Item type |
SIG Technical Reports(1) |
公開日 |
2018-12-03 |
タイトル |
|
|
タイトル |
Feature Transfer Learning for Wav2Text Sequence-to-Sequence ASR |
タイトル |
|
|
言語 |
en |
|
タイトル |
Feature Transfer Learning for Wav2Text Sequence-to-Sequence ASR |
言語 |
|
|
言語 |
eng |
キーワード |
|
|
主題Scheme |
Other |
|
主題 |
セッション1 音声認識 |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_18gh |
|
資源タイプ |
technical report |
著者所属 |
|
|
|
Nara Institute of Science and Technology/RIKEN, Center for Advanced Intelligence Project AIP |
著者所属 |
|
|
|
Nara Institute of Science and Technology/RIKEN, Center for Advanced Intelligence Project AIP |
著者所属 |
|
|
|
Nara Institute of Science and Technology/RIKEN, Center for Advanced Intelligence Project AIP |
著者所属(英) |
|
|
|
en |
|
|
Nara Institute of Science and Technology / RIKEN, Center for Advanced Intelligence Project AIP |
著者所属(英) |
|
|
|
en |
|
|
Nara Institute of Science and Technology / RIKEN, Center for Advanced Intelligence Project AIP |
著者所属(英) |
|
|
|
en |
|
|
Nara Institute of Science and Technology / RIKEN, Center for Advanced Intelligence Project AIP |
著者名 |
Andros, Tjandra
Sakriani, Sakti
Satoshi, Nakamura
|
著者名(英) |
Andros, Tjandra
Sakriani, Sakti
Satoshi, Nakamura
|
論文抄録 |
|
|
内容記述タイプ |
Other |
|
内容記述 |
In this paper, we construct the first end-to-end attention-based encoder-decoder model to process directly from raw speech waveform to the text transcription. We called the model as ”Attention-basedWav2Text”. To assist the training process of the end-to-end model, we propose to utilize a feature transfer learning. Experimental results also reveal that the proposed Attention-based Wav2Text model directly with raw waveform could achieve a better result in comparison with the attentional encoder-decoder model trained on standard front-end filterbank features. |
論文抄録(英) |
|
|
内容記述タイプ |
Other |
|
内容記述 |
In this paper, we construct the first end-to-end attention-based encoder-decoder model to process directly from raw speech waveform to the text transcription. We called the model as ”Attention-basedWav2Text”. To assist the training process of the end-to-end model, we propose to utilize a feature transfer learning. Experimental results also reveal that the proposed Attention-based Wav2Text model directly with raw waveform could achieve a better result in comparison with the attentional encoder-decoder model trained on standard front-end filterbank features. |
書誌レコードID |
|
|
収録物識別子タイプ |
NCID |
|
収録物識別子 |
AN10442647 |
書誌情報 |
研究報告音声言語情報処理(SLP)
巻 2018-SLP-125,
号 3,
p. 1-2,
発行日 2018-12-03
|
ISSN |
|
|
収録物識別子タイプ |
ISSN |
|
収録物識別子 |
2188-8663 |
Notice |
|
|
|
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc. |
出版者 |
|
|
言語 |
ja |
|
出版者 |
情報処理学会 |