer method focused on textural recognition
tasks.

Figure 2 shows the schematic diagram of two-stage feature
transfer, which, for DCNNs, means the reutilization of the fea-
ture extraction parts of the pre-trained network. These parts con-
sist of convolution layers and no classification layers. Thus, the
fully-connected layers (i.e., “Fc7” and “Fc8”) are cut off from
their connections, as shown in Fig. 1. After reconfiguring the net-
work, we randomly initialize connections of the classifier part *1

*1 Fully-connected weights, without a softmax layer (e.g., “Fc8”) can be
reused as the initial state for the transfer. In our experiment, however,
the resulting performance has been worsened.

Fig. 2 Schematic diagram of two-stage feature transfer for analyzing DLD
HRCT patterns. The DCNN is first trained with natural images to ob-
tain a good feature representation as the initial state. Subsequently,
it transfers to the more effective domain (i.e., texture dataset) to ob-
tain the feature representation suited for texture-like patterns. Then,
finally it trains with the target domain.

and train the entire DCNN again using back-propagation. Thus,
feature transfer utilizes the feature extraction parts from other do-
mains as its initial state.

In our proposed method, we first train the DCNN with massive
natural images in the same manner as conventional feature trans-
fer. At this stage, we expect that all connections are well-trained
for extracting visual features from the input images of natural
scenes, such as edge structures [14], [24]. Second, we apply fea-
ture transfer again, using the texture image dataset and natural
images to acquire better feature representation and fitting for the
textural images, which do not appear in the natural images.

4.2 Feature Visualization
For analysis, to understand the mechanism of feature transfer

in DCNNs, and to reveal how feature transfer influences improve-
ments, we should discuss the DCNN feature extraction process.
We adopted DeSaliNet, proposed by Ref. [15], as our feature vi-
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sualization method. This includes similar methods proposed by
Refs. [24] and [21] as its special cases. DeSaliNet reveals which
input component influences the feature representation of the fea-
ture extraction parts. Figure 3 shows the process flow of a feature
visualization using DeSaliNet.

The main idea of DeSaliNet is to propagate the feature map
backward into the input space. DeSaliNet construes DCNN op-
erations as functions and describes itself as a composite function.
Let φ(i) be a map to the i-th layer’s feature map that we want to
visualize. φ(i) can thus be denoted by each layer’s activation, up
to the i-th layer, as

φ(i) = hLi
i ◦ · · · ◦ hL1

1 , (4)

where Li is the layer type, such as convolution, max-pooling, and
ReLU. Here, we also denote the “backward path,” φ(i)†, which
is illustrated on the left side of Fig. 3 as a pseudo-inverse map of
φ(i).

φ(i)† = hL1†
1 ◦ · · · ◦ hLi†

i , (5)

where hLi†
i denotes the pseudo-inverse maps associated with its

corresponding layer, hLi
i . Details of each pseudo-inverse map are

discussed in Appendix A.1.
The backward propagation of the feature map h, calculated as

φ(i)†(h), is reconstructed as an imagery member of the input space.
Components of the input image, which have a strong influence
on the feature extraction, will compose the salient value of the
reconstructed images, e.g., the top-left of Fig. 3. The contours of
the propeller blade have salient pixels in the reconstructed input.
Such saliencies help us to interpret the mechanism of the feature
extraction in the DCNN.

The origin of the visualization method, based on backward

Fig. 3 A feature visualization flow using DeSaliNet. The feature map to visualize is calculated during
the forward propagation stage (right). When visualizing neuronal activations, the feature map is
switched to backward visualization path (left), which consists of inverse maps of each forward
layers, and is backpropagated into the input space as a saliency image.

propagation, is the selective attention model [7], [20]. This type
of feature visualization enables us to analyze what component is

paid attention to in input images, in contrast to GradCAM [17],
which analyzes where it is paid attention to. Textural images are
“what-based,” because they do not have locality as a characteris-
tic.

5. Materials

5.1 Target Domain
We examined the effectiveness of our proposed two-stage fea-

ture transfer method with the classification of X-ray and HRCT
DLDs. DLDs is a collective term for lung disorders that can
spread to large areas of the lung. X-ray HRCT is effective for
finding early-stage DLDs when they are small and mild. DLD
conditions are seen as textural patterns on HRCTs. In this work,
these patterns are classified into seven classes: consolidations
(CON), ground-glass opacities (GGO), honeycombing (HCM),
reticular opacities (RET), emphysematous changes (CON), nodu-
lar opacities (NOD), and normal (NOR). These categorizations
were introduced by Ref. [23]. Figure 4 shows portions of HRCT
images for each class.

