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Abstract: If a cryptographic scheme is resilient to some leakage, its security is guaranteed to be maintained even if
secret information, e.g., the secret-key, is partially leaked. Various security models considering leakage-resilience have
been proposed. Hard-to-invert leakage (HL) model, a.k.a. auxiliary (input) leakage model, proposed by Dodis et al. in
STOC’09 is especially meaningful since it can deal with leakage caused by a function which information-theoretically
determines the secret-key, e.g., a one-way permutation.
In this paper, we generically construct identity-based signature (IBS) and attribute-based signature (ABS) which are
adaptively secure in the HL model. By instantiating them, we give the first concrete constructions of IBS and ABS
which are adaptively secure in the HL model under standard assumptions, i.e., the decisional linear assumption.

Keywords: Leakage-resilience, Hard-to-invert leakage, Auxiliary (input) leakage, Identity-based signature, Attribute-
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1. Introduction
Identity-Based Signature (IBS). The idea of IBS was pre-

sented by Shamir [29]. It is a digital signature where any bit-
string (whose bit-length is polynomially bounded) can be used as
a verification-key. Since the early years of the current century, it
has been known that IBS schemes can be generically constructed
from signature schemes. Various direct (or concrete) construc-
tions of IBS were proposed in [28] and the others.

Attribute-Based Signature (ABS). In ABS systems, a set of
attributes is assigned to each user. A trusted third authority is as-
signed a role to generate a secret-key from a set of attributes. A
signer specifies a predicate satisfied by her attributes when sign-
ing a message. A verifier confirms that the signature was really
generated by using a valid secret-key for a set of attributes which
satisfies the predicate. ABS schemes were proposed in [24], [30]
and the others.

Existential Unforgeability of IBS/ABS. Like digital signature
schemes, IBS and ABS schemes are required to be existentially
unforgeable. Formal definitions of them can be seen in [28] and
[30]. Informally speaking, in case of ABS schemes, an ABS
scheme is said to be existentially unforgeable if any PPTA ad-
versary cannot find with a non-negligible probability a pair of a
signature σ∗, a message m∗ and a predicate ϕ∗ which satisfies (at
least) a condition where σ∗ is a valid signature for (m∗, ϕ∗) even if
he can adaptively use a secret-key-revelation oracle which takes
a set of attributes, then returns a secret-key for it, and a signature-
generation oracle which takes a set of attributes and a predicate,
then returns a valid signature for them. Obviously, if the adver-
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sary is allowed to query a set of attributes satisfying ϕ∗ to the
secret-key-revelation oracle, he succeeds to forge a valid signa-
ture with probability 1. So, such a query must be prohibited.
Thus, in the standard security definition, only PPT adversaries
who are not able to get any information from any secret-key for
any set of attributes which satisfies the target predicate ϕ∗ are
considered.

Leakage-Resilient (LR) Cryptography. Leakage-resilience
(LR) is a property which guarantees that even if secret informa-
tion such as secret-keys (for a set of attributes which satisfies the
target predicate ϕ∗ in case of ABS) is partially leaked, its security
is maintained. Any scheme whose security has been proven only
in a security model w/o LR is not guaranteed to be secure when
such secret information is partially leaked. There are some side-
channel attacks which are real threats, e.g., [18], so LR crypto-
graphic schemes are practically more desirable than non-LR one.

In security models considering LR, a side-channel attack
caused by an adversary is modeled as a polynomial time com-
putable function*1 f : {0, 1}|S ecret| → {0, 1}∗. An adversary is
allowed to arbitrarily choose a leakage-function f , query it to a
leakage oracle, and learn f (S ecret). If we allow the adversary to
choose the identity-map as f , the adversary acquires the secret-
key entirely and is able to break the security model with proba-
bility 1. Hence, we have to impose a restriction on f . Several
security models in which different restrictions are imposed on f
have been proposed.

In bounded leakage (BL) model [1], the output bit-length of f
is restricted. More concretely, only f satisfying f : {0, 1}|S ecret| →
{0, 1}l(k) such that l(k) < k can be chosen*2. To make the output

*1 S ecret denotes the secret information. |S ecret| denotes bit-length of
S ecret.

*2 k denotes the minimum entropy of a secret-key sk. If a secret-key is gen-
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bit-length of f unbounded, noisy leakage (NL) model [26] was
invented. In NL model, only f : {0, 1}|S ecret| → {0, 1}∗ such that,
when we observe f (S ecret), the minimum entropy of the secret-
key sk drops by at most l(k) < k can be chosen. Any function
which information-theoretically reveals the secret-key sk is ex-
cluded in each one of the two models. Thus, for instance, one-
way permutation cannot be chosen in each one of the models.
To remove such a restriction, hard-to-invert leakage (HL) model,
a.k.a. auxiliary (input) leakage (AL) model [12], was invented.
In HL model, the function f must be a hard-to-invert function.
More concretely, only f such that given f (S ecret), no PPT algo-
rithm can find sk with a probability larger than µ(k) can be cho-
sen, where µ(·) is a negligible function such that µ(k) > 2−k. Note
that the larger µ(k) is, the larger the function class of f is. HL
model is a generalization of BL and NL model and has a larger
function class. Moreover, HL model is useful in the context of
the composition [9], [35].

In each one of the above models, the secret-keys cannot be up-
dated, so each one of the secret-keys leaks its partial information
repeatedly throughout the lifetime of the cryptographic system.
Meanwhile, in continual leakage (CL) model [5], [10], a situa-
tion where the secret-key can be updated periodically is consid-
ered. For the secret-key skt in time period t, output bit-length of
the leakage function of skt is bounded like the BL model. The
total number of times of secret-key update is unbounded, so total
amount of leakage is also unbounded.

A large number of cryptographic schemes with LR were pro-
posed. For instance, public-key encryption [1], [4], [9], [11],
identity-based encrypiton [8], [20], [21], [23], [35], attribute-
based encrypiton [23], [37], [38], [39], identification [2], [11],
and authenticated key agreement [2], [11], were proposed.

Related Works. Digital signature schemes secure in the BL
model or the CL model were proposed in [6], [17], [22], [25] and
the others.

The first digital signature scheme secure in the HL model was
proposed by Faust et al. [13] at Asiacrypt’12. However, their
scheme has some disadvantages. Firstly, it is resilient to expo-
nentially hard-to-invert leakage-functions, but not polynomially
HL functions. Secondly, it is weakly existentially unforgeable.
Recently, Ishizaka and Matsuura [19] proposed a digital signa-
ture scheme based on the scheme of Faust et al. Their scheme re-
moved the disadvantages of the scheme in [13], thus it was proved
to be resilient to polynomially HL functions and strongly existen-
tially unforgeable. In [32], [36], other digital signature schemes
with HL resilience which are secure in a new model named selec-
tive auxiliary input model were proposed.

