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Improving the audio visual scene-aware dialog system in
DSTC7 by using attentional multimodal fusion and

MMI objective

WangWenbo1,a) Zhuang Bairong1,b) Takahiro Shinozaki1,c)

Abstract: We show our effort for the 7th Dialog System Technology Challenge (DSTC7) Audio Visual Scene-aware
dialog (AVSD) track. In our work, we employ the attentional multimodal fusion and Maximum Mutual Information
(MMI). The MMI is utilized for the objective function instead of cross entropy loss in the baseline system. Our results
show these extensions are useful for improving the performance of the system.
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1. Introduction
The AVSD track [1], [2] in the Dialog System Technology

Challenges (DSTC) workshop aims to use the video information
for scene awareness [3] to generate informative system responses
in end-to-end dialog systems [4]. In this paper, we report our
exploration on the AVSD track by introducing attentional multi-
modal fusion [5] and replacing the original objective with MMI
[6].

2. Models
2.1 Audio Visual Scene-Aware Dialog System

The baseline AVSD system is similar to [7], and has separated
encoders: Question Encoder, Multimodal Encoder, and Context
Encoder. The question encoding sq, multimodal encoding smm,
and dialog context encoding sc are calculated through their cor-
responding encoders. The decoder is a stacked LSTM having 2
layers. The detailed architecture of the AVSD system is described
in [2].

2.2 The Extended AVSD System
The baseline system combines context features smk of different

modalities based on Naı̈ve fusion [8]. In this paper, we employ
the attentional multimodal fusion introduced in [5] instead of the
Naı̈ve fusion. The attentional multimodal fusion is computed as:

smm = tanh(
K∑

k=1

βk(Wsk smk + bsk)),

and the attention weight βk is obtained from:

βk = so f tmax(vk),
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Table 1 Video Scene-aware Dialog Dataset on Charades

training validation test
# of dialogs 6,172 732 733
# of turns 123,480 14,680 14,660
# of words 1,163,969 138,314 138,790

Fig. 1 The architecture of the extended AVSD system with attentional mul-
timodal fusion, where the β denotes the attention weight.

vk = wb · tanh(Waqsq + Wak smk + bak),

where K is the number of modalities. The attention weight βk

enables the decoder network to attend each modality when gener-
ating next response word. The architecture of the extended AVSD
system is shown in Fig. 1.

The cross entropy objective in the baseline system leads to
generic and safe responses, since it only takes the source side
into the consideration. To promote diversity in the generated re-
sponses, we replace it with Maximum Mutual Information (MMI)
[6]. In the MMI approach, target T is obtained by Equation (2).
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Table 2 The results of different methods using visual multimodal features (I3D-RGB and I3D-Flow). In
this table, LSTM denotes the LSTM unit used for modeling multimodal feature, if no LSTM is
specified, there is just a linear transformation before multimodal fusion in the multimodal en-
coder part. C denotes the caption, which is the description of the target video. AF denotes the
attentional multimodal fusion.

Methods BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE L CIDEr
Baseline(official) 0.273 0.173 0.118 0.084 0.117 0.291 0.766

Baseline(ours) 0.272 0.174 0.118 0.083 0.118 0.292 0.769
+LSTM 0.274 0.174 0.118 0.083 0.117 0.292 0.762

+C 0.279 0.177 0.12 0.085 0.117 0.293 0.77
+LSTM+C 0.277 0.175 0.119 0.084 0.117 0.293 0.77

+AF 0.276 0.177 0.122 0.087 0.117 0.293 0.787
+AF+C 0.278 0.177 0.12 0.085 0.119 0.291 0.762

+AF+C+LSTM 0.271 0.174 0.119 0.085 0.117 0.291 0.785

Table 3 The results when VGGish audo feature is used in addition to I3D-RGB and I3D-Flow visual
features.

Methods BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE L CIDEr
Baseline 0.277 0.178 0.122 0.087 0.119 0.296 0.791
+LSTM 0.277 0.176 0.12 0.085 0.118 0.293 0.77

+C 0.274 0.174 0.119 0.084 0.117 0.292 0.779
+LSTM+C 0.279 0.177 0.121 0.085 0.118 0.295 0.77

+AF 0.270 0.172 0.118 0.084 0.116 0.286 0.744
+AF+C 0.271 0.172 0.117 0.083 0.117 0.29 0.759

+AF+C+LSTM 0.276 0.176 0.119 0.084 0.117 0.293 0.766

Table 4 The result of adding MMI objective with different parameter λ using I3D-RGB and I3D-Flow
on attentional multimodal fusion system.
λ BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE L CIDEr

λ1 = 0.76 0.283 0.181 0.124 0.089 0.121 0.296 0.805
λ2 = 0.46 0.282 0.181 0.125 0.089 0.122 0.297 0.819
λ3 = 0.36 0.28 0.18 0.124 0.089 0.122 0.296 0.821

T̂ = arg max
T

(log p(T |S ) − λ log
p(T |S )p(S )

p(S |T )
), (1)

= arg max
T

((1 − λ) log p(T |S ) + λ log p(S |T )), (2)

where λ controls the trade-off between the models of log P(T |S )
and log P(S |T ). Since directly optimizing the models following
Equation 2 is intractable, we train them independently. More
specifically, we first train p(T |S ) and p(S |T ), where p(S |T ) is
trained by reversing the QA in the training set. Then, we use
p(T |S ) to generate an N-best list, and re-rank it by p(S |T ).

3. Experimental setup
The data we used is released by the DSTC7 organizer. It is

an extension of the existing Charades [9] dataset. Table 1 sum-
marizes the property of the dataset. The visual features are ex-
tracted from the I3D-model including I3D-RGB and I3D-Flow
introduced in [10], while the audio features are extracted from
the Audio Set VGGish model [11]. When employing MMI ob-
jective in the attentional multimodal fusion system, we optimized
λ in Equation (2) by the grid search using the validation set.

4. Results
Table 2 shows the results of the attentional multimodal fu-

sion using I3D-RGB and I3D-Flow visual features. The baseline
scores we get from our experiment are similar to the officially re-
leased scores. By adding the attentional multimodal fusion (AF
in the Table) to the system, the performance improves compared
with the baseline, which proves this extension is useful. We also
find some improvements when adding the caption (C) to the sys-
tem, which indicates that the scene information provided by the

caption helps the system to produce a more reasonable answer.
Table 3 shows the results when the audio feature are added in the
system. In this condition, however, the attentional multimodal fu-
sion seems to be useless. The bad performance is probably due
to the overdubbed sound, which is not in the original scene [5].
Table 4 shows the results when the MMI objective is applied with
the system using the visual features. The parameter λ is optimized
for BLEU1 (λ1), ROUGE L (λ2) and CIDEr (λ3). Compared with
the attentional multimodal fusion system in Table 2 (the line with
”+AF”), the employed MMI makes more improvement on differ-
ent metrics. Besides, the meaningless answer such as ”I can’t tell
...” reduced from ∼350 to ∼120, which proves the MMI is also
useful for improving the performance of the system.

5. Conclusion
We have investigated extending the Audio Visual Scene-aware

Dialogue system in DSTC7 by multimodal attention and MMI
objective. By employing attentional multimodal fusion using vi-
sual feature, the performance of the system was improved com-
pared with the baseline. The performance was further improved
by employing MMI as the objective function, and meaningless
answers were reduced from the baseline. Future work includes
training the AVSD model in an end-to-end manner. Improving
the way of combining multimodal information is also needed.
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