The DLDs image dataset was acquired from Osaka University
Hospital, Osaka, Japan. We collected 117 HRCT scans from

Fig. 4 Typical HRCT images of diffuse lung diseases: (a) consolida-
tions (CON); (b) ground-glass opacities (GGO); (c) honeycombing
(HCM); (d) reticular opacities (RET); (e) emphysematous changes
(CON); (f) nodular opacities (NOR); and (g) normal (NOR).
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Fig. 5 Examples of textural images comprising the CUReT database. Top
and middle rows: entire images of “Felt,” “Rug,” and “Tree Bark”
classes. Bottom: cropped and resized images used as input for the
DCNN.

different subjects. Each slice was converted to gray-scale im-
ages with a resolution of 512 × 512 pixels and slice-thickness
of 1.0 [mm]. Lung region slices were annotated for their seven
types of patterns by experienced radiologists. The annotation
region shapes and their labels were the results of diagnoses by
three physicians. The annotated CT images were partitioned into
regions of interest (ROI) patches, which were 32 × 32 pixels, cor-
responding to about 4 cm2. This is a small ROI size for DCNN
input. Thus, we magnified them by 224 × 224 pixels using bicu-
bic interpolation. Therefore, from these operations, we collected
169 patches for CON, 655 for GGO, 355 HCM, 276 for RET,
4702 for RET, 827 for NOD, and 5726 for NOR. We then di-
vided these patches for DCNN training and evaluation, because
each class does not contain patches from the same patients. For
the training, we used 143 CONs, 609 GGOs, 282 HCMs, 210
RETs, 4406 EMPs, 762 NODs, and 5371 NORs. The remaining
26 CONs, 46 GGOs, 73 HCMs, 66 RETs, 296 EMPs, 65 NODs,
and 355 NORs were used for the evaluation.

5.2 Source Domains
Two-stage feature transfer uses both natural image and texture

datasets. We used the ILSVRC 2012 dataset, which is a subset
of ImageNet [5], as the natural image dataset in the same man-
ner as most conventional feature transfer studies [13], [18], [19].
We also used the Columbia-Utrecht Reflectance and Texture
Database (CUReT) [4] as the texture dataset, as provided by
Columbia University and Utrecht University. Figure 5 shows ex-
amples of textural images in the CUReT database. The database
contains macro photographs of 61 classes of real-world textures.
Each class has approximately 200 samples, and each sample was
imaged under various combinations of illumination and viewing
angles. This database could be preferable for the textural source
domain due to the various samples from coarse to fine and from
simple to complex. To train DCNNs, we cropped the textured
regions and resized them into 224 × 224 (Fig. 5: bottom) to ac-
commodate the network input.

6. Experiments

The network structure used in this work is exactly the same
as AlexNet [14], illustrated in Fig. 1. Because [13] reported that
the models designed to classify ImageNet, including AlexNet, are
capable of obtaining good performance for general tasks with fea-
ture transfer. We trained the network using momentum stochastic
gradient descent with a momentum of 0.9 and a dropout rate of
0.5. When the network was trained for the first time, we set the
learning rate to 0.05. Otherwise, when the feature transfer was
used, we set the learning rate to 0.0005 because it was reported
that small learning rate is preferable for pre-trained networks in
Ref. [22]. We trained the network until obtaining training loss
plateaus, as to steadily converge the network parameters.

In our experiment, we demonstrated two different ability of the
feature transfer method. One was an eventual classification per-
formance for DLDs images, discussed in Section 6.1, which mea-
sures the ability of generalization improvement for the task. The
other is performance robustness with the size of the training data,
discussed in Section 6.2, which measures how feature transfer
improves the dynamics of the learning process.

For evaluation metrics, we used accuracy, recall, precision, and
F1-score. Accuracy is the proportion of correct predictions to the
total number of predictions. Recall is the fraction of samples col-
lectively classified over the number of samples of its class. Pre-
cision is the fraction of samples correctly classified as a class,
c, over all samples classified as a class c. Recall is an index
of oversights, whereas precision is an index of over-detection.
The F1-score is a harmonic mean between precision and recall:
2·Precision·Recall
Precision+Recall . To minimize the effect of extraordinary good re-

sults, the 75th percentile values of the learning process was used
as representative values for each evaluation metrics.