An IBS scheme secure in the BL model was proposed by Wu
et al. [34]. However, their scheme is practically undesirable since
its existential unforgeability is guaranteed by a security model
requiring a strong assumption which is called generic bilinear
group model. Thus, no direct IBS constructions secure in the BL
model or the HL model under standard (or weak) assumptions
have been known. It also has not been known that the famous
generic (or indirect) construction of IBS from digital signature

erated uniformly at random, k is equivalent to bit-length of a secret-key
|sk|.

effectively works in the BL/HL setting.
As far as we know, no concrete ABS constructions secure in

the BL/HL model have been known.
Our Results. We generically construct an IBS scheme exis-

tentially unforgeable in the HL model. We also generically con-
struct an ABS scheme whose predicate is represented as a mono-
tone span program existentially unforgeable in the HL model and
computationally signer-private. Then, we show that they can be
instantiated under standard assumptions such as the decisional
linear (DLIN) assumption. Each one of the instantiations of IBS
scheme and ABS scheme is not only the first one secure in the
HL model under standard assumptions, but also the first leakage-
resilient one under standard assumptions.

In this paper, due to the strict page-limitation, we introduce
only the result related to the ABS scheme, and omit the result
related to the IBS scheme.

Improvements from Our Results [40] at CSS2017. In [40],
the same authors proposed a generic construction of predicate sig-
nature scheme*3 secure in the continual auxiliary leakage model
or the continual hard-to-invert leakage model. The result gives us
generic constructions of IBS and ABS secure in the HL model.
However, the IBS and ABS have some undesirable characteris-
tics. Firstly, (it seems that) it is hard for us to instantiate them
under standard assumptions. Secondly, (it seems that) it is not
easy for us to present any concrete examples of allowed leakage-
functions. On the other hand, the IBS and ABS given in this work
do not have such undesirable characteristics. Thus, we can instan-
tiate them under standard assumptions such as the DLIN assump-
tion and we can present various concrete examples of functions
included in the set of leakage-functions.

Paper Organization. This paper is organized as follows. In
Sect. 2, notations used in this paper is explained. Definitions of
the DL assumption and the DLIN assumption are also given. Def-
initions of some cryptographic primitives such as attribute-based
signature are also given. In Sect. 3, our generic construction
of ABS scheme and proofs for its security, i.e., existential un-
forgeability in the HL model and computational signer-privacy
are described. In Sect. 4, we show that our ABS scheme can be
instantiated under the DLIN assumption.

2. Preliminaries
Notations. For λ ∈ N, 1λ denotes a security parameter. We say

that a function h : N → R is negligible if for every c ∈ N, there
exists x0 ∈ N such that h(x) ≤ x−c for every x ≥ x0. G denotes a
function which takes 1λ as input and randomly generates (p,G, g)
and outputs them, where p is a prime number whose bit-size is λ,
G is a multiplicative cyclic group whose order is p, and g is a gen-
erator of G. PPTA is an abbreviation of probabilistic polynomial
time algorithm.

2.1 Bilinear Groups
Gbg denotes a generator of bilinear groups of prime order. Gbg

takes 1λ, where λ ∈ N, as input, and outputs (p,G,GT , ê), where
p is a prime whose bit-length is λ, G and GT are cyclic groups

*3 Predicate signature is a generalization of some signature schemes such
as digital signature, IBS and ABS
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which have order p, and ê : G ×G→ GT is a map which is com-
putable in polynomial time and satisfies the following conditions:
∀g, h ∈ G, ∀a, b ∈ Zp, it holds that ê(ga, hb) = ê(g, h)ab. If g is a
generator of G, ê(g, g) becomes a generator of GT .

2.2 Hardness Assumptions
Discrete Logarithm (DL) Assumption. For λ ∈ N, let

(p,G, g) ← G(1λ). DL assumption holds, if for every PPTA A,

the probability Pr[x← A(p,G, g, gx) | x U←− Zp] is negligible
Decisional Linear (DLIN) Assumption [3]. For λ ∈ N, let

(p,G, g) ← G(1λ). DLIN assumption holds, if for every PPTA

A, |Pr[1 ← A(p,G, g1, g2, g3, g
r1
1 , g

r2
2 , g

r1+r2
3 ) | g1, g2, g3

U←−
G, r1, r2

U←− Zp] − Pr[1 ← A(p,G, g1, g2, g3, g
r1
1 , g

r2
2 , g

u
3) |

g1, g2, g3
U←− G, r1, r2, u

U←− Zp]| is negligible.

2.3 Labeled Public Key Encryption
Syntax. Labeled public key encryption (LPKE) consists of

three polynomial time algorithms {Gen,Enc,Dec}. Gen and Enc
are probabilistic. Dec is deterministic.
Gen(1λ, 1l)→ (ek, dk). The key generation algorithm takes 1λ

as input, and outputs an encryption key ek, and a decryption
key dk. Plaintext spaceM, ciphetext space C, label space L
are uniquely determined by ek.

Enc(ek,m, L)→ C. The encryption algorithm takes ek, a plain-
text M ∈ M, and a label L ∈ L as inputs, and outpus a
ciphertext C.

Dec(dk,C, L)→ M / ⊥. The decryption algorithm*4 takes dk, a
ciphetext C ∈ C, and a label L ∈ L as inputs, and outputs a
plaintext M or ⊥.

Any LPKE scheme must be correct. An LPKE scheme ΣLPKE =

{Gen,Enc,Dec} is correct, if ∀λ ∈ N, ∀(ek, dk) ← Gen(1λ),
∀M ∈ M, ∀L ∈ L, ∀C ← Enc(ek,M, L), M ← Dec(dk,C, L).
2.3.1 Ciphertext Indistinguishability

We define weak ciphertext-indistinguishability against adap-
tively chosen label/ciphertexts attacks (IND-wLCCA) for an
LPKE scheme ΣLPKE = {Gen,Enc,Dec}. We use the following
game which is played between an adversary A and a challenger
CH .
Key-Generation. CH runs (ek, dk) ← Gen(1λ), and sends ek

toA.
Query. A is allowed to use the decryption oracle Dec adap-

tively.
Dec(C, L): A queries a ciphertext C ∈ C and a label L ∈ L.
CH returns M / ⊥ ← Dec(dk,C, L).

Challenge(M0,M1, L∗). A sends two plaintexts M0,M1 ∈ M,

and a label L∗ ∈ L. CH sets b
U←− {0, 1}, then returns

C∗ ← Enc(ek,Mb, L∗).
Query 2. A is allowed to use the decryption oracle Dec adap-

tively.
Dec(C, L): A queries a ciphertext C ∈ C and a label L ∈ L
such that L , L∗. CH returns M / ⊥ ← Dec(dk,C, L).

Guess(b′). A sends b′ ∈ {0, 1} to CH .

*4 Although Dec needs the encryption-key ek as an input since ek includes
information such as a prime p, a group G, and etc., we often omit ek as
the input.

Definition 1. LPKE scheme ΣLPKE is IND-wLCCA secure if for
any PPT adversary A, AdvIND-wLCCAA,ΣLPKE

(λ) = |2 · Pr[b′ = b] − 1| is
negligible.

