
Electronic Preprint for Journal of Information Processing Vol.26

Recommended Paper

Leaving All Proxy Server Logs to Paragraph Vector

MamoruMimura1,a) Hidema Tanaka1,b)

Received: January 17, 2018, Accepted: September 7, 2018

Abstract: Cyberattack techniques continue to evolve every day. Detecting unseen drive-by-download attacks or C&C
traffic is a challenging task. Pattern-matching-based techniques and using malicious blacklists are not efficient any-
more, because attackers easily change the traffic pattern or infrastructure to avoid detection. Therefore, many behavior-
based detection methods have been proposed, which use the immutable characteristic of the traffic. These previous
methods, however, focus on the attack technique, and can only detect drive-by-download (DbD) attacks or C&C traffic
which have the immutable characteristic. These traditional methods have to devise the feature vectors. This paper pro-
poses a generic detection method, which is independent of attack methods and does not need devising feature vectors.
Our method uses Paragraph Vector, an unsupervised algorithm that learns fixed-length feature representations from
variable-length texts and classifiers. Our method uses Paragraph Vector to capture the context in proxy server logs.
We conducted cross-validation, timeline analysis and cross-dataset validation with multiple datasets. The experimental
results show our method can detect unseen DbD attacks and C&C traffic in proxy server logs. The best F-measure
achieved 0.97 in the timeline analysis and 0.96 on the other dataset.

Keywords: drive by download, C&C, Neural Network, Bag-of-Words, Word2vec, Paragraph Vector, Doc2vec, Sup-
port Vector Machine, Random Forests, Multi-Layer Perceptron

1. Introduction

Information and communication technology has been devel-
oping rapidly. New technology provides not only convenience
but also new threats. Cyber threats are increasing drastically and
public concern is at an all time high. Cyberattack techniques con-
tinue to evolve every day. Internet worms such as “Code Red” or
“Blaster” used to be a main threat in the early 2000s. Since the
second half of 2000s, Drive-by Download attack (DbD attack)
and Spear Phishing attacks have been the main attack techniques
on the Internet. In these attacks, attackers set malicious contents
on websites or send email with malicious files to exploit vulner-
abilities and run malicious code without the user’s knowledge.
After the initial intrusion, the attacker takes control of the vic-
tim’s computer via a Command and Control (C&C) server over
the Internet. The victim’s computer is used as a stepping stone
to further deep drilling intrusion. In particular, a set of stealthy
and continuous computer hacking processes is called APT (Ad-
vanced Persistent Threat). To detect cyberattacks, operators in-
vestigate IDS (Intrusion Detection System) alerts or logs recorded
in network devices such as a firewall or a proxy server. In gen-
eral, intrusion detection techniques on a network are classified
roughly into methods using pattern matching and methods using
blacklists. The methods using pattern matching are effective, if
the malicious traffic contains a unique string pattern. IDS uses
fixed strings or regular expression to describe their signatures.
Malware used in APT attacks, however, communicates via a stan-
dard protocol, and attempts to imitate normal http communication

1 National Defense Academy, Yokosuka, Kanagawa 239–8686, Japan
a) mim@nda.ac.jp
b) hidema@nda.ac.jp

(e.g., Plug X, Emdivi) [1], [2]. Therefore, it is difficult to describe
the signatures. In this case, an IDS can use the malicious destina-
tion server (e.g., Landing site, Exploit site, C&C server) address
as the signature. A firewall or a proxy server can also use the
malicious destination server address as the blacklist. However,
attackers can change the malicious destination servers easily to
evade detection by network devices. In addition, the malicious
server address has to be already-known before the cyberattack.
Thus, detecting unseen malicious traffic is like a cat-and-mouse
game so resolving this problem is a challenging task.

To tackle this challenging task, many behavior-based detection
methods have been proposed. These methods capture the char-
acteristics of DbD attacks or C&C traffic, and attempt to detect
unseen malicious traffic. Many previous methods, however, focus
on the attack technique. These methods can detect only DbD at-
tacks (e.g., Refs. [2], [3], [4]) or C&C traffic (e.g., Refs. [7], [8]).
Therefore, if the attack technique is changed then previous meth-
ods cannot respond. Besides security researchers have to devise
the feature vectors to capture the characteristics. Furthermore,
many previous methods require monitoring all network traffic.
For instance, [4] requires web contents to detect DbD attacks.
Countless organizations, however, do not keep all network traffic
because of the size. Security incidents often occur in the organi-
zations that did not take the countermeasures adequately. In most
cases, there are inadequate log files to investigate the incident in
the vulnerable organizations. Sometimes we might retrieve only
log files on a single proxy server.

The preliminary version of this paper was presented at Computer Secu-
rity Symposium 2017 (CSS2017) in October 2017, and recommended to
be submitted to Journal of Information Processing (JIP) by the program
chair of CSS2017.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

This paper focuses on the feature that Neural Network (NN)
learns feature vector representation automatically. In recent
years, NN has achieved remarkable results in the fields of image
recognition, speech recognition or natural language processing
(NLP). In the NLP fields, Word2vec [9] has proven outstanding.
This model takes a large corpus of text and produces a vector
space with each unique word in the corpus being assigned a cor-
responding vector in the space. This model enables not only doc-
ument classification based on the appearance frequency, but also
document classification based on the sense or the context. Fur-
thermore, the same idea was extended to Paragraph Vector, an
unsupervised algorithm that learns fixed-length feature represen-
tations from variable-length pieces of texts, such as sentences,
paragraphs, and documents. In this paper, we presume proxy
server logs are written in a natural language, and attempt to learn
the difference between benign traffic and malicious traffic auto-
matically with Paragraph Vector. Then we input the extracted
feature vectors with the label into supervised learning models to
classify benign traffic and malicious traffic. Our generic detection
method does not rely on attack techniques, and does not demand
devising feature vectors.