In our experiment, we compared models from different learn-
ing processes, as follows.
( 1 ) Learning a randomly initialized model from scratch in the

most naive way (i.e., no feature transfer)
( 2 ) Feature transfer from textural images, i.e., CUReT database
( 3 ) Feature transfer from natural images, i.e., ILSVRC 2012

dataset
( 4 ) Two-stage feature transfer, training the DCNN from

ILSVRC 2012 and CUReT, sequentially (proposed)

6.1 Classification Performance
First, we compared the classification performance of each

model (1)–(4). To reveal the effectiveness of feature transfer, we
also compared with fine-tuning models, which only the classifi-
cation part of the DCNNs was retrained, as follows:
(a) Fine-tuning from natural images (ILSVRC 2012 dataset)
(b) Fine-tuning from textural images (CUReT database)

Results are shown in Table 1. All metrics were averaged over
10 different realizations of the random conditions and were cal-
culated with their standard deviations.

Feature transfer models (1)–(4) surpass fine-tuning models (a)
and (b) at all classification performances. This suggests that the
feature representation as is obtained in natural and textural im-
ages is not suitable for DLDs classification. In other words, the
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Table 1 Classification performance comparison for test data. ± following each metrics means the stan-
dard deviation.

(1) (2) (3) (4) (a) (b)
Transfer None single-stage (conventional) two-stage (proposed) fine-tuning
Accuracy 0.9392 ± 0.0017 0.9247 ± 0.0030 0.9501 ± 0.0041 0.9537 ± 0.0016 0.7735 0.8263
Precision 0.9206 ± 0.0025 0.9111 ± 0.0052 0.9472 ± 0.0052 0.9547 ± 0.0026 0.7842 0.8345

Recall 0.9269 ± 0.0021 0.9153 ± 0.0040 0.9465 ± 0.0046 0.9523 ± 0.0018 0.7735 0.8263
F1-score 0.9270 ± 0.0021 0.9153 ± 0.0040 0.9465 ± 0.0046 0.9522 ± 0.0019 0.7675 0.8228

Fig. 6 Performance comparisons of each amount of training data: (Left)
classification accuracies of DLDs; (Right) cross-entropy losses of
“Fc8” in Fig. 1. Each bar, from left to right, shows the learning pro-
cesses: (1) learning from scratch; (2) single-staged feature transfer
with CUReT; (3) single-staged feature transfer with ImageNet; and
(4) our proposed two-stage feature transfer.

feature extraction part ought to be retrained with the target do-
main. By comparing each feature transfer model (1)–(4), the two-
stage feature transfer (4) displays significantly best performances
in all evaluation metrics (p < 0.01, non-parametric Wilcoxon
signed-rank test, n = 10).

On the other hand, despite feature transfer, the single-stage
feature transfer model (2) using only CUReT dataset performed
worse than learning from scratch (1). This implies that CUReT,
by itself, is useless as the source domain for conventional feature
transfer. Such deterioration demonstrates that an inappropriate
choice of the source domain could results in a worse performance
than no feature transfer one. However, as we will discuss later,
feature transfer may improve the robustness of the model perfor-
mance with the size of the training data, even if the choice of the
source domain was wrong.

6.2 Model Robustness for the amounts of Training data
In addition to the performance comparison, we demonstrated

Fig. 7 Fluctuation comparisons of each learning process: (Left) classifica-
tion accuracies for validation data; (Right) softmax losses of valida-
tion data. Each row (1)–(4), from top to bottom, shows the learning
processes.

Table 2 Variations of model performances in each process.

(1) (2) (3) (4)
Slopes of accuracies 1.3560 0.9920 0.9475 0.7479

Slopes of losses −0.5054 −0.4938 −0.3221 −0.2230

Fig. 8 Mechanism for generating the reference frequency image. In 2-
dimensional Fourier space, set the value 1 to two opposite points
on the circle of radius ω, which are (ω, θ) and (ω,−θ) in polar coor-
dinate. The reference frequency image is given as its inverse Fourier
transform. In this example, ω = 5 and θ = π/4.

how the robustness of each model, with respect to the decrease in
the amount of target domain data, improved. We transitioned the
accuracies and losses of the softmax layer (i.e., “Fc8” in Fig. 1),
which represent the classification performance and model fitness
for the true predictions, respectively, by changing the amount of
DLDs training samples by the ratio, r, from 20% to 100% *2.
Here note that the amount of source domain’s data, i.e., ILSVRC
2012 dataset and CUReT dataset, have not changed.