2.4 Non-Interactive Zero-Knowledge Proof
Syntax. Non-interactive zero-knowledge proof (NIZK) ΣNIZK

for a language L consists of three polynomial time algorithms
{Gen,Pro,Ver}. Gen and Pro are probabilistic and Ver is deter-
ministic. RL denotes the witness relation.
Gen(1λ)→ crs. The key-generation algorithm takes 1λ as an

input, and outputs a common reference string (CRS) crs.
Pro(crs, x,w)→ π. The proof-generation algorithm takes the

CRS crs, a statement x, and a witness w as inputs, and out-
puts a proof π.

Ver(crs, x, π)→ 1 / 0. The proof-verification algorithm takes
the CRS crs, a statement x, and a proof π as inputs, and
outputs 1 or 0.

Any NIZK scheme must be correct. An NIZK scheme ΣNIZK =

{Gen,Pro,Ver} is correct if ∀λ ∈ N, ∀crs ← Gen(1λ), ∀(x,w)
s.t. (x,w) ∈ RL, ∀π← Pro(crs, x,w), 1← Ver(crs, x, π).
Definition 2. ΣNIZK = {Gen,Pro,Ver} is sound if for every
λ ∈ N, every crs ← Gen(1λ), and every PPT A, Pr[A(crs) →
(x, π) s.t. [Ver(crs, x, π)→ 1] ∧ [x < L]] is negligible.
Definition 3. ΣNIZK = {Gen,Pro,Ver} is zero-knowledge (ZK)
if or every λ ∈ N and every PPT A, there exists a PPT S =
(S1,S2) s.t. |Pr[AOcrs

0 (x,w)(crs) → 1 | Gen(1λ) → crs] −
Pr[AOcrs,td

1 (x,w)(crs)→ 1 | S 1(1λ)→ (crs, td)]| is negligible, where
Ocrs

0 (x,w) returns Pro(crs, x,w) (resp. ⊥), if (x,w) ∈ RL (resp.
(x,w) < RL), and Ocrs,td

1 (x,w) returns S2(crs, x, td) (resp. ⊥), if
(x,w) ∈ RL (resp. (x,w) < RL).

2.5 Attribute-Based Signature (ABS)
Monotone Span Program [24]. For n ∈ N, ϕ : {0, 1}n → {0, 1}

denotes a monotone boolean function. A monotone span program
for ϕ over a field F is denoted by (M, ξ), where M ∈ Fk×t and
ξ : [1, k] → [0, n − 1] is a deterministic function which asso-
ciates each row of M with an element in [0, n − 1]. For every
(x0, · · · , xn−1) ∈ {0, 1}n, the monotone span program (M, ξ) for ϕ
satisfies that ϕ(x0, · · · , xn−1) = 1 ⇐⇒ ∃v⃗ ∈ F1×k s.t. [⃗vM =

(1 0 · · · 0) ∈ F1×t]
∧

i∈[1,k][vi , 0⇒ xξ(i) = 1].
In our ABS scheme, the universal set of attributes is denoted

by U = {0, 1}l, where l ∈ N. A set of attributes is denoted by
S ∈ 2U , where 2U denotes the super set of U. Let us consider
a monotone boolean function ϕ : {0, 1}n → {0, 1}. We define
n as 2l and ϕ(S) as the output of the function ϕ which is given
as input x⃗S = (x0, · · · , xn−1) whose element xi for the attribute
i ∈ [0, n − 1](= U) is set to 1 if i ∈ S, and 0 otherwise.

Syntax. Attribute-based signature (ABS) consists of polyno-
mial time algorithms {Setup,KeyGen,Sig,Ver}. Setup, KeyGen
and Sig are probabilistic, and Ver is deterministic.
Setup(1λ, 1l)→ (pk,mk). 1λ, where λ ∈ N, denotes a security

parameter. l ∈ N denotes the bit-length of an attribute, and
the universal set of attributes is denoted byU = {0, 1}l. The
setup algorithm takes 1λ and 1l as inputs, and outputs a sys-
tem public-key pk and a master-key mk. The message space
M is uniquely determined by pk.
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KeyGen(pk,mk,S ∈ 2U)→ sk. The key-generation algorithm
takes pk, mk and a set of attributes S as inputs, and out-
puts a secret-key sk. Secret-key space K is defined as∪
S∈2U
∪

sk←KeyGen(pk,mk,S){sk}.
Sig(pk,m, ϕ, sk)→ σ. The signing algorithm takes pk, a mes-

sage m ∈ M, a predicate ϕ represented as a monotone span
program (M, ξ), and a secret-key sk for a set of attribute S
such that ϕ(S) = 1 as inputs, and outputs a signature σ.

Ver(pk,m, ϕ, σ)→ 1 / 0. The signature-verification algorithm
takes pk, a message m ∈ M, a predicate ϕ and a signature σ
as inputs, and outputs 1 or 0.

Any ABS scheme must be correct. An ABS scheme ΣABS =

{Setup,KeyGen,Sig,Ver} is correct if ∀λ ∈ N, ∀l ∈ N,
∀(pk, sk) ← Setup(1λ, 1l), ∀S ∈ 2U , ∀sk ← KeyGen(pk,mk,S),
∀m ∈ M, ∀ϕ s.t. ϕ(S) = 1, ∀σ ← Sig(pk,m, ϕ, sk), 1 ←
Ver(pk,m, ϕ, σ).

Ishizaka and Matsuura [19] introduced an original primitive
named PKX which is related to signature schemes. A PKX
scheme consists of an algorithm which generates a pair of public-
key and secret-key and two secret-key-verification algorithms.
We introduce such a primitive which is related to ABS schemes.
An ABX scheme consists of Setup, KeyGen, a secret-key updat-
ing algorithm and two secret-key-verification algorithms whose
definitions are given below.
SKUpd(pk, sk ∈ K ,S ∈ 2U , ϕ)→ ŝk. The secret-key up-

dating algorithm takes a secret-key sk ∈ K , a
set of attributes S ∈ 2U and a predicate ϕ rep-
resented as a MSP (M, ξ) as inputs and outputs
a secret-key ŝk. Secret-key space K̂ is defined as∪
S∈2U
∪

sk←KeyGen(pk,mk,S)
∪
ϕ s.t. ϕ(S)=1

∪
ŝk←SKUpd(pk,sk,S,ϕ){ŝk}.

SKVer(pk, sk ∈ K̂ , ϕ)→ 1 / 0. The (first) secret-key-
verification algorithm takes a secret-key sk ∈ K̂ and a
predicate ϕ represented as a MSP (M, ξ) as inputs and
outputs 1 or 0.

SKVer2(pk, sk, sk′)→ 1 / 0. The second secret-key-
verification algorithm takes two secret-keys sk ∈ K ∪ K̂
and sk′ ∈ K ∪ K̂ as inputs and outputs 1 or 0.