The main contributions of this paper are three-fold:
(1) Propose a detection method using Doc2vec in proxy server

logs [5].
(2) Verify that our method can detect DbD attacks in the long

term [6].
(3) Verify that our method can detect C&C traffic in spear-

phishing attacks.
The rest of the paper is organized as follows. The next sec-
tion discusses related work and clarifies the difference among
this method and previous methods. Section 3 presents Natural
Language Processing (NLP) techniques. Section 4 proposes a
generic detection method, which includes how to use NN and
classifiers. Section 5 shows experimental results applying our
method to datasets which contain DbD attacks and C&C traffic.
Section 6 evaluates the method from a practical perspective and
discusses the limitation.

2. Related Work

2.1 Behavior-based Detection
This paper aims to detect malicious traffic, even if both mali-

cious server addresses and the distinctive traffic patterns are un-
known. The malicious traffic includes DbD attacks and C&C traf-
fic. In general, the main studies of network intrusion detection
include signature-based detection and behavior-based detection.
Signature-based detection relies on an existing signature database
to detect known malicious traffic, and rarely detects unseen ma-
licious traffic. Therefore, many behavior-based detection meth-
ods have been proposed. For example, some methods focused on
the traffic classification from packet traces [10], [11], [12], [13].
However, analyzing packets is becoming intractable on broad-
band networks. The alternative approach is classification based
on network logs such as DNS records, NetFlow or proxy server
logs. There are several methods which use NetFlow [7], [8], [14]
or DNS records [15], [16], [17], [18]. However, it is unusual to
obtain all network traffic or logs in actual incidents. Therefore,

we focus on proxy server logs.

2.2 Analyzing Proxy Server Logs
Kruegel et al. [19] categorized URIs by the path, and extracted

the parameters from the query strings. Their statistical model
learns the features, and detects the statistical outliers as attacks.
This method expects detecting direct attacks to web servers such
as buffer overflow, directory traversal, cross-site scripting and so
on. Our method uses statistical machine learning models for bi-
nary classification of malicious traffic and benign traffic. Our
method expects indirect attacks such as DbD attacks or SP at-
tacks too.

Choi et al. [20] extracted feature vectors from the domain, path
and so on included in URLs, and proposed a method using ma-
chine learning models to classify malicious URLs and benign
URLs. This method uses not only proxy server logs but also
the URL popularity, contents, DNS traffic or any other traffic.
Our method uses only proxy server logs and does not require any
other additional information obtained from external sources. Our
method does not even require devising feature vectors.

Ma et al. [21] extracted feature vectors from the host name, top
level domain name, path and so on included in URLs, and pro-
posed an online learning algorithm to classify malicious URLs
and benign URLs. This method divides URLs into tokens by
the delimiter such as “dot” (.), “slash” (/), “question mark” (?),
“equal” (=), “and” (&) and so on. Our method uses similar tech-
niques to obtain tokens from URLs. These tokens serve as words
to construct a corpus. Their method requires not only proxy
server logs but also searching the whois database for IP address
and domain name registration information, blacklists, the geo-
graphical feature, the bandwidth speed and so on. Our method
uses only proxy server logs. Our method does not even require
devising feature vectors.

Huang et al. [22] extracted feature vectors from the structure,
the characteristic strings and the brand name included in URLs to
detect malicious URLs with machine learning. This method aims
to detect phishing URLs. Our method aims to detect DbD attacks
and C&C traffic, however it is not limited to these attacks. Our
method does not even require devising feature vectors.

Zhao et al. [23] focused on the cost to force users to analyze
and label malicious traffic, and proposed an online active learn-
ing framework which updates the classifier to detect malicious
URLs. This method uses the whois database for domain name
registration information, blacklists and so on. Our method uses
only proxy server logs and does not require any other information
obtained externally.

Invernizzi et al. [24] built a network graph from IP addresses,
domain names, FQDNs, URLs, paths, file names and so on. Their
method focuses on the correlation among nodes to detect malware
distribution. This method uses only the parameters obtained from
proxy server logs. However, this method has to cover many IP ad-
dress ranges, and performs in large-scale networks such as ISPs.
In addition, this method needs the downloaded file types. Our
method performs at any scale and does not need the downloaded
file types.

Nelms et al. [25] focused on DbD attacks, and extracted the Lo-

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

cation field, Referrer field and so on from http Request messages
and Response messages to build a URL transfer graph. They
proposed a trace back system which could go back to the source
from the URL transfer graph. This method uses hop counts, do-
main age and common features of the domain names to detect
malicious URLs. Our method uses only proxy server logs and
does not require any additional information obtained from exter-
nal sources. In addition, our method can detect not only DbD
attacks but also C&C traffic.

Bartos et al. [26] categorized proxy server logs into flows, and
extracted many features from the URL, path, query, file name and
so on. They proposed how to learn the feature vectors to classify
malicious URLs. This method can decide the optimum feature
vectors automatically. However, this method requires devising
basic features for learning. Our method does not even require
devising basic features.

Mimura et al. [1] categorized proxy server logs by FQDNs to
extract feature vectors, and proposed a RAT (Remote Access Tro-
jan or Remote Administration Tool) detection method using ma-
chine learning techniques. This method uses the characteristic
that RATs continues to access the same path regularly. However,
this method only works on C&C traffic. Our method can detect
not only C&C traffic but also DbD attacks.

Shibahara et al. [2] focus on a sequence of URLs which include
malicious artifacts of malicious redirections, and proposed a de-
tection system which uses Convolutional Neural Networks. This
method uses a honey client to collect URL sequences and their
labels. However, this method performs for DbD attacks. Our
method can detect not only DbD attacks but also C&C traffic.