All samples were evaluated only one time and represented by
the 75th percentile of a plateau. Figure 6 shows the models’
performance comparison. In all cases, two-stage feature transfer
showed the best robustness for both accuracy and loss, especially

*2 For example, when r = 1.0 and r = 0.5, the amounts of training DLDs
examples are 927 and 434, respectively. Proportions of each class are
retaining.

c© 2018 Information Processing Society of Japan 79



IPSJ Transactions on Mathematical Modeling and Its Applications Vol.11 No.3 74–83 (Dec. 2018)

Fig. 9 Visualization results of extracted feature maps from DLDs images. The leftmost figures show the
DCNN inputs. Each row represents the input DLDs images, which are in the class HCM, CON,
and RET, respectively. Each column represents the DCNN learning processes as described in Sec-
tion 6. For each visualization result, the above ones show the normalized reconstructed input.
Bright regions indicate that the corresponding components of inputs have a strong effect on fea-
ture maps. The below ones, surrounded by a dotted line, show the saliency heatmap overlay on the
input DLD images.

in the case of a small training dataset.
Figure 7 shows the fluctuation of model performance with a

decline in the amount of DLDs images. To quantify the degree of
model robustness, we assumed that these variations have linear-
ity to the amount of data, and compared the slopes A of the linear

regression model: Accuracy = Ar + b, where r is the percentage
of data, and b is the intercept coefficient. Clearly, a small abso-
lute value of slope indicates that the model is more robust with r.
All feature transfer models show better results than learning from
scratch, as shown in Table 2. Two-stage feature transfer showed
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Fig. 10 The frequency response of each feature transfer models. Red-dotted, blue-dotted and green-solid
lines represent feature transfer models, as described in Section 6, (2), (3) and (4), respectively.
The two-stage feature transfer model (4) have peaks that appeared in both models (2) and (3).

the best robustness, both with accuracy and with loss.

7. Analysis of the Feature Extraction

7.1 Feature Visualization
The main question we address in this section is how feature

transfer improves the feature extraction part of DCNNs. First,
we analyzed the feature maps extracted in the DCNN using the
visualization method, that is DeSaliNet explained in Section 4.2.
Figure 9 shows the visualization results of extracted features (i.e.,
the input of feature extraction part obtained as an input for layer
“Fc6” in Fig. 1) for each model, from (1) to (4). To visualize raw
reconstucted input, each activation was normalized into closed
interval [0, 255] by minimum and maximum value.

Model (1), learned from scratch, did not show salient activi-
ties in any region of the input, as seen in the heatmap overlays.
This suggests that the model could not extract meaningful fea-
tures from the inputs because of the lack of training data. Model
(2), transferred from textural images, showed activation in the
regions where the textural structure appeared (e.g., in raw vi-
sualization results, entire of CON and RET or bottom right of
HCM). Alternatively, model (3), transferred from natural images,
showed activations in the regions where edge structures appeared
(e.g., pits of CON or cyst wall contours of HCM, clearly in the
heatmap). It is intuitive, considering that the models trained for
natural images show an activation for edge structures (e.g., the
object contours and lines), as reported by most studies on the vi-
sualization of DCNNs [15], [21], [24]. Interestingly, Model (4),
which came from two-stage feature transfer, responded to both
edge and textural structures. The models (2) and (3) show the
strong responses to the edge and textural regions respectively. In
contrast, we can see that these models show weak responses to
the opposite regions. Given the results of (2) and (3), such fea-
ture representations seem to be additively obtained from both nat-
ural images and textural domains during two-stage feature trans-
fer. Performance improvements occur because the DCNNs obtain
better feature representation, which suits textural patterns with
the two-stage feature transfer.

7.2 Numerical Evaluation
To support our analysis, we have compared the frequency re-

sponse of each feature transfer model, because textural and shape
features can be separated in Fourier space [12]. We denote by
1(ω, θ) the reference frequency image which only has a spatial

frequency component of ω and a phase component of θ. The ref-
erence frequency image 1(ω, θ) is given by inverse Fourier trans-
form as

1(ω, θ) = F −1
[
1̂(r, φ)

] / ∥∥∥∥F −1
[
1̂(r, φ)

]∥∥∥∥2
2

(6)

where 1̂(r, φ) is a polar image in Fourier space

1̂(r, φ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 (r = ω, φ = θ)

0 (otherwise)
(7)

‖ · ‖22 denotes the Frobenius norm of image and F [·] denotes the
two-dimensional Fourier transformation. Figure 8 illustrates the
process of generating reference frequency images.