We require that ∀λ ∈ N, ∀l ∈ N, ∀(pk,mk) ← Setup(1λ, 1l),
∀S ∈ 2U , ∀sk ← KeyGen(pk,mk,S), ∀ϕ = (M, ξ) s.t.
ϕ(S) = 1 and ∀ŝk ← SKUpd(pk, sk,S, ϕ), it holds that
[1 ← SKVer(pk, ŝk, ϕ)] ∧ [1 ← SKVer2(pk, sk, sk)] ∧ [1 ←
SKVer2(pk, sk, ŝk)] ∧ [1← SKVer2(pk, ŝk, ŝk)].
2.5.1 Unforgeability in the HL Model for ABS

For the existing ABS schemes [24], [27], [30] in non-leakage
setting, the authors discussed whether their ABS scheme sat-
isfies weak existential unforgeability under adaptively chosen
predicate/messages attack. We define weak existential un-
forgeability under adaptively chosen predicate/messages attack
in the HL model (HL-EUF-CMA) for ABS schemes. We
consider the following game for an ABS scheme ΣABS =

{Setup,KeyGen,Sig,Ver} which is played by an adversary A
and a challenger CH . In the game, FΣABS (λ) denotes a set
of leakage-functions*5. The definition of the set of leakage-

*5 We simply write F (λ) to indicate FΣABS (λ) if the set of functions is obvi-
ously for ΣABS.

functions for our ABS scheme can be seen in Subsect. 3.2.
Setup. CH runs (pk,mk) ← Setup(1λ, 1l). The universal set

of attributes is set asU = {0, 1}l. A list LS is set as a set ∅.
Query. A is allowed to adaptively use secret-key-generation

oracle Generate, secret-key-revelation oracle Reveal, and
signature-generation oracle Sign as follows.
Generate(S ∈ 2U): A issues S ∈ 2U . CH generates

sk ← KeyGen(pk,mk,S). If a list LS for the set of at-
tributes has not been generated, CH generates it and sets it
to {sk}. Else if such listLS has already been generated, CH
sets LS B LS ∪ {sk}.
Reveal(S ∈ 2U , i ∈ N): A issues S ∈ 2U and i ∈ N such
that i ∈ [1, |LS|]. CH retrieves the i-th secret-key from LS,
then returns it.
Sign(S ∈ 2U , i ∈ N,m ∈ M, ϕ): A issues S ∈ 2U , m ∈ M,
a predicate ϕ and i ∈ N such that i ∈ [1, |LS|]. CH
retrieves the i-th secret-key sk from LS, then generates
σ ← SIG.Sig(pk,m, ϕ, sk). After that, CH returns σ, and
sets LS B LS ∪ {(m, ϕ)}.

Leak(ϕ∗, f ∈ FΣABS ). A issues a predicate ϕ∗ such that ϕ∗(S) =
0 for every set of attributes S queried to Reveal and a func-
tion f ∈ FΣABS . CH returns f (Lϕ∗ ), where the set Lϕ∗ of
secret-keys is set to

∪
S∗∈2U s.t. ϕ∗(S∗)=1LS∗ .

Forgery(m∗ ∈ M, σ∗). A sends a message m∗ and a
signature σ∗. We say that A wins the game if
[1 ← Ver(pk,m∗, ϕ∗, σ∗)] ∧ [(m∗, ϕ∗) < LS ]. The ad-
vantage AdvF (λ)−HL−EUF−CMA

ΣABS ,A (λ) is defined as probability
Pr[A wins.].

Definition 4. ΣABS is HL-EUF-CMA w.r.t. FΣABS (λ), if for every
PPTA, AdvF (λ)−HL−EUF−CMA

ΣABS ,A (λ) is negligible.
2.5.2 Computational Signer-Privacy for ABS

For the existing ABS schemes [24], [27], [30], the authors dis-
cussed whether their scheme satisfies the information-theoretical
signer-privacy, a.k.a. perfect privacy. In this paper, we orig-
inally define a computational signer-privacy for ABS schemes
and consider whether our scheme satisfies it. For the defini-
tion, we referred to the definition of semantic security for PKE
scheme given by Goldwasser and Micali [14]. For an ABS
scheme ΣABS = {Setup,KeyGen,Sig,Ver}, we use two experi-
ments given in Fig.1, where A = (A1,A2) denotes a PPT ad-
versary, S = (S1,S2) denotes a PPT simulator, h1 and h2 denote
polynomial time computable functions, and Opk,mk

CS P denotes an or-
acle which takes a set of attributes S ∈ 2U as input and returns
KeyGen(pk,mk,S).
Definition 5. An ABS scheme ΣABS is computationally signer-
private, if ∀A = (A1,A2), ∀h1, ∀h2, ∃S = (S1,S2) s.t.
∀D, AdvCSP

ΣABS ,D,A,S,h1 ,h2
(λ) B |Pr[D(ExptCSP−0

ΣABS ,A,h1 ,h2
(λ)) → 1] −

Pr[D(ExptCSP−1
ΣABS ,S,h1 ,h2

(λ))→ 1]| is negligible.
2.5.3 Hard-to-Compute-Secret-Key (HtC-SK) for ABX

Ishizaka and Matsuura [19] introduced a property for PKX*6

named Hard-to-Compute-Secret-Key (HtC-SK). Intuitively, the
property says that any PPT given a secret-key sk cannot find a
valid secret-key sk′ such that a relation does not hold between sk
and sk′. We define the property for ABX*5. We use the following

*6 For primitives PKX and ABX, see [19], and the syntax of ABS in Sect.
2.5, respectively.
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ExptCSP−0
ΣABS ,A,h1 ,h2

(λ):

(pk,mk)← Setup(1λ, 1l), (K∗, ϕ∗,m, st)← AO
pk,mk
CS P (S)

1 (pk),
where m ∈ M and K∗ = {S|S ∈ 2U ∧ ϕ∗(S) = 1}.
S∗

U←− K∗, sk∗ ← KeyGen(pk,mk,S∗), σ∗ ← Sig(pk,m, ϕ∗, sk∗)

v← AO
pk,mk
CS P (S)

2 (st, h1(S∗), σ∗).
If v = h2(S∗), then d B 1. Else, then d B 0. Return (d,K∗).
ExptCSP−1

ΣPS ,S,h1 ,h2
(λ):

(pk,mk)← Setup(1λ, 1l), (K∗, ϕ∗,m, st)← SO
pk,mk
CS P (S)

1 (pk),
where m ∈ M and K∗ = {S|S ∈ 2U ∧ ϕ∗(S) = 1}.
S∗

U←− K∗, sk∗ ← KeyGen(pk,mk,S∗).

v← SO
pk,mk
CS P (S)

2 (st, h1(S∗)).
If v = h2(S∗), then d B 1. Else, then d B 0. Return (d,K∗).

Fig. 1 Experiments ExptCSP−0
ΣABS

and ExptCSP−1
ΣABS

.

game played by an adversaryA and a challenger CH .
Setup. CH runs (pk,mk) ← Setup(1λ, 1l). The universal set

of attributes isU = {0, 1}l.
Query. A is allowed to adaptively use secret-key-revelation or-

acle Reveal as follows.
Reveal(S ∈ 2U): CH generates sk ← KeyGen(pk,mk,
S), then returns the secret-key to A. After that, CH sets
LS B LS ∪ {sk}.