3. Natural Language Processing (NLP) Tech-
nique

3.1 Bag-of-Words (BoW)
To calculate various measures to characterize a text, we have to

transform the text into a vector. Bag-of-Words (BoW) is a simpli-
fying representation used in NLP. In this model, a sentence is rep-
resented as the bag of its words, disregarding grammar and even
word order but retaining multiplicity. BoW is commonly used
in document classification methods where the frequency of each
word is used as a feature for training a classifier. The most com-
mon type of features calculated from BoW is a term frequency,
namely, the number of times a term appears in the sentence. How-
ever, term frequencies are not necessarily the best representation
for the sentence. BoW cannot represent grammar, word order and
word meaning. To represent unseen traffic, term frequencies are
not efficient [5]. Furthermore, the feature dimension is defined by
the vocabulary size of the data set. Therefore, we have to consider
how to reduce the dimensionality in practical use.

3.2 Word2vec
Word2vec [9] is a model that produces word embedding. Word

embedding is the collective name for a set of language modeling
and feature learning techniques in NLP where words from the
vocabulary are mapped to vectors of real numbers. This model
is a shallow, two-layer neural network that is trained to recon-
struct linguistic contexts of words. This model takes as its input a

large corpus of text and produces a vector space, with each unique
word in the corpus being assigned a corresponding vector in the
space. Word vectors are positioned in the vector space such that
words that share common contexts in the corpus are located in
close proximity to each other in the space. Word2vec is based
on the distributional hypothesis, which motivates that the mean-
ing of a word can be gauged by its context. Thus, if two words
occur in the same position in two sentences, they are very much
related either by semantics or syntax. Word2vec utilizes two al-
gorithms to produce a distributed representation of words. One is
Continuous-Bag-of-Words (CBoW), and the other is skip-gram.
In the CBoW algorithm, the model predicts the current word from
a window of surrounding context words. In the skip-gram algo-
rithm, the model uses the current word to predict the surrounding
window of context words. Word2vec allows calculating the se-
mantic similarity between two words and infer similar words se-
mantically. However, Word2vec is a model that merely produces
word embedding. To calculate semantic similarity between two
documents, this method has to be extended.

3.3 Paragraph Vector (Doc2vec)
An extension of Word2vec to construct embedding from en-

tire documents has been proposed [27]. This extension is called
Doc2vec or Paragraph2vec and has been implemented. Doc2vec
is based on the same distributional hypothesis, which motivates
that the meaning of a sentence can be gauged by its context. Thus,
if two sentences occur in the same position in two paragraphs,
they are very much related either in semantics or syntactic in the
same way. Doc2vec utilizes two algorithms to produce Paragraph
Vector a distributed representation of entire documents. One is
Distributed-Memory (DM), and the other is Distributed-Bag-of-
Words (DBoW). DM is an extension of CBoW, and the only
change in this model is adding a document ID as a window of
surrounding context words. DBoW is an extension of skip-gram,
and the current word was replaced by the current document ID.
Doc2vec allows calculating semantic similarity between two doc-
uments and infer similar documents semantically. Some imple-
mentations support also inference of document embedding on un-
seen documents. This function is important for developing a prac-
tical system to detect unseen malicious traffic. Because, unseen
malicious traffic might include an unknown word (e.g., newly-
changed FQDN, random strings).

4. Proposed Method

4.1 Purpose
The purpose of our method is detecting unseen malicious traf-

fic, not filtering malicious URLs such as landing site, exploit site
or C&C server addresses. Nowadays, attackers often use many
compromised websites to imitate benign traffic. Hence, it is dif-
ficult to decide whether a URL is benign or malicious indepen-
dently. To decide whether a URL is malicious or not, we have
to investigate the context. We can investigate the context from
sequential log lines in proxy logs. In this paper, the context is
synonymous with sequential log lines. To investigate the context,
we define malicious traffic as a paragraph which contains mali-
cious URLs. The paragraph consists of 10 lines of proxy logs. As

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

a matter of course, a paragraph contains multiple URLs. Hence,
our method detects malicious traffic which might contain benign
URLs. We assume that these benign URLs are related to the mali-
cious URLs. Our method does not extract only malicious URLs.
Our method investigates a paragraph comprehensively and de-
cides whether a paragraph is malicious or not. Our method ex-
pects that the operators perceive unseen malicious traffic based
on the result from classifiers. Our method supports incident re-
sponders or digital forensic investigators.

4.2 Separating Logs with Spaces
This paper proposes an intrusion detection method in proxy

server logs. The key idea of this research is processing proxy
server logs as a natural language. In order to accomplish this,
proxy server logs have to be separated into words. Figure 1
shows a sample of proxy server logs.

This sample includes the date and time at which the transac-
tion completed, request line from the client (includes the method,
URL and user agent), HTTP status code returned to the client and
size of the object returned to the client. Here, the ’client” signifies
the user’s computer which connects to servers over the Internet.
A proxy server records the contents on a line in chronological or-
der. The line originates the request from an internal client and is
coupled with the response from the server.

Our method divides proxy server logs into HTTP status code
(Status), request line from the client (Method and URL), size of
the object returned to the client (size) and user agent (UA). Our
method uses these 5 elements. Note that our method does not use
source IP addresses. Furthermore, the request line is divided into
method, URL and protocol version.

4.3 Separating URLs with Delimiters
We believe a URL is the most important element in detecting

malicious traffic. Our method separates URLs with delimiters.
Figure 2 shows an example of a URL leaving a space between
words.

First, our method divides a URL into scheme, FQDN (Fully
Qualified Domain Name) and path which includes query strings.
After that, our method separates the FQDN by “dot” (.). Then we
can derive the top level domain name, sub domain name and so

Fig. 1 A sample of proxy server logs.