We define the frequency response of the extracted feature by a
Frobenius norm gain. Let i be a layer, where the extracted feature
appears, the frequency response can be denoted by the notations
in Eqs. (4), (5), and (6) as:

G(ω) =
∑
θ∈[0,π)

∥∥∥∥
(
ψ(i)† ◦ ψ(i)

)
(1(ω, θ))

∥∥∥∥2
2

(8)

Equation (8) represents how salient the fixed-norm input 1(ω, γ)
in the feature extraction layer, thus this metric may be suitable to
evaluate the frequency responses.

Figure 10 shows the frequency renponse of each feature trans-
fer model (2)–(4). To emphasize the peak structures, each re-
sponse was normalized into an interval [0, 1] and was smoothed
by a second-order Savitzky-Golay filter. Model (2), transferred
from textural images, has peak responses at low-frequencies near
DC (ω � 0 Hz) and mid-frequencies (ω = 20–40 Hz), which are
essential for textural images [12]. Model (3), transferred from
natural images, has strong peak responses at low-frequencies near
10 Hz and mid-high-frequencies (ω � 70 Hz). Similarly to Sec-
tion 7.1, model (4), transferred from both textural and natural
images, has a peak response at low-frequencies near DC to mid-
frequencies like model (2); however, it also has a peak at mid-
high-frequencies near 70 Hz, similar to model (3). This result
accords with the visualization result that the two-stage feature
transfer model can additively obtain both textural and structural
feature representation from multiple source domains.

8. Conclusion

We proposed a two-stage feature transfer, which improved the

c© 2018 Information Processing Society of Japan 81



IPSJ Transactions on Mathematical Modeling and Its Applications Vol.11 No.3 74–83 (Dec. 2018)

performance of DCNNs for classification tasks of textural im-
ages, as an extension of conventional transfer learning methods,
which use a single domain as the source. We applied two-stage
feature transfer to the classification of HRCT images of lung dis-
eases and demonstrated that two-stage feature transfer improves
classification performance and robustness while decreasing the
amount of training data, compared to learning from scratch and
conventional transfer learning. To assess these improvements, we
analyzed and compared each feature representation using a fea-
ture visualization method. Two-stage feature transfer seems to
have provided appropriate feature representations for both edge
and textural structures transferred from natural images and textu-
ral images, respectively. These results indicate the consequence
of source domain selection.
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Appendix

A.1 DeSaliNet’s Inverse Maps

This appendix provides details of the inverse maps used in
DeSaliNet [15]. In Eq. (5), each φ(Li)†

i denotes the inverse map
of each forward operation, φ(Li)

i , where the Li is a layer type
of the i-th stage. DeSaliNet considers only the case where
Li ∈ {convolution, max-pooling, ReLU}, otherwise the layers be
ignored. This results in an identity map.
Convolution layer

Let hi(l, x) be a feature map of the l-th channel, where it is
in the position, x. The inverse map of the convolution layer
φconv†

i , called “deconvolution,” is denoted as

φconv† (hi(l, x)) =
∑
l,u

gi(k, i, S (u)) hi(l, x − u), (A.1)

where

S : Z
2 −→ Z

2

∈ ∈⎛⎜⎜⎜⎜⎝ x

y

⎞⎟⎟⎟⎟⎠ �−→
⎛⎜⎜⎜⎜⎝ y

x

⎞⎟⎟⎟⎟⎠ .
(A.2)

Equations (A.1) and (A.2) indicate that the deconvolution
layer is a convolution for feature maps having a transposed
filter tensor, gi.

Max-pooling layer
The inverse map of the max-pooling layer, φMP†

i , is denoted
as

φMP†(hi(l, x)) =

⎧⎪⎪⎨⎪⎪⎩
hi(l, x) (x ∈ ψMP

i )
0 otherwise

, (A.3)
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where ψMP
i contains the stored maximum value locations

of forward calculation in max-pooling. The pooled map is
sparsely restored into a maximum position.

Rectifying layer
The inverse map of the ReLU layer, φReLU†

i , is denoted as

φReLU†(hi(l, x)) =

⎧⎪⎪⎨⎪⎪⎩
hi(l, x) (x ∈ ψLU

i )
0 otherwise,

(A.4)

where ψLU
i is the stored positive locations in the forward

ReLU caculation, where zero was not modulated.
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