Compute(ϕ∗,S∗, sk∗). CH runs ˆsk∗ ← SKUpd(pk, sk∗,S∗, ϕ∗).
We say that A wins the game if [1 ← SKVer(pk, ˆsk∗, ϕ∗)] ∧
[
∧
S′∈2U s.t. ϕ∗(S′)=1[

∧
sk′∈LS′ [0 ← SKVer2(pk, ˆsk∗, sk′)]]].

The advantage AdvHtC−S K
ΣABS ,A (λ) is defined as Pr[A wins.].

Definition 6. ΣABX is HtC-SK, if for every PPTA, AdvHtC−S K
ΣABX ,A (λ)

is negligible.

3. Attribute-Based Signature Resilient to
Hard-to-Invert Leakage

We generically construct an ABS scheme in Subsect. 3.1. We
prove that it is existentially unforgeable in the HL model and
computationally signer-private in Subsect. 3.2 and Subsect. 3.3,
respectively.

3.1 Construction of ABS
We generically construct an ABS scheme ΣABS =

{ABS.Setup,ABS.KeyGen,ABS.Sig,ABS.Ver} by us-
ing the following 3 building blocks: an LPKE scheme
ΣLPKE = {LPKE.Gen,LPKE.Enc,LPKE.Dec}, an NIZK scheme
ΣNIZK = {NIZK.Gen,NIZK.Pro,NIZK.Ver}, and an ABX
scheme ΣABX = {ABX.Setup,ABX.KeyGen,ABX.SKUpd,
ABX.SKVer,ABX.SKVer2}. Specifically, each algorithm of
ΣABS is defined as follows.
ABS.Setup(1λ, 1l): Run (ek, dk) ← LPKE.Gen(1λ) and

(pk′,mk′) ← ABX.Setup(1λ, 1l). Run (crs, td) ← S1(1λ),
where S1 is the first simulator which makes ΣNIZK satisfy
the definition of zero-knowledge.
ML, LL and CL denote the plaintext space, the la-
bel space and the ciphertext space of ΣLPKE, re-
spectively. UX and PX denote the universal set of
attributes and the predicate space of ΣABX, respec-
tively. KX denotes

∪
S∈2U
∪

sk′←ABX.KeyGen(pk′ ,mk′ ,S){sk′}.
K̂X denotes

∪
S∈2U
∪

sk′←ABX.KeyGen(pk′ ,mk′ ,S)
∪
ϕ s.t. ϕ(S)=1∪

ˆsk′←ABX.SKUpd(pk′ ,sk′ ,S,ϕ){ ˆsk′}. The universal set of attributes

U and predicate space P of ΣABS are equivalent to UX and
PX , respectively. The message spaceM of ΣABS is the space
satisfying LL =M||P.
We set system public-key and master-key as pk B (pk′, ek,
crs) and mk B mk′, respectively, and Return (pk,mk). We
define the language L as L B {(C,m, ϕ) ∈ CL × M × PX |
∃ ˆsk′ ∈ KX s.t. [C ← LPKE.Enc(ek, sk′,m||ϕ)] ∧ [1 ←
ABX.SKVer(pk′, sk′, ϕ)]}.

ABS.KeyGen(pk,mk,S ∈ 2U): mk is written as mk′. Return
sk′ B ABX.KeyGen(pk′,mk′,S).

ABS.Sig(pk,m ∈ M, ϕ ∈ P, sk,S ∈ 2U): sk is written as sk′.
Run ˆsk′ ← ABX.SKUpd(pk′,mk′, sk′,S, ϕ). Generate C B
LPKE.Enc(ek, ˆsk′,m||ϕ). Set x B (C,m, ϕ) and w B ˆsk′,
then generate π B NIZK.Pro(crs, x,w). Return σ B (C, π).

ABS.Ver(pk,m ∈ M, ϕ ∈ P, σ): σ is parsed as (C, π). Set x B
(C,m, ϕ), then Return NIZK.Ver(crs, x, π).

3.2 Proof of Unforgeability in the HL Model of ABS
Before we prove the existential unforgeability of our ABS

scheme ΣABS, we define the set of leakage-functions FΣABS (λ). In
the definition given below, variables (pk′,mk′, ek, dk.crs, td) de-
note the variables which were generated at Setup in the game,
ϕ∗ denotes the target predicate, for a set of attributes S ∈ 2U , LS
denotes the list for S at Leak in the game, and a set LŜ denotes
a multiset which is generated as follows: we initialize LŜ as en
empty set, and then for every S ∈ 2U s.t. ϕ∗(S) = 1, we add |LS|
number of the set of attributes S into LŜ.
Definition 7. Set of leakage-functions FΣABS (λ) consists of ev-
ery polynomial time computable probabilistic (or deterministic)
function f : {0, 1}

∑
sk′
Ŝ
∈L′
ϕ∗
|sk′
Ŝ
| → {0, 1}∗ which has a random-

ness space R and satisfies that for every PPT B, the proba-
bility Pr[B(pk′,mk′, ek, dk, crs, td, ϕ∗,LŜ, f , f (L′ϕ∗ ; r)) → sk∗ ∈
K̂X s.t. [1 ← ABX.SKVer(pk′, sk∗, ϕ∗)] ∧ [

∨
sk′
S∗∈L

′
ϕ∗

[1 ←

ABX.SKVer2(pk′, sk∗, sk′S∗ )]]] is negligible, where r
R←− R and

for every Ŝ ∈ LŜ, sk′
Ŝ
B ABX.KeyGen(pk,mk, Ŝ) and L′ϕ∗ B

L′ϕ∗ ∪ sk′
Ŝ
.

The existential unforgeability of ΣABS is guaranteed by the fol-
lowing theorem.
Theorem 3.1. ΣABS is HL-EUF-CMA w.r.t. FΣABS (λ), if ΣLPKE is
IND-wLCCA, ΣNIZK is sound and ZK, and ΣABX is HtC-SK.

Proof of Theorem 3.1. Hereafter, qs ∈ N denotes the number
of times that PPT adversary A uses the signing oracle Sign. To
prove Theorem 3.1, we use multiple games Gamei, where i ∈ {0,
1, 2, 3, 4, 4|1, · · · , 4|qs, 5}.

The game Game0 is the normal HL-EUF-CMA game w.r.t.
ΣABS and FΣABS (λ). Specifically, Game0 is the following game.
Key-Generation. CH runs (pk′,mk′) ← ABX.Setup(1λ, 1l),

(ek, dk) ← LPKE.Gen(1λ), and (crs, td) ← S1(1λ). pk and
mk are set to pk B (pk′, ek, crs) and mk B mk′, respectively.
pk is given toA. LS is set to ∅.