Fig. 2 An example of a URL leaving a space between words.

on, which means the country, organization, use or purpose (e.g.,
www, mail). Our method separates the path by “slash” (/) and
“dot” (.), and also separates the query string by “question mark”
(?), “equal” (=) and “and” (&). Then, we can derive the direc-
tory name, file name, extension from the path. We can also derive
the variable names and values from the query string, which are
used in the running program on the server. We decided to leave
the delimiters as a word for constructing a corpus. Because the
delimiters are related to the contiguous word meanings. For in-
stance, some delimiters such as “slash” (/) are closely related to
the structure of the URL.

To summarize, our method divides URLs into words by the
delimiters which are “dot” (.), “slash” (/), “question mark” (?),
“equal” (=) and “and” (&). These words construct a corpus to
train a language model.

4.4 Overview
Figure 3 shows an overview of the proposed method. First,

our method constructs a corpus from malicious proxy server logs
and benign proxy server logs. Both logs are separated by the pre-
viously mentioned method. Then, our method constructs a vec-
tor space from the corpus, and converts both proxy server logs
into vectors with the labels. Our method interprets 10 lines as
a paragraph. This parameter was decided based on an empiri-
cal approach [5]. The language model which constructs a vec-
tor space is Doc2vec. These labeled vectors are training data for
classifiers. The classifiers are Support Vector Machine (SVM),
Random Forests (RF) and Multi-Layer Perceptron (MLP).

A SVM model is a representation of the training data as points
in space, mapped so that the training data of the separate cate-
gories are divided by a clear gap that is as wide as possible. Test
data are then mapped into that same space and predicted to be-
long to a category based on which side of the gap they fall. RF
are an ensemble learning method that operates by constructing
a multitude of decision trees at training time and outputting the
class that is the mode of the classes or mean prediction of the
individual trees. MLP is a class of feedforward artificial neural

Fig. 3 An overview of the proposed method.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

network, which consists of at least three layers of nodes. Each
node is a neuron that uses a nonlinear activation function. MLP
utilizes a supervised learning technique called backpropagation
for training.

These are supervised learning models with associated learning
algorithms that analyze data used for classification and regression
analysis. Given a set of training data, each labeled as belonging
to one or the other of two categories, these training algorithms
build a model that assigns new examples to one category or the
other. After that, we convert unseen proxy server logs into vec-
tors. These unlabeled vectors are test data for the classifiers. Fi-
nally, we input these unlabeled vectors to the classifiers, and can
obtain a predicted label. The predicted label is either malicious
or benign.

4.5 Implementation
Our method was developed by Python-2.7 with open source

machine learning libraries, gensim-1.01 [28], scikit-learn-
0.18.0 [29] and chainer-1.23 [30].

Gensim is a Python library that provides unsupervised seman-
tic modelling from plain text, and includes a BoW model and a
Doc2vec model. Table 1 shows the parameters for the Doc2vec
model. We set the dimensionality of the feature vectors 100, and
chose DBoW which was an extension of skip-gram. The win-
dow is the maximum distance between the predicted word and
context words used for prediction within a document. The mini-
mum count is the threshold value to ignore all words with a total
frequency lower than this.

Scikit-learn is a machine-learning library for Python that pro-
vides tools for data mining with a focus on machine learning, and
supports SVM and RF. Our method uses a SVC function with a
linear kernel for SVM. Our method also uses a RandomForest-
Classifier function for RF.

Chainer is a flexible Python framework for neural networks,
which supports MLP with CUDA computation. We use CUDA
8.0 and cuDNN-6.0. Table 2 shows the parameters for the MLP
model. The number of input layer units is the dimensionality of
the test data. Thus, the dimensionality is 100 as we mentioned
before. The number of labels is 2, namely benign or malicious.
ReLU (Rectified Linear Unit) is an activation function defined as

Table 1 The parameters for the Doc2vec model.

Dimensionality of the feature vectors 100

Window 15

Minimum count 2

Number of epochs 30

Training algorithm DBoW

Table 2 The parameters for the MLP model.

Number of input layer units 100

Number of hidden layer units 500

Number of labels 2

Activation function ReLU

Dropout ratio 0

Minibatch size 100

Optimizer Adam

follows.

f (x) = x+ = max(0, x)

It is also known as a ramp function and has been used in con-
volutional networks more effectively than the widely used lo-
gistic sigmoid. Adam (Adaptive moment estimation) is an al-
gorithm for first-order gradient-based optimization of stochastic
objective functions, based on adaptive estimates of lower-order
moments [31]. This method is well suited for problems that are
enormous in terms of data and parameters, and also appropriate
for non-stationary objectives and problems with very noisy and
sparse gradients. We use cross entropy to define the loss function
in optimization.

5. Experiment

5.1 Dataset
To evaluate our method, we use captured pcap files from Ex-

ploit Kit (EK) between 2014 and 2017, which were downloaded
from the website MALWARE-TRAFFIC-ANALYSIS.NET [32].
EK is a software kit designed to run on web servers, with the
purpose of identifying software vulnerabilities in client machines
communicating with it. EK discovers and exploits vulnerabili-
ties that might allow uploading and running malicious code on
the client computer. We chose some EKs which communicate via
a standard protocol and attempt to imitate normal http commu-
nication. We name these pcap files MTA dataset. We also use
BOS (Behavior Observable System), D3M (Drive-by Download
Data by Marionette) dataset and NCD (Normal Communication
Data in MWSCup 2014). These datasets are parts of the MWS
datasets [33], and include pcap files. BOS and D3M contain ma-
licious traffic. Table 3 shows the details.