Query. When A queries to either one of the oracles
Generate, Reveal and Sign, CH behaves as follows.
Generate(S ∈ 2U): CH generates sk′ ←
ABX.KeyGen(pk′,mk′,S). If the list LS for the set
of attributes has not been generated, CH generates it and
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sets it to {sk′}. If the list LS has already been generated,
CH sets LS B LS ∪ {sk′}.
Reveal(S ∈ 2U , i ∈ N): CH retrieves the i-th secret-key
from LS, then returns the secret-key.
Sign(S ∈ 2U , i ∈ N,m ∈ M, ϕ): CH retrieves the i-th
secret-key sk′ from LS. CH runs ˆsk′ ← ABX.SKUpd(pk′,
sk′,S, ϕ), then generates C B LPKE.Enc(ek, ˆsk′,m||ϕ).
CH sets x B (C,m, ϕ) and w B sk′, then generates
π B NIZK.Pro(crs, x,w). After that, CH returns
a signature σ B (C, π) to A. After that, CH sets
LS B LS ∪ {(m, ϕ)}.

Leak(ϕ∗ ∈ P, f ∈ FΣABS ). CH returns f (Lϕ∗ ), where a set Lϕ∗
of secret-keys is set as

∪
S∗∈2U s.t. ϕ∗(S∗)=1LS∗ .

Forgery(σ∗,m∗). σ∗ is parsed as (C∗, π∗). The statement x∗

is set to (C∗,m∗, ϕ∗). A is said to win the game if [1 ←
NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, ϕ∗) < LS ]

We define the other games Gamei, where i ∈ {1, 2, 3, 4, 4|1, · · · ,
4|qs, 5}, as follows.
Game1 is the same as Game0 except that CH generates a com-

mon reference string crs by running crs ← NIZK.Gen(1λ) at
Key-Generation.
Game2 is the same as Game1 except thatA’s winning condition

is changed to the following one, where ˆsk∗ B LPKE.Dec(dk,C∗,
m∗||ϕ∗): [1 ← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, ϕ∗) < LS ] ∧ [1 ←
ABX.SKVer(pk′, ˆsk∗, ϕ∗)].
Game3 is the same as Game2 except that A’s winning con-

dition is changed to the following one: [1 ← NIZK.Ver(crs,
x∗, π∗)] ∧ [(m∗, ϕ∗) < LS ] ∧ [1 ← ABX.SKVer(pk′, ˆsk∗, ϕ∗)] ∧
[
∨
S′∈2U s.t. ϕ∗(S′)=1[

∨
sk′∈LS′ [1← ABX.SKVer2(pk′, ˆsk∗, sk′)]]].

Game4(= Game4|0) is the same as Game3 except that CH gener-
ates a common reference string crs by running (crs, td)← S1(1λ)
at Key-Generation. When replying to a query to Sign at
Query, CH generates a proof π by running π ← S2(crs, x, td),
where S2 denotes the second simulator in the definition of zero-
knowledge for ΣNIZK.
Game4|i, where i ∈ [1, qs], is the same as Game4|0 except

that when replying to the j-th signing oracle query, where
j ≤ i, CH generates the ciphertext C j by running C j ←
LPKE.Enc(ek, 0|skϕ |,m||ϕ), where |skϕ| denotes the bit-length of
a secret-key for ϕ.
Game5 is the following game, which is played byA and CH .

Key-Generation. CH runs (pk′,mk′) ← ABX.Setup(1λ, 1l),
(ek, dk) ← LPKE.Gen(1λ), and (crs, td) ← S1(1λ).
(pk′,mk′, ek, dk, crs, td) are sent toA.

Leak(ϕ∗,S∗1, · · · ,S∗k s.t. ϕ∗(S∗1) = · · · = ϕ∗(S∗k) = 1, f ∈ FΣABS (λ)).
CH computes f ({sk∗i }i∈[1,k]), where for i ∈ [1, k], the secret-
key sk∗i is generated as sk∗i B ABX.KeyGen(pk′,mk′,S∗i ).
Then CH sends it toA.

Forgery(σ∗,m∗). σ∗ is parsed as (C∗, π∗). By decrypting C∗,
we get ˆsk∗ B LPKE.Dec(dk,C∗,m∗||ϕ∗). The statement x∗

is set to (C∗,m∗, ϕ∗). A is said to win the game if [1 ←
ABX.SKVer(pk′, ˆsk∗, ϕ∗)]∧[

∨
i∈[1,k][1← ABX.SKVer2(pk′,

ˆsk∗, sk∗i )]].
Hereafter, for i ∈ {0, 1, 2, 3, 4, 4|1, · · · , 4|qs, 5}, Wi denotes the

event where A wins the game Gamei. Obviously, it holds that

Expt0(λ)(= ExptCSP−0
ΣABS ,A,h1 ,h2

(λ)):
(ek, dk)← LPKE.Gen(1λ), (pk′,mk′)← ABX.Setup(1λ, 1l)
(crs, td)← B1(1λ), pk B (pk′, ek, crs), mk B mk′

(K∗, ϕ∗ ∈ P,m∗ ∈ M, st)← AO
pk,mk
CS P (S)

1 (pk),
where K∗ = {S|S ∈ 2U ∧ ϕ∗(S) = 1}.
S∗

U←− K∗, sk∗ ← ABX.KeyGen(pk′,mk′,S∗)
ˆsk∗ ← ABX.SKUpd(pk′, sk∗,S∗, ϕ∗)

C∗ ← LPKE.Enc(ek, ˆsk∗,m∗||ϕ∗), x∗ B (C∗,m∗, ϕ∗), w B ˆsk∗
π∗ ← NIZK.Pro(crs, x∗,w∗), σ∗ B (C∗, π∗)

v← AO
pk,mk
CS P (S)

2 (st, h1(S∗), σ∗)
If v = h2(S∗), then d B 1. Else, then d B 0. Return (d,K∗).
Expt6(λ)(= ExptCSP−1

ΣABS ,S,h1 ,h2
(λ)):

(ek, dk)← LPKE.Gen(1λ), (pk′,mk′)← ABX.Setup(1λ, 1l)
(crs, td)← B1(1λ), pk B (pk′, ek, crs), mk B mk′

(K∗, ϕ∗ ∈ P,m∗ ∈ M, st)← S1(pk),
where K∗ = {S|S ∈ 2U ∧ ϕ∗(S) = 1}.
S∗

U←− K∗
v← S2(st, h1(S∗))
If v = h2(S∗), then d B 1. Else, then d B 0. Return (d,K∗).

Fig. 2 Experiments Expt0 and Expt5.

Adv
FΣABS (λ)−HL−EUF−CMA
ΣABS ,A (λ) = Pr[W0] ≤ ∑4

i=1 |Pr[Wi−1] − [Wi]| +∑qs
i=1 |Pr[W4|i−1] − Pr[W4|i]| + |Pr[W4|qs ] − Pr[W5]| + Pr[W5].
Theorem 3.1 is proven by the above inequality and the follow-

ing lemmas.
Lemma 3.1. |Pr[W0] − Pr[W1]| is negligible if ΣNIZK is ZK.
Lemma 3.2. |Pr[W1] − Pr[W2]| is negligible if ΣNIZK is sound.
Lemma 3.3. |Pr[W2] − Pr[W3]| is negligible if ΣABX is HtC-SK.
Lemma 3.4. |Pr[W3] − Pr[W4]| is negligible if ΣNIZK is ZK.
Lemma 3.5. For every i ∈ [1, qs], |Pr[W4|i−1] − Pr[W4|i]| is negli-
gible if ΣLPKE is IND-wLCCA.
Lemma 3.6. Pr[W4|qs ] is negligible if Pr[W5] is negligible.
Lemma 3.7. Pr[W5] is negligible.

Proof of each lemma is given in the full paper. □

3.3 Proof of Computational Signer-Privacy of ABS
Previous ABS schemes [24], [27], [30] were proven to be per-

fectly signer-private. On the other hand, it must be hard to prove
that our ABS scheme ΣABS is perfectly signer-private since any
signature on a predicate ϕ generated by ΣABS includes a cipher-
text of a secret-key for the predicate. So, we prove the following
theorem which guarantees that ΣABS is computationally signer-
private.
Theorem 3.2. If ΣLPKE is IND-wLCCA and ΣNIZK is zero-
knowledge, then ΣABS is computationally signer-private.

Proof of Theorem 3.2. We define six experiments Expti,
where i ∈ {0, 1, 2, 3, 4, 5}, to prove the theorem. Hereafter, A1

and A2 denote PPT adversaries, S1 and S2 denote PPT simula-
tors,B1 andB2 denote PPT simulators which makes ΣNIZK satisfy
the definition of zero-knowledge, and h1, h2 are polynomial time
computable functions.
Expt0, given in Fig.2, is the experiment ExptCSP−0

ΣABS ,A,h1 ,h2
(λ)

w.r.t. PPT adversaries A = (A1,A2), and functions h1 and
h2. Expt5, given in Fig.2, is the experiment ExptCSP−1

ΣABS ,S,h1 ,h2
(λ)

w.r.t. PPT simulators S = (S1,S2), and functions h1 and h2.
Let us consider a PPT distinguisher D, whose advantage is de-
fined as follows. AdvCSP

ΣABS ,D,A,S,h(λ) B |Pr[D(Expt0(λ)) →
1] − Pr[D(Expt5(λ))→ 1]|.
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We define the other experiments Expti, where i ∈ {1, 2, 3, 4}.
Specifically, each experiment is defined as follows.
Expt1 is the same as Expt0 except that the common reference

string crs is generated by running crs← NIZK.Gen(1λ).
Expt2 is the same as Expt1 except that the common reference

string crs is generated by running (crs, td) ← B1(1λ) and the
NIZK-proof π∗ in the signature σ∗ = (C∗, π∗) is generated by
running π∗ ← B2(crs, x∗, td).
Expt3 is the same as Expt2 except that the LPKE-ciphertext

C∗ in the signature σ∗ = (C∗, π∗) is generated as a ci-

phertext of ˆsk♠, where ˆsk♠ is generated as follows: S♠
U←−

K∗, sk♠ ← ABX.KeyGen(pk′,mk′,S♠), and then ˆsk♠ ←
ABX.SKUpd(pk′, sk♠,S♠, ϕ∗).
Expt4 is basically the same as Expt3. In the experiment, we

generate not only the pair of (pk,mk), but also another pair of
( p̂k, m̂k). After generating them, we use only the latter pair.
For instance, the public-key p̂k is given to the adversary A =
(A1,A2), and the key-revelation oracle O p̂k,m̂k

CS P (Ŝ) generates a
secret-key for a set of attributes Ŝ by using the master-key m̂k
and returns it. Every variable which is dependent on the key-pair
( p̂k, m̂k) is given the hat symbol (ˆ).

We obtain the following inequality: AdvCSP
ΣABS ,D,A,S,h1 ,h2

(λ) ≤∑5
i=1 |Pr[D(Expti−1(λ))→ 1] − Pr[D(Expti(λ))→ 1]|.
Theorem 3.2 is proven true by the above inequality and the

following 5 lemmas. □
Lemma 3.8. If ΣNIZK is ZK, then ∀A = (A1,A2), ∀h1, ∀h2, ∀D,
|Pr[D(Expt0(λ))→ 1] − Pr[D(Expt1(λ))→ 1]| is negligible.
Lemma 3.9. If ΣNIZK is ZK, then ∀A = (A1,A2), ∀h1, ∀h2, ∀D,
|Pr[D(Expt1(λ))→ 1] − Pr[D(Expt2(λ))→ 1]| is negligible.
Lemma 3.10. If ΣLPKE is IND-wLCCA secure, then
∀A = (A1,A2), ∀h1, ∀h2, ∀D, |Pr[D(Expt2(λ)) →
1] − Pr[D(Expt3(λ))→ 1]| is negligible.
Lemma 3.11. ∀A = (A1,A2), ∀h1, ∀h2, ∀D,
Pr[D(Expt3(λ))→ 1] = Pr[D(Expt4(λ))→ 1].
Lemma 3.12. ∀A = (A1,A2), ∀h1, ∀h2, ∃S = (S1,S2) s.t. ∀D,
Pr[D(Expt4(λ))→ 1] = Pr[D(Expt5(λ))→ 1].

Proof of each lemma is given in the full paper.

4. Instantiation under the DLIN assumption
We show that our ABS scheme ΣABS can be instantiated under

standard assumptions, i.e., the DLIN assumption.
As a concrete construction for the LPKE scheme ΣLPKE, we

adopt ΠLPKE,l,n given in Fig. 3. The LPKE scheme is a mod-
ified variant of the LPKE scheme by Camenisch et al. [7]
which is IND-LCCA secure*7 under the DLIN assumption and
the collision-resistance of hash function. We obtain the following
theorem whose proof is given in the full paper.
Theorem 4.1. For any l, n ∈ N, ΠLPKE,l,n is IND-wLCCA under
the collision-resistance of the hash function HCL : {0, 1}∗ → Zp

and the DLIN assumption.
As a concrete construction for the non-interactive zero-

knowledge proof ΣNIZK, we adopt the Groth-Sahai proof ΠNIZK

in [16] whose soundness and zero-knowledge are guaranteed un-

*7 IND-LCCA is stronger security notion than IND-wLCCA. For the de-
tails, refer to [13].

LPKE.Gen(1λ, 1l, 1n): (p,G, g0)← G(1λ). g1, g2
U←− G

u1, u2, u3, v1, v2, v3,w1,w2,w3
U←− Zp, d1 B gu1

0 · g
u2
1 , d2 B gu1

0 · g
u3
2

e1 B gv1
0 · g

v2
1 , e2 B gv1

0 · g
v3
2 , h1 B gw1

0 · g
w2
1 , h2 B gw1

0 · g
w3
2

ek B (p,G, g0, g1, g2, d1, d2, e1, e2, h1, h2)
dk B (u1, u2, u3, v1, v2, v3,w1,w2,w3), Return(ek, dk)