These pcap files are malicious. However, the property is dif-
ferent. MTA is a set of packet traces downloaded from the web-
site. This dataset includes traffic from many EKs (e.g., Angler
EK, Neutrino EK, Magnitude EK, RIG EK, Nuclear EK). This
dataset contains the traffic from the latest version of EKs. We
use this dataset to verify that our method is effective against DbD
attacks. BOS comprises some cases of malware samples (e.g.,
Emdivi, Plug X), packet traces, and a process log collected from
a virtual company that is a malware execution environment. The
malware that were attached to e-mails are provided as well as the
observed attackers activities on the host within the virtual com-
pany. BOS contains C&C traffic which uses a standard proto-
col and attempts to imitate normal http communication. Thus,

Table 3 The detail of the original datasets.

Period Size

MTA BOS D3M NCD

2010 - - 130M -

2011 - - 24.8M -

2012 - - 33.2M -

2013 - - 14.6M -

2014 238M 38.9M 22.3M 6.4G

2015 186M 2.25G 334M -

2016 373M 3.48G - -

2017 109M - -

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Table 4 The detail of the converted datasets.

MTA BOS D3M NCD

Size 3.9M 3.3M 2.4M 8.3M

Line 5,578 6,121 9,611 25,151

Status unique 20 8 14 17

frequent 3,580 3,840 5,121 17,754

Method unique 3 2 4 4

frequent 4,734 3,474 6,992 24,657

URL unique 4,049 2,655 4,216 18,023

frequent 32 2,195 38 117

Size unique 1,060 193 1,073 1,320

frequent 140 1,712 368 2,840

UA unique 95 16 15 238

frequent 927 2,279 6,316 2,840

this traffic is difficult to distinguish from benign traffic. We use
this dataset to verify that our method can detect C&C traffic in
spear-phishing attacks. D3M is a set of packet traces collected
from the web-client, high-interaction honeypot system, which is
based on Internet Explorer on Windows OS with several vulnera-
ble plugins, such as Adobe Reader, Flash Player, Java and so on.
Though this dataset is related with EKs (e.g., Blackhole Exploit
Kit, Elenore, Mpack), does not include the latest version of EKs.
Thus, we use this dataset supplementally. NCD is a benign pcap
file which was captured during a day in 2014.

Our method aims to detect malicious traffic from proxy server
logs. Thus, we have to convert these pcap files into pseudo proxy
server logs. We extracted http traffic from these pcap files, and
coupled the requests and responses. Table 4 shows the details.

This table includes the size, number of lines, unique number of
each element and number of the most frequent value.

Then, we compounded the malicious logs and the benign logs
into datasets. We split the datasets into training data and test data
to conduct 10-fold cross-validation, timeline analysis and cross-
dataset validation. In the 10-fold cross-validation, we use all the
datasets. In the timeline analysis and cross-dataset validation, we
switch malicious datasets for the training data and test data. We
use the first half of the NCD dataset as the training data and the
rest half as the test data. Our method uses only training data to
construct a corpus. Because, we presume that the test data is un-
seen traffic.

5.2 Metrics
Three evaluation metrics are used: precision (P), recall (R)

and f-measure (F). These metrics are used to evaluate the per-
formance of classification tasks.

Precision =
T P

T P + FP

Recall =
T P

T P + FN

F − measure =
2Recall × Precision
Recall + Precision

TP (True Positive), FP (False Positive), TN (True Negative)
and FN (False Negative) are defined as shown in Table 5.

TP is the number of instances correctly classified as benign or
malicious, TN is the number of instances correctly classified as
Not-benign or Not-malicious. FP is the number of instances in-

Table 5 Confusion matrix for two possible outcomes.

True label

Positive Negative

Predicted Positive TP FP

label Negative FN TN

Table 6 Experiment environment.

CPU Core i7-3770 3.4 GHz

Memory DDR4 SDRAM 16 GB

GPU GeForce GTX980/4G

OS Windows 7

Table 7 The result of the 10-fold cross-validation.

dataset classifier Benign Malicious

P R F P R F

MTA SVM 0.99 0.98 0.98 0.95 0.98 0.97

(DbD) RF 0.96 1.00 0.98 0.99 0.89 0.94

MLP 0.99 1.00 0.99 0.99 0.97 0.98

BOS SVM 1.00 1.00 1.00 1.00 1.00 1.00

(C&C) RF 0.98 1.00 0.99 1.00 0.93 0.96

MLP 1.00 1.00 1.00 1.00 0.99 0.99

correctly classified as benign or malicious, FN is the number of
instances incorrectly classified as Not-benign or Not-malicious.
In this paper, malicious traffic is a paragraph which contains ma-
licious URLs. Our method interprets 10 lines as a paragraph and
adds the label to the paragraph. Hence, we calculate TP and FP
from the number of classified paragraphs.

5.3 Experimental Environment
Table 6 shows the experimental environment. This method

needs only a simple computer, and does not require special equip-
ment.

5.4 Result
Table 7 shows the results of the 10-fold cross-validation. RF

is less accurate than other classifiers.
Table 8 shows the results of the timeline analysis (MTA). All

the run times for each classification were less than 0.1 second.
SVM achieved a good accuracy on average. The other classifiers
were less accurate and unstable than SVM. Focusing on the same
test data, new training data did not always improve the accuracy.

Table 9 shows the results of the timeline analysis (BOS). All
the run times for each classification were less than 0.1 second. In
C&C traffic, SVM achieved the best accuracy.

Table 10 shows the results of the cross-dataset validation. All
the run times for each classification were less than 0.1 second.
SVM and MLP achieved a good accuracy on average. RF was
less accurate than the other classifiers.