LPKE.Enc(ek, x ∈ {0, 1}l,m1 ∈ G, · · · ,mn ∈ G, L ∈ {0, 1}∗):
For i ∈ [1, l], the i-th bit of x ∈ {0, 1}l is denoted by xi.
For every i ∈ [1, l], do:

ri, si
U←− Zp, yi B (yi,1, yi,2, yi,3) B (gri+si

0 , gri
1 , g

si
2 )

zi B hri
1 · h

si
2 · g

xi
0 , ti B HCL(yi, zi, L)

ci B (d1 · eti
1 )ri · (d2 · eti

2 )si , ci B (yi, zi, ci)
For every i ∈ [1, n], do:

rl+i, sl+i
U←− Zp, yl+i B (yl+i,1, yl+i,2, yl+i,3) B (grl+i+sl+i

0 , grl+i
1 , g

sl+i
2 )

zl+i B hrl+i
1 · h

sl+i
2 · mi, tl+i B HCL(yl+i, zl+i, L)

cl+i B (d1 · etl+i
1 )rl+i · (d2 · etl+i

2 )sl+i , cl+i B (yl+i, zl+i, cl+i)
Return C B {ci}i∈[1,l+n]

LPKE.Dec(ek, dk,C, L ∈ {0, 1}∗):
For every i ∈ [1, l], do:

ti B HCL(yi, zi, L), c̃i B yu1+tiv1
i,1 · yu2+tiv2

i,2 · yu3+tiv3
i,3

If c̃i , ci, then return ⊥.
Else if zi/(y

w1
i,1 · y

w2
i,2 · y

w3
i,3 ) = g0, then x′i B 1. Else, then x′i B 0.

The j-th bit of x′ is set as x′i .
For every i ∈ [1, n], do:

tl+i B HCL(yl+i, zl+i, L), c̃l+i B yu1+tl+iv1
l+i,1 · yu2+tl+iv2

l+i,2 · yu3+tl+iv3
l+i,3

If c̃l+i , cl+i, then return ⊥.
Else, then m′i B zl+i/(y

w1
l+i,1 · y

w2
l+i,2 · y

w3
l+i,3).

Return (x′,m′1, · · · ,m′n)
Fig. 3 Construction of LPKE scheme ΠLPKE,l,n, where l, n ∈ N and HCL :

{0, 1}∗ → Zp is a collision-resistant hash function.

ABX.Setup(1λ, 1l, 1n): (p,G, g)← G(1λ). g1, · · · , gn
U←− G. U B {0, 1}l

θ ∈ N denotes bit-size of an element of G. Q denotes signature space.
K denotes

∪
S∈2U
∪

sk←ABX.KeyGen(pk,mk,S){sk}.
K̂ denotes

∪
S∈2U
∪

sk←ABX.KeyGen(pk,mk,S)
∪
ϕ s.t. ϕ(S)=1∪

ŝk←ABX.SKUpd(pk,sk,S,ϕ){ŝk}. (vk,mk)← SIG.Gen(1λ, 1l+θ).
Return pk B (vk,U, p,G, g1, · · · , gn) and mk.

ABX.KeyGen(pk,mk,S ∈ 2U):

S is parsed as {a|a ∈ U}. x1, · · · , xn
U←− Zp. y B

∏n
i=1 gxi

i .
For every a ∈ S, σ̂a ← SIG.Sig(vk,mk, y||a).
Return sk B (x1, · · · , xn, y, {σ̂a | a ∈ S}).

ABX.SKUpd(pk, sk ∈ K ,S ∈ 2U , ϕ):
sk is parsed as (x1, · · · , xn, y, {σ̂a | a ∈ S}).
ϕ is represented as (M, ξ), where M ∈ Fk×t and ξ : [1, k]→U.

Ŝ ∈ 2U is defined as
∪

i∈[1,k]{ξ(i)}. For every a ∈ Ŝ \ S, σ̂a
U←− Q.

Return ŝk B (x1, · · · , xn, y, {σ̂a | a ∈ Ŝ}).
ABX.SKVer(pk, ŝk ∈ K̂ , ϕ):
ŝk is for S ∈ 2U and is parsed as (x1, · · · , xn, y, {σ̂a | a ∈ S}).
ϕ is represented as (M, ξ), where M ∈ Fk×t and ξ : [1, k]→U.
Return 1, if [y =

∏n
i=1 gxi

i ] ∧ [∃v⃗ ∈ F1×k s.t. [⃗vM = (1 0 · · · 0) ∈ F1×t]∧
i∈[1,k] s.t. vi,0[1← SIG.Ver(vk, σ̂ξ(i), y||ξ(i))] ].

Return 0, otherwise.
ABX.SKVer2(pk, sk∗, sk′):
sk∗ is for S∗ ∈ 2U and is parsed as (x∗1, · · · , x∗n, y∗, {σ̂∗a | a ∈ S∗})
sk′ is for S′ ∈ 2U and is parsed as (x′1, · · · , x′n, y′, {σ̂′b | b ∈ S′}))
Return 1, if

∧n
i=1

[
x∗i = x′i

]
. Return 0, otherwise.

Fig. 4 Construction of ABX scheme ΠABX,l,n, where l, n ∈ N and ΣSIG,l+θ =

{SIG.Gen,SIG.Sig,SIG.Ver} is a signature scheme with message
space {0, 1}l+θ.

der the DLIN assumption.
As a concrete construction for the ABX scheme ΣABX, we

adopt the ABX scheme ΠABX,l,n given in Fig. 4. For ΠABS,l,n,
we obtain Theorem 4.2 whose proof is given in the full paper.
Theorem 4.2. For any l, n ∈ N and any EUF-CMA secure signa-
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SIG.Gen(1λ, 1n): (p,G,GT , ê, g)← Gbg(1λ),M B {0, 1}n

g, h,V0
U←− G, a, v1, · · · , vn

U←− Zp, A B ha. For i ∈ [1, n], Vi B gvi .
Return (vk, sk) B ((p,G,GT , ê, g, h, A,V0,V1, · · · ,Vn), ga)

SIG.Sig(vk, sk,m ∈ M): r
U←− Zp, σ1 B (V0

∏n
i=1 Vmi

i )r · ga, σ2 B hr

Return σ B (σ1, σ2)
SIG.Ver(vk, σ,m ∈ M):
Return 1 if ê(V0

∏n
i=1 Vmi

i , σ2)ê(g, A) = ê(σ1, h). Return 0, otherwise.

Fig. 5 Construction of signature scheme Π̄SIG,n, where n ∈ N.

ture scheme ΣSIG,l+θ, ΠABX,l,n is HtC-SK under the DL assumption
and the EUF-CMA security of ΣSIG,l+θ.

We consider the signature scheme Π̄SIG,n given in Fig. 5. Ac-
tually, it is the signature scheme proposed by Waters [33]. Wa-
ters proved that it is strongly EUF-CMA secure under the bilinear
diffie-hellman assumption which is implied by the DLIN assump-
tion. Thus,
Theorem 4.3. For any n ∈ N, ΠSIG,n is EUF-CMA under the
DLIN assumption.

Let Π̄ABX,l,n denote the ABX scheme ΠABX,l,n using the signa-
ture scheme Π̄SIG,l+θ as ΣSIG,l+θ. By Theorem 4.2 and Theorem
4.3, we obtain
Corollary 4.1. For any l, n ∈ N, Π̄ABX,l,n is HtC-SK under the
DLIN assumption.
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