As a result, SVM achieved a good accuracy on average. RF and
MLP could not derive stable results. A possible reason for this is
that Doc2vec generates linearly separable vectors. Another possi-
ble reason is over fitting. Hence, we concluded the best classifier
was SVM.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Table 8 The result of the timeline analysis (MTA).

training test classifier Benign Malicious

data data P R F P R F

SVM 1.00 0.96 0.98 0.84 1.00 0.91

2014 2015 RF 0.98 0.98 0.98 0.91 0.87 0.89

MLP 1.00 0.98 0.99 0.89 0.98 0.93

SVM 1.00 0.97 0.99 0.86 1.00 0.92

2014 2016 RF 0.98 0.99 0.99 0.96 0.90 0.93

MLP 0.94 0.98 0.96 0.93 0.78 0.85

SVM 1.00 0.97 0.98 0.85 1.00 0.97

2014 2017 RF 0.98 0.99 0.99 0.96 0.91 0.93

MLP 0.99 0.98 0.98 0.60 0.79 0.68

SVM 1.00 0.98 0.99 0.93 1.00 0.96

2015 2016 RF 0.91 1.00 0.95 0.99 0.66 0.79

MLP 0.98 1.00 0.99 0.86 0.66 0.75

SVM 1.00 0.98 0.99 0.69 0.94 0.80

2015 2017 RF 0.98 1.00 0.99 1.00 0.64 0.78

MLP 0.87 0.88 0.87 0.89 0.88 0.89

SVM 1.00 0.99 0.99 0.74 0.94 0.83

2016 2017 RF 0.99 1.00 0.99 0.92 0.69 0.79

MLP 0.99 1.00 1.00 0.96 0.88 0.92

Table 9 The result of the timeline analysis (BOS).

training test classifier Benign Malicious

data data P R F P R F

First Rest SVM 0.94 1.00 0.97 0.99 0.76 0.86

Half Half RF 0.90 1.00 0.94 1.00 0.55 0.71

MLP 0.92 1.00 0.96 1.00 0.62 0.76

Table 10 The result of the cross-dataset validation.

training test classifier Benign Malicious

data data P R F P R F

SVM 0.97 0.91 0.94 0.92 0.97 0.94

MTA D3M RF 0.89 0.98 0.93 0.96 0.81 0.88

MLP 0.96 0.98 0.97 0.96 0.93 0.94

SVM 0.97 0.97 0.97 0.96 0.96 0.96

D3M MTA RF 0.90 0.99 0.94 0.98 0.86 0.92

MLP 0.93 0.98 0.95 0.97 0.91 0.94

6. Discussion

6.1 Accuracy
Results from the experiments demonstrate that our method is

effective. This is because there are some differences in words and
the structure. The proposed method divides URLs into words
by the delimiters, and Doc2vec illustrates the ratio of the co-
occurrence probabilities of the two words within the window size.
Some delimiters are closely related to the structure of the URL.
The proposed method learns the structure automatically, even if a
human makes no clear indication.

There are some causes of the false-positives and false-
negatives. The primary cause was the sites which provided web
APIs (e.g., Authentication, Streaming). A web API is an appli-
cation programming interface (API) for either a web server or a
web browser. A web API produces interactive communication
with numerous parameters to provide a coating high functional-
ity and convenience. This behavior is similar to Exploit Kits or

C&C traffic. The attacker needs numerous parameters to con-
trol the victim’s computer at will. Thus, Exploit Kits and C&C
traffic have to produce interactive communication with numerous
parameters. The other cause was the sites which provided up-
date programs or pattern files (e.g., Anti Virus Scanner). This
behavior is similar to downloading malware and malware infec-
tions. We can mitigate these false positives with the whitelist.
Besides, some benign URLs were mixed in the malicious traffic.
In a sense, these impurities are not the cause. We can enhance
purity of the malicious traffic to improve the accuracy.

6.2 Adaptability
Our method can detect DbD attacks and C&C traffic as mali-

cious traffic by the same method. All we have to do is input ma-
licious and benign proxy server logs. Our method can detect ma-
licious traffic regardless of the attack technique. No prior knowl-
edge of the attack techniques is required for capturing the charac-
teristic. Our method does not use different detection techniques.
If attackers change their attack techniques, our methods learn the
characteristic automatically. Besides our method does not require
setting the feature vectors. Hence, our method is adaptable to
many attack techniques.

6.3 Durability
Our method learns the difference between benign traffic and

malicious traffic automatically with neural networks. In neural
networks, it is difficult to specify what feature of an input data a
specific feature map captures. This means that an attacker can-
not recognize the features either. We tried some experiments to
specify the feature. We conducted the same experiments with-
out some elements (e.g., FQDN, User Argent). However, there
was no notable change in the performance. This might mean that
our method does not rely on a specific element. In that case, an
attacker has no effective countermeasure to evade this method.
The only option is imitating normal communication completely.
Thus, our method is effective and durable in the long term.

6.4 Required Time
Our method requires only few minutes to construct the lan-

guage model and the classifier. In this experiment, our method
took roughly three minutes on average. The greater the pcap
files or the log files to construct the models, the longer the re-
quired time. However, we can construct the models in advance.
In this paper, our method could classify unseen logs with these
pre-trained models within a second. Thus, our method can ana-
lyze network traffic or proxy server logs in real time.

6.5 Practical Use
The proposed method was effective on the other dataset. This

means the proposed method is powerful and versatile. Many pre-
vious methods require monitoring all network traffic. Many or-
ganizations, however, do not retain network traffic. Thus, these
methods are not practical. The proposed method does not require
monitoring all network traffic, and only uses malicious and be-
nign proxy server logs.

In this paper, we obtained pseudo proxy server logs from

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

pcap files. We can obtain these malicious pcap files easily
from websites such as MALWARE-TRAFFIC-ANALYSIS.NET,
which disclose malicious traffic data. We can also obtain benign
pcap files or actual proxy server logs easily from everywhere. Our
method therefore has few constraints on practical use.

6.6 Ethics
In this paper, we used malicious pcap files and benign pcap

files. These files might contain privacy sensitive information
such as personal information, email addresses and client’s IP ad-
dresses. Many previous methods require monitoring all network
traffic. Therefore, the possibility of accessing the payloads cannot
be denied. The payloads might contain personal information and
email addresses. However, our method does not require monitor-
ing all network traffic. Moreover, our method does not require
client’s IP addresses, and does not even require identifying the
client’s sources.

In practical use, our method uses only pre-trained models to de-
tect malicious traffic. The models do not include any payload and
logs. Therefore, we can share or disclose the pre-trained models
without much resistance.

7. Conclusion

In this paper, we describe how to construct a corpus from proxy
server logs and apply Doc2vec to learn the difference of benign
traffic and malicious traffic automatically. Then, we propose the
generic detection method using supervised learning models to
classify benign traffic and malicious traffic. This paper conducts
cross-validation and timeline analysis with MTA dataset and BOS
dataset. This paper also demonstrates cross-dataset validation
with MTA dataset and D3M dataset. Consequently, the proposed
method can detect both unseen DbD attacks and C&C traffic in
proxy server logs. We verify that the proposed method is effective
over three years, and effective on the other dataset too. The best
F-measure achieves 0.97 in the timeline analysis and 0.96 on the
other dataset.

Applying our method to actual proxy server logs is a future
work. In this paper, we used the datasets which contains DbD at-
tacks, C&C traffic and benign traffic. A large network has many
clients which access various websites. While load balancers can
maintain a stable state for the duration of a client’s session, our
method might have to be improved. One improvement plan is ad-
justing the size of a paragraph. This might integrate consecutive
lines originated from each client into a paragraph. Another plan
is using other NLP techniques to summarize a paragraph. These
techniques extract important words from various words in proxy
server logs. We should evaluate the accuracy in a practical con-
dition. Another future work is how to update the model. In this
experiment, new training data did not always improve the accu-
racy. In this time, we presumed proxy server logs were written
in a natural language. We can presume any other logs such as
IDS alerts, firewall logs, SIEM (Security Information and Event
Management) events are written in a natural language in the same
manner. We believe this would allow classifying the details auto-
matically.

References

[1] Mimura, M., Otsubo, Y., Tanaka, H. and Tanaka, H.: A Practical
Experiment of the HTTP-Based RAT Detection Method in Proxy
Server Logs, Proc. 12th Asia Joint Conference on Information Secu-
rity, pp.31–37 (2017).

[2] Shibahara, T., Yamanishi, K., Takata, Y., Chiba, D., Akiyama, M.,
Yagi, T., Ohsita, Y. and Murata, M.: Malicious URL Sequence De-
tection using Event De-noising Convolutional Neural Network, Proc.
IEEE ICC 2017 Communication and Information Systems Security
Symposium (2017).

[3] Takata, Y., Akiyama, M., Yagi, Y., Hariu, T. and Goto, G.: MineSpi-
der: Extracting URLs from Environment-Dependent Drive-by Down-
load Attack, Proc. 2015 IEEE 39th Annual Computer Software and
Applications Conference, Vol.2, pp.444–449 (2015).

[4] Jodavi, M., Abadi, M. and Parhizkar, E.: DbDHunter: An ensemble-
based anomaly detection approach to detect drive-by download at-
tacks, Proc. 2015 5th International Conference on Computer and
Knowledge Engineering (ICCKE), pp.273–278 (2015).

[5] Mimura, M. and Tanaka, H.: Heavy Log Reader: Learning the Con-
text of Cyber Attacks Automatically with Paragraph Vector, Proc. 13th
International Conference on Information Systems Security, LNCS,
Vol.10717, pp.146–163 (2017).

[6] Mimura, M. and Tanaka, H.: Long-term Performance of a Generic
Intrusion Detection Method Using Doc2vec, Proc. 4th International
Workshop on Information and Communication Security, pp.456–462
(2017).

[7] Gu, G., Perdisci, R., Zhang, J. and Lee, W.: Botminer: Clustering
Analysis of Network Traffic for Protocol and Structure Independent
Botnet Detection, Proc. USENIX Security Symposium, Vol.5, pp.139–
154 (2008).

[8] Bilge, L., Balzarotti, D., Robertson, W., Kirda, E. and Kruegel, C.:
Disclosure: Detecting Botnet Command and Control Servers through
Large-scale Netflow Analysis, Proc. 28th Annual Computer Security
Applications Conference, pp.129–138 (2012).

[9] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S. and Dean, J.:
Distributed Representations of Words and Phrases and Their Com-
positionality, Advances in Neural Information Processing Systems,
pp.3111–3119 (2013).

[10] Wang, K. and Stolfo, S.: Anomalous Payload-based Network Intru-
sion Detection, LNCS, Vol.3224, pp.203–222 (2004).

[11] Moore, D., Shannon, C., Brown, D.J., Voelker, G.M. and Savage, S.:
Inferring Internet Denial-of-service Activity, ACM Trans. Computer
Systems, Vol.24, No.2, pp.115–139 (2006).

[12] Bailey, M., Oberheide, J., Andersen, J., Mao, Z., Jahanian, F. and
Nazario, J.: Automated Classification and Analysis of Internet Mal-
ware, LNCS, Vol.4637, pp.178–197 (2007).

[13] Song, H. and Turner, J.: Toward Advocacy-free Evaluation of Packet
Classification Algorithms, IEEE Trans. Computers, Vol.60, No.5,
pp.723–733 (2011).

[14] Karagiannis, T., Papagiannaki, K. and Faloutsos, M.: Blinc: Multi-
level Traffic Classification in the Dark, Proc. 2005 Conference on Ap-
plications, Technologies, Architectures, and Protocols for Computer
Communications, pp.229–240 (2005).

[15] Antonakakis, M., Perdisci, R., Dagon, D., Lee, W. and Feamster, N.:
Building a Dynamic Reputation System for DNS, Proc. 19th USENIX
Security Symposium (2010).

[16] Antonakakis, M., Perdisci, R., Lee, W., Vasiloglou II, N. and Dagon,
D.: Detecting Malware Domains at the Upper DNS Hierarchy, Proc.
20th USENIX Security Symposium (2011).

[17] Antonakakis, M., Perdisci, R., Nadji, Y., Vasiloglou, N., Abu-Nimeh,
S., Lee, W. and Dagon, D.: From Throw-Away Traffic to Bots: De-
tecting the Rise of DGA-Based Malware, Proc. 21th USENIX Security
Symposium (2012).

[18] Rahbarinia, B, Perdisci, R. and Antonakakis, M.: Segugio: Efficient
Behavior-Based Tracking of New Malware-Control Domains in Large
ISP Networks, Proc. 2015 IEEE/IFIP International Conference on De-
pendable Systems and Networks (2015).

[19] Kruegel, C. and Vigna, G.: Anomaly Detection of Webbased Attacks,
Proc. 10th ACM Conference on Computer and Communications Secu-
rity, pp.251–261 (2003).

[20] Choi, H., Zhu, B.B. and Lee, H.: Detecting Malicious Web Links
and Identifying Their Attack Types, Proc. 2nd USENIX Conference
on Web Application Development, pp.1–11 (2011).

[21] Ma, J., Saul, L.K., Savage, S. and Voelker, G.M.: Learning to Detect
Malicious URLs, ACM Trans. on Intelligent Systems and Technology,
Vol.2, No.3, Article 30 (2011).

[22] Huang, H., Qian, L. and Wang, Y.: A SVM-based Technique to De-
tect Phishing URLs, Information Technology Journal, Vol.11, No.7,
pp.921–925 (2012).

[23] Zhao, P. and Hoi, S.C.: Cost-sensitive Online Active Learning with
Application to Malicious URL Detection, Proc. 19th ACM SIGKDD

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

International Conference on Knowledge Discovery and Data Mining,
pp.919–927 (2013).

[24] Invernizzi, L., Miskovic, S., Torres, R., Saha, S., Lee, S., Mellia, M.,
Kruegel, C. and Vigna, G.: Nazca: Detecting Malware Distribution in
Large-scale Networks, Proc. Network and Distributed System Security
Symposium (2014).

[25] Nelms, T., Perdisci, R., Antonakakis, M. and Ahamad, M.: Webwit-
ness: Investigating, Categorizing, and Mitigating Malware Download
Paths, Proc. 24th USENIX Security Symposium, pp.1025–1040 (2015).

[26] Bartos, K. and Sofka, M.: Optimized Invariant Representation of
Network Traffic for Detecting Unseen Malware Variants, Proc. 25th
USENIX Security Symposium, pp.806–822 (2016).

[27] Le, Q. and Mikolov, T.: Distributed Representations of Sentences and
Documents, Proc. 31st International Conference on Machine Learn-
ing, pp.1188–1196 (2014).

[28] gensim, available from 〈https://radimrehurek.com/gensim/〉.
[29] scikit-learn, available from 〈 http://scikit-learn.org/〉.
[30] Chainer, available from 〈https://chainer.org/〉.
[31] Kingma, D.P. and Ba, J.: Adam: A Method for Stochastic Optimiza-

tion, Proc. 3rd International Conference for Learning Representations
(2015).

[32] MALWARE-TRAFFIC-ANALYSIS.NET, available from
〈http://www.malware-traffic-analysis.net/〉.

[33] Hatada, M., Akiyama, M., Matsuki, T. and Kasama, T.: Empower-
ing Anti-malware Research in Japan by Sharing the MWS Datasets,
Journal of Information Processing, Vol.23, No.5, pp.579–588 (2015).

Editor’s Recommendation
Authors propose a generic detection method that uses Para-

graph Vector to capture the context in proxy server logs. This
method can detect unseen DbD attacks and C&C traffic in proxy
server logs. In addition, this method can detect malicious traffic
with realistic calculation cost and log volume. Therefore, we ex-
pect the proposed method can be used widely and many readers
will be interested.

(Program Chair of Computer Security Symposium 2017
(CSS2017), Yuji Suga)

Mamoru Mimura received his B.E. and
M.E. in Engineering from National De-
fense Academy of Japan, in 2001 and
2008 respectively. He received his Ph.D.
in Informatics from the Institute of Infor-
mation Security in 2011 and M.B.A. from
Hosei University in 2014. During 2001–
2017, he was a member of the Japanese

Maritime Self Defense Forces. During 2011–2013, he was with
the National Information Security Center. Since 2014, he has
been a researcher in the Institute of Information Security. Since
2015, he has been with the National center of Incident readiness
and Strategy for Cybersecurity. Currently, he is an Associate Pro-
fessor in the Department of C.S., National Defense Academy of
Japan.

Hidema Tanaka received his B.E., M.E.,
and Ph.D. all in Electrical Engineering
from Science University of Tokyo, in
1995, 1997 and 2000 respectively. He was
a Director of Security Fundamentals Lab-
oratory at the National Institute of Infor-
mation and Communications Technology
until 2011. Currently, he is an Associate

Professor in the Department of C.S., National Defense Academy
of Japan.

c© 2018 Information Processing Society of Japan

